
1

Analysis of Encryption Key Zeroization 
from System-wide Perspective

Toyofumi Sawa, Kuniyasu Suzaki
Institute of Information Security

Kanagawa, Japan



2Zeroization

■ Zeroization: overwriting the key with zeros so that it cannot 
be recovered.

■ Cryptographic keys must be erased after use to prevent 
leakage.

■ Zeroization of secret data is a long-standing standard 
practice (ISO/IEC 19790, FIPS 140-3).

■ Zeroization is not just an application-level action.

■ We aim to verify zeroization empirically on actual hardware.



3Our Goal & RQs

■ Systematically study key zeroization failures across user 
space, kernel, and hardware.

■ Research Questions
RQ1: When a process terminates normally, are the cryptographic 
keys in user space zeroized?

RQ2: When a process terminates abnormally, are the 
cryptographic keys in user space zeroized?

RQ3: Are cryptographic keys duplicated into memory regions 
that the process cannot read or write?

RQ4: Do residual keys persist after a system reboot?



4Investigation Method

■ FPGA periodically scans physical memory and reports 
detected AES keys; CPU runs target apps normally.

OS （Ubuntu Linux）

openssl sshd firefox

SoC FPGA Board
(Kria KR260)

Central Switch

CPU（ARM Cortex-A）

PS Ethernet

FPGA

DRAM
DDRC

PL Ethernet AESKeyFinder

ssh

Wireshark

Analyzer Machine

OpenOCD

Ethernet FIFO

GDB

SD

UART

JTAG

Serial
Console

The detected keys and addresses are reported in 
the form of Ethernet packets.

The results are received with 
Wireshark and debugged 
with GDB, OpenOCD, etc.



5Periodic-AESKeyFinder Design

■ FPGA-implemented AESKeyFinder
● AESKeyFinder is a forensic tool for AES keys, and is known for 

its cold boot attack paper.
● Small Modification: Partial key schedule matching

Full key schedule

Partial key schedule

[17] J. Alex Halderman et al. “Lest We Remember: Cold Boot Attacks on Encryption Keys”. In: 17th USENIX Security Symposium (USENIX Security 08) 



6Experimental Setup

■ FPGA + Machine



7Evaluation

■ Original vs. Periodic-AESKeyFinder

■ Detection Rate
● Experiment with 

short-lived TLS sessions

 key detection rate ≅
𝑘𝑒𝑦 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝑠𝑐𝑎𝑛 𝑐𝑦𝑐𝑙𝑒

AES-128 AES-256

Periodic-AESKeyFinder Periodic-AESKeyFinder

Environment Original Full Partial Original Full Partial

SoC (Ubuntu) 169 655 3 35 93 15

Intel Desktop (Ubuntu) 105 164 0 142 177 0

Intel Desktop (Windows) 22 22 0 105 92 3



8Demonstration of Zeroization Failures

■ Experiment with multiple combinations of apps, libraries, 
operating systems, and architectures.

Project Library OS Exit SIGKILL SIG-term SIG-core Context
Switch

Core 
dump

OpenSSH OpenSSL Ubuntu 22.04 (AArch64) ✔ ✘ ✘ ✘ ✘ ✘

OpenSSH OpenSSL Ubuntu 22.04 (x86-64) ✔ ✘ ✘ ✘ ✔ ✘

OpenSSH LibreSSL Windows 11 (x86-64) ✔ ✘ - - ✔ -

OpenSSL OpenSSL Ubuntu 22.04 (AArch64) ✔ ✘ ✘ ✘ ✘ ✘

OpenSSL OpenSSL Ubuntu 22.04 (x86-64) ✔ ✘ ✘ ✘ ✔ ✘

Firefox LibNSS Ubuntu 22.04 (AArch64) ✔ ✘ ✘ ✘ ✘ ✘

Firefox LibNSS Ubuntu 22.04 (x86-64) ✔ ✘ ✘ ✘ ✔ ✘

Chromium BoringSSL Ubuntu 22.04 (AArch64) ✔ ✘ ✘ ✘ ✔ -

Chromium BoringSSL Ubuntu 22.04 (x86-64) ✔ ✘ ✘ ✘ ✔ -

Edge Schannel Windows 11 (x86-64) ✔ ✘ ✘ - ✔ -

7-Zip Original Windows 11 (x86-64) ✘ ✘ ✘ - ✔ -

RQ1 RQ2RQ2RQ2 RQ2RQ3



9Zeroization upon Abnormal App. Termination (RQ2)

■ Key appearance timeline when sending SIGABRT to sshd
during an SSH session.

■ OpenSSH uses two AES session keys per connection.

SIGABRT直後から現れる複製

Forced termination with SIGABRT Keys in the sshd user space are not 
zeroized after the session ends



10Duplication of Detected Cryptographic Keys (RQ3)

■ Two duplication paths: 
● Core Dump
● Context Switch

Keys duplicated due to context switches

Core Dump: Keys duplicated by crash reporting tools



11Key duplication caused by vector-register context switching (1/3)

■ Context switch: switching threads running on the CPU
■ When an interrupt occurs, the running thread yields the CPU to the kernel.

