An Object-Oriented Distributed System
Integrating Multimedia Resources

Qianshan He and flidehiko Tanaka
Department of Electrical Engineering
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

In this paper, we introduce a distributed system which
provides extensible as well as integrated environments for
users and application programs to access and combine
distributed resources conveniently. The system is based
on the concept of object-oriented service bases. Dis-
tributed resources are abstracted as objects containing
the meta-information of the resources. A service base in
each node is constructed to manage these objects. Three
layered views { external, conceptual and internal view)
about objects are divided. A service base can be seen as
a software package built on an existing operating system
to provide mapping from the external view of objects
to the internal view of objects to realize transparency
and to absorb heterogeneity and different media types.
We present the modeling and an implementation of this
distributed system in this paper.

1 Introduction

Recently, developments in networks, especially the high
bandwidth and high speed networks (for example, ISDN
and LAN), make the sharing of multimedia data in a dis-
tributed environment available and practical. Moreover,
Developments in workstations provide a powerful inter-
face for users to create or display data of different media
types (image media, text media or graphic media). On
the other hand, In this kind of distributed environments,
the numbers and types of data available to users are
being expanded, users may have troubles to access and
manipulate these data. Application programs, functions
provided by computers, operations on multimedia data
are becoming more complicated (we call these multime-
dia data, application programs and functions resources).
Therefore, it is necessary to use an uniform method to
manage these distributed resources and to provide con-
venient and integrated high level services to the users.

In this paper, to solve the problems above, we pro-
pose a distributed system based on object-oriented ser-
vice bases. We use the object model to represent re-
sources. In a service base, three layered views of objects
are used to manage objects. Distributed resources can
be used conveniently by users and application programs
though an uniform interface without worrying about the
different types of media or the heterogeneity of comput-
ers. Our design considerations emphasis on providing
an integrated, extensible and easy to be constructed dis-
tributed system.

This paper is organized as follows. In section 2, we de-
fine what is a distributed object and present the method
to manage distributed objects in our system. Section 3
describes the structure of an object-oriented service base.

‘Section 4 presents an experimental system and discusses

the implementation issues. Finally, in section 5, some
conclusions regarding the characteristics and application
aspects of the system are discussed.

2 Modeling

2.1 What Are Distributed Objects?

In a computer system, processors, memories, /0, files
and networks are usually managed by an operating sys-
tem which provides higher level functions to users. On
the top of the operating system, users can see various
programs and data: a program can be a function pro-
vided by a computer (for example, a command of an
operating system), or an application program created
by an user with a certain language to perform a specific
work; data may be expressed in different media types
(for example, image media, text media). An application
system are constructed by combining these programs and
data. By resources in our system, we refer to these high
level functions, data and application programs. Usually,
using the resources can be described as: “An operation

is imposed on data and certain results are produced”.
The operation may be a function provided by computer
(for example, a compiler or an editor) or an application
program. This concept can be extended directly to the
object-oriented concept: an object contains its data and
operations on the data. In this way, using the object
model to express resources is natural.

On the other hands, In a distributed environment,
resources may have their more complicated structures.
For example, where are the data? Where are the pro-
grams executed? Who possesses these data and pro-
grams? What media types are the data? Are the data or
programs in disk or in memory? We call these informa-
tion meta-information of resources. When abstracting a
resource as object, we include these meta-information
in the conceptual views of the object. In the exter-
nal view of a distributed object shown to users, these
meta-information is unnecessary. In other words, net-

work transparency should be realized in the users level.

Object model has the characteristic of information en-
capsulation ability. This characteristic provides us a
good method to overcome the diflerent types of media
and the heterogeneity. We include the meta-information
of a resource inside an object as its attributes. Therefore,
only the external interface (specifications) of a resource
are shown to the users, the structures or implementation
details of the resource are encapsulated inside the object.
The attributes of the object will be used by the system
to absorb the different types of media and the hetero-
geneity. Object model also have good modularity. This
characteristic provides a way to extending resources. In
a distributed environment where the numbers and types
of resources available to users are being expanded, this
extensibility is very significant. If the common structure
of the resource management system has been defined,
then adding a new type of resource is a simple matter by

defining a new class for that specific type.

