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Abstract

Semantic disambiguation depends on a process of
defining the appropriate knowledge contexzt. Recent
research directions suggest a connectionist approach
which use dictionaries, but there remain problems of
scale, analysis, and interpretation. Here we focus on
word disambiguation as scene selection, based on the
Ozford Pictorial English Dictionary. We present a re-
sults of a spatial-scene identification ability using our
original associative memory, We show both theoretical
and experimental analysis, based on a several different
measures including information entropy.

1 Introduction

The difficulty of semantic disambiguation in natural
language processing originates with the complexity of
defining disambiguating knowledge contexts (Barwise
J. and Perry J., 1983). These knowledge contexts
must provide unique interpretations for co-dependent
words, and help resolve “semantic garden path” se-
quences. For example, in “John shot some bucks,”a
unique reading requires semantic agreement on “shot”
and “bucks,” suggesting either a hunting or gambling
context. The semantic garden path can be illustrated
by prefixing the above sentence with “John travelled to
the woods,” which might suggest the hunting context,
but then appending “The illegal casino was hidden far
from town,” to dramatically change the interpretation
suggested by the first two sentences.

The core of the problem is the disciplined and dy-
namic construction of a disambiguating knowledge
context. While it might be possible to write static
rules which provide disambiguating information in the
context of complete knowledge, such rule-based mod-
els are both time and space inefficient.

Recognizing these problems, Waltz D.L. and Pollack
J.B.(1985) and Cottrell G.W.(1989) proposed a fasci-
nating connectionist approach, which uses early ideas
from semantic networks to resolve semantic ambiguity
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by dynamic spreading activation. This spreading acti-

vation construction of disambiguating context is based -
on a high density associative cognitive model, but =
still has problems: (1) no automated learning method
to adaptively construct the model, (2) non-scalable, -
and (3) no method of confirming hypothesized dis- -
ambiguation. ~ Shastri L.(1988) proposes a similar
structure, which uses a statistical semantic network.

Sharkey N.E.(1989) has proposed a system for process-

ing script-based narratives based on combining local
representation and relaxation techniques with parallel *
distributed learning and mapping mechanisms. Mi-
ikkulainen’s system DISCERN(Miikkulainen R., 1993)
is also suggestive of adaptive processing, and uses self-
organizing representation of words and memory de-
pending on semantics. However, all of these models
share the problems enumerated above.

Research directions for improvements suggest the
use of existing collections of machine-readable dictio-
naries. Recently, Nishikimi M. et al. (1992) has pro-
posed a new relationship between language acquistion
and learning based on scene analaysis. Furthermore,
Bookman L.A.(1993) has proposed a scalable architec-
ture for integrating associative and semantic memory -
using a thesaurus. Based on this idea of using existing
sources of word meanings, Veronis and Ide (Veronis J.
and Ide N.M., 1990; Ide N.M. and Veronis J., 1993) use
several dictionaries and to improve the ratio of words
disambiguated to ambiguous words.

In addition to ideas for the source of disambiguat-
ing knowledge, many researchers have incorporated
some kind of preference heuristics for improving the
efficiency of determining disambiguating constraints.
Although these methods are essential for semantic pro-
cessing they lack any coherent method for (1) evaluat-
ing performance, and (2) acquiring new disambiguat-
ing knowledge from real-world sensors.

Of course all of these problems result from the com-
plexity of defining appropriate disambiguating knowl-
edge contexts. To help control and reduce this com-
plexity, Kohonen T.(1984) has suggested the classifica- :
tion of disambiguating information into four types: (1)
spatial contact, (2) temporal contact, (3) similarity,
(4) contrast. Kohonen also emphasizes the existence



fa contextual background in which primary percep-
ions occur,’but we claim that this kind of information
can be expressed in the existing four types.

he previous approaches noted above can all be
interpreted as using a complex mixture of the infor-
| mation types proposed by Kohonen. This complex-
ity makes it very difficult to identify or create a sta-
le model of learning the appropriate disambiguating
wledge from the real world.

