December 8-12, 2025 - Honolulu, Hawaii, USA

Q K3 ACSAC 2025

Analysis of Encryption Key Zeroization
from System-wide Perspective

Toyofumi Sawa, Kuniyasu Suzaki
Institute of Information Security
Kanagawa, Japan

Zeroization 2

= Zeroization: overwriting the key with zeros so that it cannot
be recovered.

= Cryptographic keys must be erased after use to prevent
leakage.

= Zeroization of secret data is a long-standing standard
practice (ISO/IEC 19790, FIPS 140-3).

= Zeroization is not just an application-level action.

= We aim to verify zeroization empirically on actual hardware.

A INSTITUTE of INFORMATION SECURITY

Our Goal & RQs 3

= Systematically study key zeroization failures across user
space, kernel, and hardware.

= Research Questions
RQ1: When a process terminates normally, are the cryptographic

keys in user space zeroized?

RQ2: When a process terminates abnormally, are the
cryptographic keys in user space zeroized?

RQ3: Are cryptographic keys duplicated into memory regions
that the process cannot read or write?

RQ4: Do residual keys persist after a system reboot?

A INSTITUTE of INFORMATION SECURITY

Investigation Method

= FPGA periodically scans physical memory and reports
detected AES keys; CPU runs target apps normally.

(openssl X sshd firefox >

0OS (Ubuntu Linux)

_ 2

SoC FPGA Board
(Kria KR260)

CPU (ARM Cortex-A)

Analyzer Machine SD
(ssh) PS Ethernet DRAM
GDB eria e Central Switch DDRC
Console

=

~ PL Ethernet <[Ethernet FIFO]4-[AESKeyFinder]

NS

The results are received with The detected keys and addresses are reported in
Wireshark and debugged the form of Ethernet packets.
with GDB, OpenQCD, etc. PY

A INSTITUTE of INFORMATION SECURITY

Periodic-AESKeyFinder Design

= FPGA-implemented AESKeyFinder
« AESKeyFinder is a forensic tool for AES keys, and is known for

its cold boot attack paper.

« Small Modification: Partial key schedule matching

I: procedure P-AESKEYFINDER(ReadAddr, Read Range)
2: initialize ReadQueue|0 : 15]
3: CandAddr < ReadAddr 1 gdseTin00:
4. while true do 3 845e74b20;
5: for 2 =0 to 14 do § Saserapso:
6: ReadQueue[i] + ReadQueueli + 1] 6 845¢74b50:
7 endfor 1 s
8: ReadQueue[15] < Read128bitViaAXI(CandAddr) 9 845¢74b80:
0: CandKey < ReadQueue|0] }(1) Ot
10: KeyScheCand[10 : 1] < AESKeySchedule(CandKey) 12 B45e74bb0:
11: if KeyScheCand[10 : 1] N ReadQueue[15 : 1] # 0 then -
12: output(CandK ey, CandAddr)
13: “end 1f
14: if CandAddr < ReadRange then) B033e9d%0:
15: CandAddr + CandAddr + 1 2 8033¢9db0:
8033e9dc0:
16: else 5 8033e9dd0:
17: CandAddr < ReadAddr 6 5033e9den:
18: end if 8 8033e9e00:
19: end while 10 503305020:
20: end procedure 11 8033eses0:
13 8033e9e50:

Full key schedule

0fc3b56c309d162d
eba2bc8led6109ed
b5a297925e002b13
d643455363eld2cl
69099950bf4adc03
6fe4952506ed0c75
27e65ae74802cfc2
8400d1lc2a3e68b25
b53£9947313£4885
a5af871310901e54
303647179599¢c004
0000000000000000
0000000000000000

55cbdd1966£d3458
d89455¢c08d5£88d9
e0694a8b38fdlf4b
0ed71093eebe5als
8960d3db87b7c348
613385bkeB853566d
aeB86893ccfb50c8a
e53354744bb5dd48
1bb9107bfe8a440f
409cd3675b25c31c
2b8f576cbb13840b
0000000000000000
0000000000000000

Partial key schedule

0£fc3b56c309d162d
eba2bc8led46109ed
05f006£2£39d44£3
17f6eab224e7872e
27e65ae74802¢cfc2
8400d1lc2a3eb8b25
b53f9947313f4885
a5af871310901e54
05f006f2f39d44f3
05f006£f2£39d44£3
d823adef35a4d4bdc
d3e21b5769b7e96a
0000000000000000

55cbdd1966£d3458
d89455c08d5£88d9
2bf60ccac89f43ab
cadl3992c8c8£466
ae86893ccfb50c8a
e53354744bb5dd48
1bb9107bfe8ad440f
409cdB3675b25¢c31c
2cf60ccac89f43ab
2df60ccac89f43a6
99101d42a81c5753
89ab4b04ebefdSae
0000000000000000