2.2 TIlow to Manage Distributed Ob-
jects?

In each node of the networks, a scrvice base is built up to
manage the local objects and cooperate with other ser-
vice bases in other nodes for accessing remote objects.
Distributed services are provided on top of the service
bases by combining local or remote objects. Inside a ser-
vice base, as shown in Figure 1, three layered views
about objects (external vicw, conceplual view, and in-

ternal view) are divided:

e The external view is the view shown to users or ap-
plication programs. Objects in the external view are
transparent and easy to be used.

e In the conceptual view, meta-information of a re-
source is abstracted as an object. The difference of
media types, heterogeneity and location distribution
of resources are absorbed in this layer.

e An object in the internal view is the entity of a re-
source. The internal view about an object concerns
its physical realization in a computer. Objects in
the conceptual view are reflected to their respective
objects in the internal view.

A service base processes the queries from users or ap-
plication programs by mapping the objects in three lay-
ered views: when a service request (which may contains
several objects) is invoked in the external view, the re-
quest, is mapped to the objects in the conceptual view.
According to the location attributes of the objects in the
conceptual view, the objects in the conceptual view are
mapped either to the objects of the internal view in the
local node or to the objects of the external view in a
remote node. We will take an example in section 3.2
to show how the mapping of objects in diflerent views
works.

In the following sections, we will discuss the details of

object management methods in each layer: object man-

agements in the conceptual view are based on a directory
and a database; in the external view, a browser and a li-
brary are provided as interface for users and application
programs to access objects; object managements in the
conceptual view are based on the existing operating sys-
tems or database management systems.

2.3 System Configuration

We suppose that the system is built on a long-haul net-
work or a local area network (LAN) environment. In a
LAN environment, administrative of machines according
to subgroups of an organization will be natural. We call
these subgroups clusters. In a cluster, as shown in Figure
2 , there may be some servers such as file servers and
print servers which are shared by the machines inside
the cluster. Because of the high speeds of the LAN and
the uniform administrations, a centralized management
configuration will be eflicient within a cluster: that is, a
service base in each node are constructed to manage lo-
cal objects and provide objects to other nodes, all objects
provided by the cluster are registered centrally in the ser-
vice base of the cluster server (the cluster server should

A service request:
edit(file_nams)

External view

External view

N O %

file_name

Objects provided
to users in node (N)

@O

O a class in the directory

] operation

/Qﬁeptual view

Internal view

the image editor

the entity of the file

node (N) node (N+1)
objects O data
——— class inheritance
— class and its instance
-~ mapping between views

Work- Work- Parsonal Personal
station station
computer computer
Local area network
Cluster File Print Gateway
server server server server
e

]

Figure 2: Configuration of a Cluster

Figure 1: The Three Layered Views and the Mapping of Views

be a node which has fast responding time and massive
secondary storage inside the cluster). The cluster server
acts as an overall guidance for the nodes in a cluster.
Wlhen a request of some objects is invoked in a node of a
cluster, the service base in this node first checksif objects
are located locally, if not, a further request to the cluster
server is invoked. Based on the information about these
objects in the cluster server, the objects are fetched from
a service base of a node inside the cluster. If the objects
are outside the cluster, the cluster server broadcasts the
request to the cluster servers in other clusters.

Nowadays, most of the long-haul networks are con-
nected by a number of local area networks. In a long-haul
network environment, we can consider that the system
consists of many centralized clusters. Objects manage-
ment within one cluster is just like that of LAN environ-
ments. More details of the discussions about the config-
uration of the system in a LAN or a long-haul network

environment can be referenced to [4].

Workstations, personal computers and servers (file
servers, cluster servers etc.) may have their different
emphases. A workstation usually acts as an access point
to manipulate or display multimedia data. This means
that the user interface to the service base in a worksta-

tion should provide powerful display functions such as
multiple windows and graphical displays. On the other
hand, servers dedicate to provide objects. Large sec-
ondary storage systems and service bases with fast re-
sponding time are important in these servers.

2.4 The Position of the System

Our system is constructed in a relatively high level. A
service base in each node is built on an existing operat-
ing system and the OSI communication interface. The
existing operating system can be a network operating
system or a distributed operating systein [1], or just a
single operating system in each heterogeneous machine
with minimum communication facilities. We only define
high level protocols. A concrete method to establish an
actual network system and its low level protocols is left
to system creators. Our system can be seen as a frame-
work which integrates various services in the application
layer. In the future, with the development of fundamen-
tal protocols and protocols used for various applications
in OSI, 1t is imiportant to have some systems to combine
these protocols for applications. To establish the unified
structure of the application layer will be important. Our
system is expected to be useful in these area.