Our original contribution here is to propose a basic
thod of word disambiguation based on spatial scene
&entlﬁcatlon and to provide a detailed analysis of its
efformance. The disambiguating knowledge is repre-
ted in the form of a stochastic associative memory,
structed from the Oxford Pictorial English Dictio-
y (OPED). This pictorial dictionary claims to pro-
de word sense meanings for most ordinary life scenes.
e process of disambiguation is modelled as deter-
nining a unique mapping from ambiguous input words
a particular pictorial dictionary scene as modelled in
he associative memory. The simple representation of
torial knowledge based on the OPED makes analy-
simpler, and provides a potentially smooth connec-
n to visual sensory data.

Scene Identification

1 order to identify spatial scenes based on input sen-
ces, some kind of information of defining each scene
st exist. As explained in the OPED, “The dictio-
/ is edited regarding the depiction of everyday ob-
ts and situations, in order to allow greater scope
the treatment of these objects and situations in
context of English-speaking countries” [from For-
rd in OPED]. Each scene or pictorial entry in the
OPED accompanied by a word list of entries from the
scene (see next section). This bundle of information is
he basis for organizing our associate memory model.

.1 Constraints

| flere-'we assume some constraints on the method of
resenting and using the OPED scenes:

Only ordinal living scenes (384 scenes including
‘thousands of subscenes) are handled. All scenes
-are hypothesized to be constructable by combina-
 tions of these scenes.

Most of the words in OPED are noun terms ac-
companied by adjective terms. In this system,
spatial-scenes are identified by using only these
~words. No syntactical information is used.

Compound words are decomposed into primitive
words.

The associative memory has the ability to incre-
mentally learn, but our analysis here uses a fixed
set of scenes and words.
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Figure 2: Structure of OPED and diagram of
PDAI&CD

¢ Morphological analysis is done by using the elec-
tronic dictionary of Japan Electronic Dictionary
Research Institute (EDR).

2.2 PDAI&CD and WAVE

The spatial scene identification system analyzed in this
paper is one module of a general inference architec-
ture called Parallel Distributed Associative Inference
and Contradiction Detection (PDAI&CD)(Tsunoda
T. and Tanaka H., 1993), which uses an associative
memory WAVE(Tsunoda T. and Tanaka H.) based on
neural networks and a logical verification system. We
have previously presented an application of that archi-
tecture to semantic disambiguation (Tsunoda T. and
Tanaka H., 1993). It features a cognitive model of fast
disambiguation depending on context with bottom-up
associative memory together with a more precise top-
down feedback process (Fig.1). After one scene is se-
lected by previously input words, the system can dis-
ambiguate meaning of following words (as in the right
side of Fig.2). In the future, we plan to combine natu-
ral language processing with visual image from sensory
data. Our representation of the spatial data from the
OPED is considered to be a simplest approximation of
such visual sensory images.
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. ¢ Table 1: Examples of semantic disambiguatibn

Ex. | Ambiguous | Sentence # | Classified | Meaning
word (Context) | scene of word
ball (a) Billiards | globe

(b) Carnival | dance
lead (a) Kitchen | cord
(b) Atom I metal

2.3 Semantic Disambiguation

Words in OPED have different meanings correspond-
ing to their use in different scenes. When a set of am-
biguous words uniquely determines a scene, we con-
clude that the words have been successfully disam-
biguated. We acknowledge that many other processes
may be involved in general word sense disambiguation,
but use this scene-selection sense of word sense disam-
biguation from here on.

We illustrate typical two examples below. The sys-
tem with OPED and our associative memory can rec-
ognize these sentences and classify into each scene in
the dictionary. Once a scene is identified, it assigns
each ambiguous words uniquely. We call it semantical
disambiguation of words here. The correspondances of

the sentences and each meaning of word is summarized
in Table.1.