[17] J. Alex Halderman et al. “Lest We Remember: Cold Boot Attacks on Encryption Keys”. In: 17t USENIX Security Symposium (USENIX Security 08)

Experimental Setup

=« FPGA + Machine

TABLE I: Target Platform

Environment SoC Intel Desktop AMD Desktop Laptop

FPGA Board Xilinx KR260 ALINX AXKU062 ALINX AXKU062 ALINX AXKU3

CPU Cortex-AS53 Core 5-14500 Ryzen 5 8500G Core i3-1315U

Memory 4 GiB DDR4 32 GiB DDRS 32 GiB DDRS5 8 GiB LPDDRS5

T — ASUS PRIME ASUS PRIME ThinkPad X13

otherboar - B760M-A B650M-A 1I-CSM (Gen 4)

BIOS ver. U-Boot 2022.01 1002 1807 N3OET35W
On-chip AXI bus

FPGA Connection (128 bit width, ~ PCle 30 x4 PCle 3.0 x4 (POl Tummetine)
up to 333 MHz) °

[

A INSTITUTE of INFORMATION SECURITY

Evaluation

= Original vs. Periodic-AESKeyFinder

AES-128

AES-256

Periodic-AESKeyFinder

Periodic-AESKeyFinder

Environment Original Full Partial Original Full Partial

SoC (Ubuntu) 169 655 3 35 93 15

Intel Desktop (Ubuntu) 105 164 0 142 177 0

Intel Desktop (Windows) 22 22 0 105 92 3

= Detection Rate
« Experiment with 14 ° Detectinfatel e T, 7
2, ° m
- - o] 1‘2 -
short-lived TLS sessions & . g
g 1.0 ® o
a 3 =
c 0.8+
o ¢ o -
E 0.6 - =
4 o
. . 0.4 B
_ key lifetime g —
key detection rate = Z 02 n
scan C:VCle ool o a m Average Session Duration [s]
00 02 04 06 08 10 12 1.4
Configured Duration [s]
@

A INSTITUTE of INFORMATION SECURITY

Dete

Demonstration of Zeroization Failures

=« Experiment with multiple combinations of apps, libraries,
operating systems, and architectures.

RQ1l RQ2 RQ3
[W (N e S
Project Library 0s Exit | SIGKILL | SIG-term | SIG-core CS“’;'::’: dcl:’:p
OpenSSH OpensSSL Ubuntu 22.04 (AArch64) v X X X X X
OpenSSH OpensSSL Ubuntu 22.04 (x86-64) v X X X v X
OpenSSH LibreSSL Windows 11 (x86-64) v X v
OpenSSL OpensSSL Ubuntu 22.04 (AArch64) v X X X X X
OpenSSL OpenSSL Ubuntu 22.04 (x86-64) v X X X v X
Firefox LibNSS Ubuntu 22.04 (AArch64) v X X X X X
Firefox LibNSS Ubuntu 22.04 (x86-64) v X X X v X
Chromium BoringSSL Ubuntu 22.04 (AArch64) v X X X v
Chromium BoringSSL Ubuntu 22.04 (x86-64) v X X X v
Edge Schannel Windows 11 (x86-64) v X X v
7-Zip Original Windows 11 (x86-64) X X X v

A INSTITUTE of INFORMATION SECURITY

Zeroization upon Abnormal App. Termination (RQ2) o9

= Key appearance timeline when sending SIGABRT to sshd
during an SSH session.
= OpenSSH uses two AES session keys per connection.

Forced termination with SIGABRT Keys in the sshd user space are not

V zeroized after the session ends
Addrl :
SIGABRT }4fi;////'

Addr2

Addr3

Addr4 4

. == Key1
Addr5 = Koy2

0 200 400 600 800 1000 1200 1400 1600
Time (Sec.)

A INSTITUTE of INFORMATION SECURITY

Duplication of Detected Cryptographic Keys (RQ3) 10

= Two duplication paths:
o« Core Dump
» Context Switch

Addrl

SIGABRT
Addr2

Addr3

Core Dump: Keys duplicated by crash reporting tools
— p: Key P y P g

Addr4 4

Addr5 | = Key1

X -

0 200 00 600 800 1000 1200 1400 1600
Time (Sec.)

Keys duplicated due to context switches

//“‘., INSTITUTE of INFORMATION SECURITY

Key duplication caused by vector-register context switching (1/3)

= Context switch: switching threads running on the CPU
= When an interrupt occurs, the running thread yields the CPU to the kernel.

Vector Register

Application Data
(User Memory)

Running Thread

-

~

Keyl

Key2

\-

s i
im0 Process Data
(Kernel Memory)

A INSTITUTE of INFORMATION SECURITY

Next Thread

Current
vregs[Key1,Key2,...]

Next
vregs[KeyA,KeyB,...]