3 Construct a Service Base

The structure of a service base in a workstation node, a
personal computer node or a cluster server is about the
same. The only difference is that a service base in a work-
station or a personal computer contains the information
of the local objects, but a cluster server contains the in-
formation of objects inside a cluster. In a workstation
or a personal computer, if a requested object is not local
object, 1t will send a massage to its cluster server, the
cluster server tells which node or cluster the requested
object is in.

Figure 3 shows the structure of a service base. We
structure the service base (including the interface) as
a collection of objects. The directory classifies all ob-
jects which can be used though this service base. The
query analyzer object is responsible to handle the queries
sent from users or application programs, and to perforin
mapping of the three layered views. The communication
module object provides communication interface between
objects in different nodes.

Application
programs

‘ Object
. Quer
Directory Analy):zer B
& & Massage Sending
oy ae i Inside a Node
v v >

Message Sending
Over Networks

Database Comm. Module

Service Base

Figure 3: The Structure of a Service Base

3.1 Directories

In the conceptual view of a service base, the meta-
information about a resource are abstracted as an ob-
ject. To classify various kinds of objects, a directory is
created in each service base. The directory indicates the
characteristics of resources: for example, what attributes

“a certain kind of resources has? What operations can be

performed on this kind of resources? What is the rela-
tionship between this kind of resources and other kind
of resources? etc.. The directory contains a collection of
classes. A class is defined to classify resources which have
the same characteristics. For each class, the operations
which can be applied to this class are defined. A class
may have its superclass. The attributes and the opera-
tions of the superclasses are inherited by its subclasses.
In this way, a subclass only need to define the attributes
which are different from its superclasses. We structure
the directory as a single-inherited class collections. The
attributes of a class are expressed by instance variables
of the class, and operations are expressed by methods.
Figure 5 shows an example of classes in the directory (
this example will be explained later). In this example,
C++ [7] language is used to define the classes.

Directories follow a tree structure in which informa-
tion are hierarchical (Figure 4). We suppose directories
in different nodes may have their different tree structures
according to their environment. This enriches the exten-
sibility of each node, and make our system applicable to
different. environments, On the other hand, we define
some minimum standards to ensure the whole system

dirRoot

dirExecutable [| dirDocument | <+

dirProgram

dirimage|| dirText IdnGrapmcs dirODAdocument dnC++]
dirRaster | ==*** dirLatex |- dirBitmap | =+

I_—__l a class in the directory TS~ inheritance

Figure 4: The Directory in a Service Base

class dirDocument

{

public dirRoot

Attribute name;
Attribute location;
Attribute format;
Attribute mediaType;
Attribute creatTime;
Attribute owner;

void multimediaMail (char* dest);
void multimediaEdit () ;

class dirODAdocument

{

public dirDocument

Attribute format = ODA DOCUMENT;
Attribute mediaType = MULTIMEDIA;
Attribute status;

void editingProcess();
void layoutProcess():
void presentationProcess () ;

Figure 5: Class Examples in Directories

AttributeValue locationValue[]={
/* node name: */
ENTERPRISE,
DISCOVERY,

AttributevValue formatValue{]={
ODA_DOCUMENT,

LATEX, /*text in latex */
C_PROGRAM, /*source in C */
RASTER, /*image in raster*/

AttributeValue statusValue[]={
/* for ODA DOCUMENT: */
PREVIOUS_CONTENT,
EDITED_CONTENT,

LAYOUT CONTENT

}i;

AttributeValue mediaTypeValue[]={
MULTIMEDIA,
TEXT, -
IMAGE,
GRAPHICS

Figure 6: Some Attribute Values in Directories

can co-operate with each others. This means that we
must define some classes and attributes which are com-
mon to variable objects. In an actual implementation of
the system, classes and attributes which are not defined
in the standard can be added to a directory to make the
system suitable to certain applications. For example, if
a new type of media or a new type of functions is to be
added to the system, then a new class for that specific
type should be defined.

In a heterogeneous environment or a multimedia envi-
ronment, attributes of the objects are very different from
each other. How to handle the attributes appropriately
is the main point of integrating them as a whole sys-
tem. In our experimental system, we only define parts
of attributes and attribute values (some examples of at-
tribute values are shown in Figure 6). How to include
the attributes and attribute values which are necessary
to an environment and exclude the attributes which are
unnecessary is remained as a problem which should be
solved in an actual implementation.