1. ball :

(a) Tom shot a white cue ball with a cue. The
ball hit a red object ball and he thought it’s
lucky if it will ...

(b) Judy found that she was in a strange
world. Devils,dominos,pierrots,exotic girls,
pirates,... where am 1?7 ‘Oh!’, she said to her-
.self, as she found she wandered into a ball.

2. lead :

(a) It’s not sufficient to shield only by the 1m-
thick concrete. The fission experiment re-
quires additional 10cm-thick blocks of lead.
Fission fragments released by the chain reac-
tion of...

(b) He said to his son, “Please pull out the plug
of the coffee grinder from the wall socket. Be
careful not to pull by the lead. Huum...here
I found the kettle.”...

Our system is able to disambiguate each meaning in

these examples actually.

3 Representation and Process-
ing Theory
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3.1 Representation of OPED

The Oxford Pictorial English Dictionary(OPED) has
very simple form of text and picture (Fig.3). In this
example, the upper part is a picture of a living room
scene, and the lower part consists of words of corre-
sponding parts as follows:

1 wall units
2 side wall
3 bookself

OPED has originally a hierachical structure of catego-
rization (as in the left side of Fig.2), but we use the |
middle level of it (shaded part in the figure), which is
most casily interpretable.

To provide the associative memory model for pro-
cessing words and selecting scenes, we encode the
OPED entries in the WAVE model as depicted in
Fig.3. The weights between scene elements are au-
tomatically learned during the construction of the as-
sociative memory. '

3.2 Simplified Model of Associative
Memory WAVE

The aim of using associative memory for identifica- -
tion is to select the most likely scene based on incom-
plete word data from sentences. I; and C; are set to
be elements of input space Sy, scene space S¢, respec:
tively. In an ideal state, the appropriate scene C; is.
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uniquely indexed by association from a complete input
vector: I; 4 c;.

In the typical situation, however, the complete index
- is not provided and we require a way of ranking com-
| peting scenes by defining a weighted activation value

which depends on the partial input, or set of ambigu-
ous words, as follows:

C: = fQQ_ Wil (1)
Jj
@) = = 2

(3)

- where the weight of each component is given by the
~ conditional probability value

: Wi = P(Ci|I)) (4)

A maximum-likelihood scene is selected by a winner-
take-all network:

Cio=max(C] (5)

This type of associative memory has following fea-
tures:

¢ Unlike correlative models (Amari S. and Maginu
K., 1988), neither distortion of pattern nor pseudo
local minimum solutions arise from memorizing
other patterns.

¢ Memory capacity is O(mn) compared to O(n?)
of correlative model, where m is average number

of words per scene, and n is the total number of
possible words.

o Unlike back-propagation learning algorithms, in-

cremental learning is possible at any time in
WAVE. ‘

3.3 Recalling probability and estima-
tion of required quantity of infor-
mation

The measure of scene selectivity is reduced to the con-
dition whether given words are unique to the scene. If
all input words are common to plural scenes, they can
not determine the original scene uniquely. For exam-

ple, the system can not determine whether to choose

category CA or CB only by seeing element ‘b’ in Fig.4.
If ‘a’ or the set {a, b} is given, it is able to select CA.
Here we estimate the selectivity by the ratio of suc-
cessful cases to all of possible cases as follows(n is the
number of total elements, k is the number of elements
related to each scene, and m is the total number of
scenes; incomplete information is defined as a partial

'fg’ vector of elements number s (0 < s < k)).

The probability that s elements are shared simulta-
neously by two patterns is

£Cs—1 n—tCl—s—1
an

Vin,k,s) = (6)

To extend this probability to generalized cases of
m patterns, we use the number s of elements of the
(partial) input vector. It can be estimated by counting
the negative case where more than one pattern shares
elements. '

P(n,k,s,m) (7
= O _V(km)" = P(n,k,s—1,m)  (8)

r=1

m-2
= (p-p)(D_ PPy )
s
= Vi)Y ey TR (10)
q=0
(m =Y Vikr), p=) Vin, kﬂ'))
r=1 r=1

The results using this formula are shown in the next
section.