11

Key duplication caused by vector-register context switching (2/3) 12

The register contents of the previous process are saved into kernel memory, and the
next process’s register contents are loaded into the CPU to resume execution.

Interrupted Thread Kernel Next Thread

4)

Vector Register | KeyA | KeyB

| i D

.
: Keyl : Key2 : : !
+

Context Switch

Application Data
(User Memory)
Current

vregs[KeyA,KeyB,...] SLLAAAALAL

T

““Process Data
(Kernel Memory)

A INSTITUTE of INFORMATION SECURITY

\-

Key duplication caused by vector-register context switching (3/3)

Keys duplicated into kernel space during context switching were observed.

Vector Register

Application Data
(User Memory)

Previous Thread Kernel Running Thread

Y

KeyA | KeyB

aes

Current
vregs[Keyl,Key2,...]

\-

Next
vregs[KeyA,KeyB,...]

W

““Process Data
(Kernel Memory)

A INSTITUTE of INFORMATION SECURITY

13

Key Persistence after OS Reboot (RQ4)

= FIPS-compliant Linux zeroizes on reboot.
= Other environments sometimes retain keys.

OS (Environment) Warm After Reset
boot kernel crash | switch
Linux 5.15.0-1038-Xilinx-zyngmp(SoC) X X X
Linux-5.15.0-130-fips (Intel Desktop) v v v
Linux-6.8.0-50-generic (Intel Desktop) X v v
Linux-6.8.0-50-generic (AMD Desktop) v v v
Linux-6.8.0-50-generic (Laptop) X v
Windows 11 Build 22621 FIPS (Intel Desktop) X v v
Windows 11 Build 22621 (Intel Desktop) X v v

A INSTITUTE of INFORMATION SECURITY

Key Persistence after OS Reboot (RQ4)

= FIPS-compliant Linux zeroizes on reboot.
= Other environments sometimes retain keys.
= PCs zeroize memory after crash or hardware reset.

OS (Environment) Warm After Reset
boot kernel crash | switch
Linux 5.15.0-1038-Xilinx-zyngmp(SoC) X X X
Linux-5.15.0-130-fips (Intel Desktop) v v v
Linux-6.8.0-50-generic (Intel Desktop) X v v
Linux-6.8.0-50-generic (AMD Desktop) v v v
Linux-6.8.0-50-generic (Laptop) X v
Windows 11 Build 22621 FIPS (Intel Desktop) X v v
Windows 11 Build 22621 (Intel Desktop) X v v

A INSTITUTE of INFORMATION SECURITY

Key Persistence after OS Reboot (RQ4)

= FIPS-compliant Linux zeroizes on reboot.

= Other environments sometimes retain keys.

= PCs zeroize memory after crash or hardware reset.
= Keys remain on the SoC even after resetting

OS (Environment) Warm After Reset
boot kernel crash | switch
Linux 5.15.0-1038-Xilinx-zyngmp(SoC) X X X
Linux-5.15.0-130-fips (Intel Desktop) v v v
Linux-6.8.0-50-generic (Intel Desktop) X v v
Linux-6.8.0-50-generic (AMD Desktop) v v v
Linux-6.8.0-50-generic (Laptop) X v
Windows 11 Build 22621 FIPS (Intel Desktop) X v v
Windows 11 Build 22621 (Intel Desktop) X v v

A INSTITUTE of INFORMATION SECURITY

Discussion: Causes of Zeroization Failueres

1. Missing signal handlers
— Abnormal termination persistence

2. Lazy page zeroization
— Residual windows in memory

3. Duplication via register
— Vector register contents stored in kernel memory during
context switching

4. Core dumps
— Leakage via crash report

A INSTITUTE of INFORMATION SECURITY

17

Recommendations and Mitigations 18

= Application Developers
« Implement signal-handler zeroization for abnormal termination.
« Exclude sensitive pages from core dumps.

Library Developers

« Zeroize temporary key material stored in registers and temporary buffers after
cryptographic operations.
= OS Developers
« Zeroize the kernel memory that stores saved register contexts when a
process exits.
« Implement zeroization for SIGKILL.
System Managers

o Configure the system to not generate core dumps.
o Configure crash-reporting tools to avoid external transmissions.
Hardware / Platform Vendors

o Provide clear documentation on memory zeroization behavior during reboot.
Certification Testers
« Understand these system-level zeroization issues and require vendors to

document how their platforms behave.

Conclusion 19

= Zeroization cannot be guaranteed by app code alone;
OS/hardware interactions matter.

= FPGA-based live forensics revealed duplication and
persistence across layers and reboots.

= Disclosed issues to OpenSSH/OpenSSL/Firefox; fixes landed
for dump handling.

= Code Available on GitHub
GitHub - Tyojan/Periodic-AESKeyFinder @

Code
Available

A INSTITUTE of INFORMATION SECURITY