For the attribute values in the classes, we define their
syntax and semantics. An attribute value is expressed
by some key works which are predefined by the system.
An attribute may have several attribute values, their

relationship follows a certain syntax rules (for exam-
ple, “and”, “or” relationship). These limitations make
actual system coustructions possible. The structure of
classes, attributes and attribute values forms the direc-
tory schema. ’

A directory class is only a description of one kind of
resources. To register a resource in the service bases and
to make it available to network users, a class instance
(object) which contains the specific attribute values
of the resource should be produced and registered in a
database.

We take an example here to show how the directories
are structured and used. As shown in Figure 5 and Fig-
ure 4, a dirDocument class is defined. According to the
attribute fo;"mat of class dirDocument, the subclasses of
dirDocument can be class dirODAdocument, class dir-
Text and class dirlmage etc.. All attributes and opera-
tions of class dirDocument can be inherited by its sub-
classes.

The class instances of dirODAdocument are the docu-
ments which follow ODA standard of OSI [2] [3]. Besides
the attributes in class dirDocument, class dirODAdocu-
ment may contain the attributes like status which shows
the status of the document. The attribute value of stafus
(in a class instance) can be PREVIOUS.CONTENT,
EDITED_CONTENT and LAYOUT.CONTENT etc.. !
The operations in dirODAdocument may contain edil-
ingProcess, layoutProcess and presentationProcess etc..
To a specific document, an object which contains certain
attribute values is created and registered in a database.
To print this document (that is, to call the presentation-
Process), the service base first locates and fetches the
document (according to the location attribute), then
checks if this document is printable (attribute status
is LAYOUT_CONTENT or not). If not, say, attribute
statusis EDITED_CONTENT, the service base will au-
tomatically call the layoutProcess service to produce a
LAYOUT_.CONTENT of the document, then print it.
In this example, we can see logically that service bases
provide a new service that can print a document which is
not in printable status by combining some existing reg-
istered services (layoutProcess in the example). This
is only a simple example. When large numbers of ser-
vices are registered in the service bases, logically more
functions can be supplied to users by combining these

ODA distinguishes between a document’s logical structure and
its layout structure. Before logical structure editing, the content
of a document is called previous content. After logical structure
editing, the content of a document is called edited content. After
layout structure generation, the content of a document js called
layout content and can be presented on a medium (paper, screen)
through a presentation process.

services.

3.2 Mapping of the Three Layered Views

We use a simple example to show what relationship the
objects inside one node or outside the node have and
how they are mapped each other. This example is show
in Figure 1. We suppose there is a file registered in the
service bases, its name in the external view of node(N)
is called file_name. An user in node(N) want to display
this file. We suppose he does not know where the file
is actually located and what media type the file is ex-
pressed by. Therefore, he is not certain to use what kind
of editor to display this file. The logically inherited ob-
jects tree in the external view of node(N) (this tree is
shown to users in a command shell window) indicates
that this file can be imposed various operations: it can be
displaied by using the edit operation or printed by using
the print operation (an operation which is inherited from
the super-object) etc.. After the request edit(file_name)
is inputed to the service base in node(N), the file (which
actually is an image file) is displaied in an image editor
in node(N).

Inside the service bases, the object in the external view
of node(N) is first mapped to an object in the concep-
tual view in node(N). The object in the conceptual view
(meta-information of the resource) indicates that the file
is located in node(N+1) and the media type of the file
is image media, and that there is an image editor in
node(N) which can display this file. Then, the operation
part of the object in the conceptual view is mapped to
an object in the internal view in node(N) (the entity
of the resource), and a request is sent to node(N+1)
to map a object in the external view in node(N+1). In
node(N+1), same processes of view mapping are done
and finally the file is copied to node(N) to be displaied
by the editor.

If node(N) is called front node, node(N+1) is the back
node of node(N), and node(N+2) is the back node of
node(N+1). A front node may has its several back nodes
(logically, when the front node can send a request to a
certain node, we call this node back node.). By means
of mapping between the conceptual view of front node
and the external view of back nodes, objects provided to
the users in the external views of node(N) are the sum
of the objects in the internal view of node(N) and the
objects provided to the users through the external view
of node(N+1). The objects provided to the users through
the external view of node(N+1) also follows this way. In
other words, through the cooperations of service base in

each node, users in a node can access a large number

of transparent objects through the external view, and
each node can extend its resources independently in the
internal view.