3.4 Information Entropy

As an alternative method of evaluation of spatial-
scene information of OPED, we consider here self-
information entropy and mutual-information entropy

along with the information theory of Shannon
C.E.(1948).

¢ Self-information entropy:

Fig.5 illustrates a talking scene.  Although
sentences involving many ambiguous words are
handed from the speaker to the listener, the lis-
tener can disambiguate them with some kind of
knowkedge common to these people. Conversely,
the listner can determine scene by the handed sen-
tences. The entropy of scene selection ambiguity
is reduced by the interaction. We can define a con-
cept of self-information (SI) of the spatial-scene
idetification module as the entropy of ambiguous
words or scenes. Assuming equal probability to
the scene selection with no handed word, the en-
tropy of the spatial-scene identification can be cal-
cualted.

SIy = =Y P(Cj)log, P(C;) = log, 384 = 8.59bits

J

After the identification, the meaning of each word
can be selected according to each a selection dis-
tribution function updated by the Bayesian rule.

S, = CE(C|X) (11)
= < —ij,‘ lOng,' > (12)

71
Pj; = P(Cjlz)=P(z:|C;) (13)

Each P;; is equal to W;; as in Eq.(2). <> repre-
sents ensemble average over each ;.
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tener to disambiguate semantics of handed sentences.

Figure 6: (a) Distribution of number of elements per
scene and (b) Distribution of number of scenes per

Table 2: Mutual-information of OPED elements

Scene entropy | Mutual-inform.

1 word input
2 words input

Without input | 8.59 bits

0.80 bits
0.32 bits

7.79 bits
0.48 bits

4 Analyses of

e Mutual-information entropy:

Mutual-information entropy (MIE) can be defined
as the contribution of additional words to identify
a scene, and consequently, the selectiveness of the
target word or scene. In order to select a word
meaning or scene from the possible space Y, the
space C of all other words are considered in the
calculation of conditional entropy (CE). Mutual-
information entropy per word is calculated by fol-
lowing formula:

MIE(6;6') = CE(C | 6) — CE(C | §)

Here, 6 is a set of previous state parameters, and
@' is that of next one. Mutual-inforamtion can be
interpreted as the reduction from a previous con-
ditional entropy to corresponding updated con-
ditional entropy with additional words. We pro-
vide a theoretical estimation of self-information
of spatial-scenes with the dictionary in Table 2.
The result suggests that it has the spatial-scenc
identification ability with a few words preserva-
tion. Tt also supports the consequence of a logical-
summation algorithm shown in next section.

identification
module

Here we propose analyses of OPED and results of theo-
retical simulations. As formula (9) is expensive(11711!
times), we use a Monte-Carlo simulation to abstract its
characteristics. Iteration time in each case is 1,000.
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e Fig.6 (a) shows a distribution of number of ele-

ments involved in each scene in OPED. It approx-
imated a Gaussian distribution and has a average

value of 184.2. This value is used in the theoreti-
cal simulations.

Fig.6 (b) shows a distribution of number of scenes
which are related to one element. The region
where more than 100 scenes are related to one
word are those for trivial words like ‘a’, ‘the’, ‘of’,
‘that’, ‘to’, ‘in’, ‘and’, ‘for’, ‘with’, ‘s’. Although
we could ignore these words for an actual appli-
cation, we use them for fairness.