From this example we can also see that logically the
objects in the external view of node(N) have a global in-
herited relationship. Actually node(N) does not contain
a global object pointer table. The global object image is
realized by the so-called forwarding pointers: the objects
in the conceptual view of node(N) have pointers to the
objects in the external view of its back nodes, and the
objects in the conceptual view of the back nodes have
forwarding pointers to the objects in the external view

of the back-back nodes.

3.3 Quéry Analyzer

Query analyzer is responsible to handle the queries sent
from users or application programs, and to perforin map-
ping of the three layered views. When an user or an
application program makes a request (consisting of ob-
jects in the external view) to the system, query analyzer
first maps their respective objects in the conceptual view,
then searches the database to get the attribute informa-
tion of the objects. Basing on the attributes of the ob-
jects, query analyer in a service base works as follows:

e Location checking: if the requested objects are lo-
cal objects, the objects in the conceptual view are
mapped to the objects in the internal view. If some
of the requested objects are remote objects, mes-
sages are sent to the cluster server to locate the
objects. Data objects will be fetched to the node
where the requested operation is located. Fetching
means replication of objects. If there is a network
file system supported by an operating system (for
example, NFS of SUN[6]), it will be efficient to only
mount the objects dynamically rather than copy the
objects.

e Semantics checking: Before the requested ob-
jects are combined, the semantics of each object are
checked based on the attributes of the object. This
is important in the different media types or hetero-
geneous cases. For example, to display an image
data, a window which can display image rather than

text should be used.

e Combining: Combinations of ohjects can be explic-
itly defined by the user in an application prograin,
or automatically made inside the service base. The
combinations of objects inside a service base mean
that after the semantics checking, query analyzer

finds some suitable registered objects to meet the
needs of the user’s request.

e Ezeculing: If the operations of an object are local,
the query analyzer forks processes to execute the
operations in the internal view.

3.4 Communication between Objects

Inside the service base of a node, communications be-
tween objects are supported by object communication
mechanisin of the language which implements the ser-
vice base. As discussed above, query analyzer, browser,
objects in the directory and communication module are
all objects, their communications follow this pattern.

Communication between objects which exit in differ-
ent nodes is supported by the communication module
object shown in Figure 3. After the source object sends
a message, control is passed to the communication mod-
ule. In other words, objects inside a service base are
not directly communicate with objects in other nodes.
Therefore, it is not necessary that the language which
implements our system is a distributed language. In the
communication module, two kinds of communication fa-
cility are provided: remote procedure call (RPC) and
message passing. For example, in our system, to exe-
cute a service is to combine objects which are related
to this service. When the operations of an object are
local and the data of the object are remote, the data
are fetched to local machine through message passing.
When the operations are local and the data are remote,
the data and control are migrated to the remote machine
through RPC. In our experimental system, the commu-
nication module is implemented by the socket primitives
in UNIX. The socket function covers protocols under ses-
sion layer.

4 An Implementation of the Sys-
tem

4.1 Environment

We have implemented an experimental system based the
model proposed above. This experimental system is used
to detail the problems which occur in an actual imple-
mentation of the model and and to show the effective-
ness of this model. Multimedia data can be included in
the system. The network used is an Ethernet-based LAN
which is located in the Faculty of Engineering, University
of Tokyo [1]. Through a gateway server, this LAN can
link to a long-haul network called june? in Japan. The

junet mainly provides mail facilities. Our experimental
system contains a number of SUN3, SUN4, VAX work-
stations. The experimental system is written in object-
oriented language C++.

4,2 Database

As discussed above, in the conceptual view, a disrectory
is used to classify resources. For each resource, a class in-
stance (object) is created and registered as a persistent
object in a database.

In an actual implementation, we must make choice
to use what kind of databases (for example, relational
database or object-oricuted database). 'The external
view and the conceptual view of our systemn are im-
plemented by object-oriented language C++4. It will
be eflicient for object-oriented language to access an
object-oriented database. Actually, in an object-oriented
database, the language and the database are usually de-
signed as a whole system [5]. But in our experimen-
tal environment, object-oriented database in each node
is not available. Therefore, we decide to use a rela-
tional database called INGRES [8]. To use a relational
database, the main problem is focused on how to map
the directory schema to the schema of the database. To
represent the directory schema which is a tree structure
in a normalized relational form will need a lot of relations
(tables).
lational form to represent the directory. In the database,

‘o solve this problem, we use unnormalized re-

each directory class is represented by one relation, and
several relations are used to keep the relationship of the
directory tree.

4.3 Interface

In the external view, a standard query language C++ is
provided as a standard interface for application programs
to access objects managed by the service bases. More-
over, we provide a browser for users to manipulate or
display objects. The structure of the interface is shown
in Figure 7.

The browser consists of command shell windows, text
windows, image windows and graphic windows etc.. Un-
til now, we have not implemented a window which can
display all objects in different media types. Fach kind of
window is used to display or edit objects with the relative
kind of media types. The selection of using which win-
dow to display or edit a multimedia objects will be made
by the system automatically according to the attributes
of the objects, say, image data will be display in an image
window. To display a document which contains elements

Library

FORTRAN F jcompiler

Objects
provided
by the
service
base

BLOWSER

Image | Text
window | window

Command

Graphic shell

window

("

The external view

Figure 7: The Structure of the Interface

in different media types, the text window will be first
opened and the text parts of the content are displaied.
Each element which is not text is represented by an icon
and a text caption. Selecting the icon will cause the ele-
ment to be displaied in a window which can display the
media type of the element. The command shell windows
are used to define the directory, register and delete ob-
jects in the service base, list registered objects and make
service requests. The hrowser can be seen as a collection
of classes. When media types increase, more windows
can be added to the browser by simplely adding sub-
classes in class browser and creating its class instances.
The browser in our system is implemented by using the
X-window system in SUN workstations. An example of
the browser is shown in Figure 8. As to the worksta-
tion without bitmap display, an interpreter which has
the same function of the command shell windows in the
browser is created to provided scroll display functions.
For applications written in common languages (For-
tran, Mudula-2, etc.), a library is provided. The library
provides a way for common languages to access the ser-

vice bases through standard query language C++.

4.4 Application Examples

Some application examples are available in our experi-
mental system. These examples include distributed com-
putation facility, distributed multimedia document man-
agement facility and remote compilation facility etc.. In

53| Bitmap Editor

input file name:

..‘u‘ﬁr—:&

[Lest, tex,

D3 (0] [Save][Load] (ReTT] .

LEnEm .

[<<)[Search >>]{47. 0402, 016, [Replace][AI1]{ 0x56, 0x88, 04 .

-.x!“,ll:;“n “Q
"
1

E
J
G

Test tex =

oreover,

Eilfunctions

resources.

0585 BROWSER:

Command Shell
[Tayout test. tex]

operations { or programs) on these data,

ﬁjrowded by computers are becoming more complicated,
e call these multimedia data, application programs and functions

In a distributed environment, because the numbers and types of resources

available to users are being expanded,
users mav have troubles to access and manipulate these resources.

execute | [printAl10bjectj[help][texthindow][graphicWindow][quit

'd to manage
ient facilities for users to

ove, we propose a_distributed
oach ¥cite{kenkyu}, in which

outpul resyft;

edia data,

----------------- registered objects! ----m-ommommmoe-
data in server:

function in server:
l layout display debuger

local data:

! hel, bitmap testl. tex
local function:
dir ctt bitmap cc

minako. ras he.bitmap list.c list osbs.cc test. tex men woman

ions,

t and manage resources,
iently though an

t

rvice base,
stributed objects, and use

w media type to the system
he functions of the system,

hn T 1PF -PIWpS

Figure 8: Windows in the Browser

the distributed computation facility, individual program
components (objects) in an application can be dis-
tributed to the computing servers or workstations, pro-
viding both higher performance for workstation users
and better uses of computing resources throughout the
networks. In the follows, we give some introduces to two
application examples.

The distributed document management facility: re-
cently, in the area of oflice automation, there are few
problems to create or display multimedia documents.
Many workstations provide various facilities to support
document creation. In an environment where a large
number of documents (for example, over hundreds) are
distributed and shared by users, the integrated manage-
ment of these document is difficult. In our distributed
document management facility, we suppose the docu-
ments exit in the local file system of each node. The
documents can be documents in ODA format or in vari-
ous other formats (for example, a text-only document in
Latex or PostScript format, or an image-only document
in Raster format). Information (news, messages and
mails etc.) can also be referred to documents. Our ex-
perimental system provides facilities to creat, access and

store multimedia documents. The shared documents are

mainly stored in file servers in some clusters. The clus-
ter servers in each cluster contain meta-information of
these documents and accept requests from workstations
to provide guidances to access the documents.