Selection probability in the case that partial
words of scenes are input to the associative mem-
ory is illustrated in Fig.7. The recall rate in-
creases as the input vector (set of words) becomes
more similar to complete vector (set of words) pat-
tern. Only about five words are enough to iden-
tify each scene at recognition rate of 90 percent.
Compared to the average number of 184 words
in each scene, this required number is sufficiently
small. It proves good performance of the associa-
tive memory used in this module. Theoretical re-

sults of a random distribution model is also shown

in Fig.7. The cause of the discrepancy between

the experiment and theoryis described later. The i
dotted line ‘EXACT’ in the figure is a result us-
ing logical-summation. The crossing point of the

‘OPED’ line and the ‘EXACT’ line is remarkable.

The former has the advantage of expecting with
relatively high-probability (likelihood) using in-
put words of small number. Though with more.

additional words, the algorithm is defeated by the

simple logical-summation. As our architecture
PDAI&CD uses dual-phase of expectation and  :
evaluation, we can get a solution with maximum-
likelihood satisfying constraints automatically.

o Fig.8 shows the distribution of number of elements

contributing to identify each scene uniquely.

e In order to clarify the discrepancy of the experi- "

mental and theoretical results, the number of ele-
ments overlapped in any two scenes are counted.
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As in Fig.9, the number of overlapping elements
in the theoretical calculation is very small com-
pared to the experiments with OPED. OPED-2
in the figure illustrates the same value without
using trivial words like ‘a’, ‘the’, ‘of’, ‘that’, ‘to’,
“in’, ‘and’, ‘for’, ‘with’, ‘s’. But the existence of
these words can not explain the whole discrep-

ancy. This will be described in the next section
in more detail.

As further investigation in order to explain the
discrepancy of ‘EXACT’(logical-summation) and
‘OPED’(with our associative memory), distribu-
tion of weight values is shown in Fig.10. Logical-
summation method is achieved by a special algo-
rithm similar to the associative memory. Only the
difference is that it uses equal weight value with-
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Figure 10: Distribution of weight value

out any variance. But in practical, the experimen-
tal result of ‘OPED’ as in Fig.10 shows an exis-
tence of enormous variance in the distribution of
weight value. Though the variance helps the selec-
tivity with a few words, it disturbs the expectivity
with more than three words conversely. Here we
summarize the interpretation of the gaps among
the theoretical expectation, the result of logical-
summation(‘EXACT’), and the system(‘OPED’):

1. Exsistence of trivial words in most of the
scenes.

2. Variance of weight distribution.

3. Difference of characteristics between algo-
rithms.

Abstracted results are summarized in Table.3. In
this table, the number of registered words in dic-
tionary itself is different from the number of the
total words analyzed by our system. The discrep-
ancy arises mainly from the fact that we analyzed
compound words into simple words (e.g. ‘research
laboratory’ to ‘research’ and ‘laboratory’).
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d Table 3: Summarized results

384 scenes
27,500 words
11,711 words
184.2 words

Total # of scenes
Registered # of words
Total # of words

Average # of words / scene

Max # of words in one scene | 478 words
Required # of words to 5 words
identify scenes at 90% ratio

Required # of words to 4 words
identify scenes at 90% ratio

by exact match algorithm

Theoretical estimation of 2 words

required # of words to
identify scenes at 90% ratio

5 Summary

We analyzed the selectivity of our 384 living scenes
with many sets of words which are part of 11,711 words
used in the dictionary OPED. The average number of
words in one scene is about 184. The probability of re-
calling correct scenes with input partial words is differ-
ent from the theoretical simulation of random assign-
ment constructed with values of these parameters. Un-
like random generation of arbitrary symbols, seman-
tics of natural language consists of highly-correlated
meanings of words. Although the theoretical simula-
tion of the simplified model suggests a rough estima-
tion of disambiguation requirements we should analyze
the dictionary itself as in this paper.

Another suggestive analysis is using Shannon’s in-
formation or entropy, which gives us more accurate
information. depending on probability of each phe-
nomenon. It shows how to estimate the amount of
semantic ambiguity. ‘

Spatial-scene identification is one of the simplest
kind of context necessary to disambiguate meaning of
words and offer a new method for future integration of

natural language processing and visual pattern recog-

nition.
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