The remote compilation facility: when an user is in a
workstation, while a much faster compiler runs at a pow-
erful computing server, remote compilation is extremely
effective. In a network environment, to compile local files
in a remote machine, one may do the jobs as follows:

Copy the local files to the remote machine;

Log into the remote machine;

Activate the compiler,

Copy the execulable resulls back to the local machine;
Log out the remote machine.

In all these jobs, the user must take care of the loca-
In other words, the
environment of remote process execution in the network

tions of the files and the compiler.

is not transparent. In our system, these steps are done
by the service bases. The user just needs to invoke a
compiling service request and input the local file names,
he does not need to know which compiler will compile
The local

filcs and the control will be automatically migrated to

for him and where the fast compiler is in.

the remote machine where the compiler locates in. Ser-
vice bases combine the remote copy function, remote log
in function and remote command execution function to
form the compilation service.

5 Conclusion

In this paper, we have presented the concept of object-
oriented service bases and discussed how to construct
a distributed system based on service bases to manage
multimedia resources. Our system focuses on how to
abstract the meta-information from resources and how
to manage these meta-information. The object-oriented
approach provides us a modeling method.

Recently, many distributed systems have been de-
_signed to manage and share distributed resources (for
example, distributed operating systems and network
operating systems [1], distributed database systems).
There are also some systems which are designed spe-
cially for multimedia information or multimedia message
management{9] [10]. Although space does not permit a
detail comparison between our system and those systems,
here we can still mention some characteristics of our sys-
tem by comparing to those systems. First, the extensibil-
ity: new resources of different types can be added to each
node independently. Our system provide an open-end re-
source management framework in a developing network
environment. Second, the combining ability: existing
resources can be combined to provide more services. Fi-
nally, easy construction: the existing operating systems
and network facilities are utilized. Our system is not con-
structed from beginning. We consider that these charac-
teristics are important in practical distributed systems.

Our system is expected to be effective in the envi-
ronment where new resources are extended frequently
and the types of resources are various, for example, in
office automation environments or research laboratory
environments in universities or organizations. Recently,
many researches about multimedia database system have
been done, but there are few researches in this area con-
cerniné distributed environments. We are considering to
construct a distributed multimedia database system on
the framework of service bases.

References

[1] A. S. Tanenbaum and R. V. Renesse, “Distributed
Operating Systems”, Computing Surveys, Vol.17,
No.4, Dec. 1985.

10

[2] ISO/IEC, “Text and Office System — Office Docu-
ment Architecture (ODA) and Interchange For-
mate”, DIS 8613, 1988.

W. Horak, “Office Document Architecture and Of-
fice Document Interchange Formats: Current Sta-
tus of International Standardization”, IEEE COM-
PUTER, October 1985.

(3]

[4] Q. He and H. Tanaka, “Modeling and Implemen-
tation of Service Base System for Local Area Net-
works”, Conf. on Multimedia Communication and
Distributed Processing, IPSJ, No.37-7, Okinawa,

Japan, May 1988,

B. Toby, “Issues in the Design of Object-Oriented
Database Programming Languages”, Proc. of ACM
Conf. on OOPSLA, pp. 441-451, San Diego, Cali-
fornia, Sept. 1987.

[6] D. Walsh, R. Lyon and G. Sager, “Overview of The
SUN Network File System”, In Proc. of The Usenix

Winter Conf., pp.117-124, Dallas Texas, 1985.

B. Stroustrup, “The C+4+ Programming Lan-
guage”, Addition-Wesley, 1986.

[7)

[8] M. Stonebraker, E. Wong, P. Kreps and G. Held,
“The Design and Implementation of INGRES”,

ACM TODS, 1, 3, pp. 189 - 222, 1976.

Robert H. Thomas, et al., “Diamond: A Multime-
dia Message System Built on a Distributed Archi-
tecture”, IEEE COMPUTER, December 1985.

(9]

[10] Michael Caplinger, “An Information System Based
on Distributed Objects”, Proc. of ACM OOP-

SLA’87, October 1987.