Vector Register

Running Thread

keys[Key1,Key2,…]

Application Data
(User Memory)

Process Data
(Kernel Memory)

Next Thread

Current
vregs[Key1,Key2,…]

Next
vregs[KeyA,KeyB,…]

Kernel

Key1 Key2 … …

keys[KeyA,KeyB,…]



12Key duplication caused by vector-register context switching (2/3)

The register contents of the previous process are saved into kernel memory, and the 
next processʼs register contents are loaded into the CPU to resume execution.

Vector Register

Interrupted Thread

keys[Key1,Key2,…]

Application Data
(User Memory)

Process Data
(Kernel Memory)

Next Thread

Context Switch

Current
vregs[Key1,Key2,…]

Next
vregs[KeyA,KeyB,…]

Kernel

Key1 Key2 … …

KeyA KeyB … …

keys[KeyA,KeyB,…]



13Key duplication caused by vector-register context switching (3/3)

Keys duplicated into kernel space during context switching were observed.

Vector Register

keys[Key1,Key2,…]

Application Data
(User Memory)

Process Data
(Kernel Memory)

Running Thread

Current
vregs[Key1,Key2,…]

Next
vregs[KeyA,KeyB,…]

Kernel

KeyA KeyB … …

keys[KeyA,KeyB,…]

Previous Thread



14Key Persistence after OS Reboot (RQ4)

OS (Environment) Warm
boot

After 
kernel crash

Reset 
switch

Linux 5.15.0-1038-Xilinx-zynqmp(SoC) ✘ ✘ ✘

Linux-5.15.0-130-fips (Intel Desktop) ✔ ✔ ✔

Linux-6.8.0-50-generic (Intel Desktop) ✘ ✔ ✔

Linux-6.8.0-50-generic (AMD Desktop) ✔ ✔ ✔

Linux-6.8.0-50-generic (Laptop) ✘ ✔ -

Windows 11 Build 22621 FIPS (Intel Desktop) ✘ ✔ ✔

Windows 11 Build 22621 (Intel Desktop) ✘ ✔ ✔

■ FIPS-compliant Linux zeroizes on reboot.
■ Other environments sometimes retain keys.



15Key Persistence after OS Reboot (RQ4)

OS (Environment) Warm
boot

After 
kernel crash

Reset 
switch

Linux 5.15.0-1038-Xilinx-zynqmp(SoC) ✘ ✘ ✘

Linux-5.15.0-130-fips (Intel Desktop) ✔ ✔ ✔

Linux-6.8.0-50-generic (Intel Desktop) ✘ ✔ ✔

Linux-6.8.0-50-generic (AMD Desktop) ✔ ✔ ✔

Linux-6.8.0-50-generic (Laptop) ✘ ✔ -

Windows 11 Build 22621 FIPS (Intel Desktop) ✘ ✔ ✔

Windows 11 Build 22621 (Intel Desktop) ✘ ✔ ✔

■ FIPS-compliant Linux zeroizes on reboot.
■ Other environments sometimes retain keys.
■ PCs zeroize memory after crash or hardware reset.



16Key Persistence after OS Reboot (RQ4)

OS (Environment) Warm
boot

After 
kernel crash

Reset 
switch

Linux 5.15.0-1038-Xilinx-zynqmp(SoC) ✘ ✘ ✘

Linux-5.15.0-130-fips (Intel Desktop) ✔ ✔ ✔

Linux-6.8.0-50-generic (Intel Desktop) ✘ ✔ ✔

Linux-6.8.0-50-generic (AMD Desktop) ✔ ✔ ✔

Linux-6.8.0-50-generic (Laptop) ✘ ✔ -

Windows 11 Build 22621 FIPS (Intel Desktop) ✘ ✔ ✔

Windows 11 Build 22621 (Intel Desktop) ✘ ✔ ✔

■ FIPS-compliant Linux zeroizes on reboot.
■ Other environments sometimes retain keys.
■ PCs zeroize memory after crash or hardware reset.
■ Keys remain on the SoC even after resetting



17Discussion: Causes of Zeroization Failueres

1. Missing signal handlers 
→ Abnormal termination persistence

2. Lazy page zeroization 
→ Residual windows in memory

3. Duplication via register
→ Vector register contents stored in kernel memory during 
context switching

4. Core dumps
→ Leakage via crash report



18Recommendations and Mitigations

■ Application Developers
● Implement signal-handler zeroization for abnormal termination.
● Exclude sensitive pages from core dumps.

■ Library Developers
● Zeroize temporary key material stored in registers and temporary buffers after 

cryptographic operations.
■ OS Developers

● Zeroize the kernel memory that stores saved register contexts when a 
process exits. 

● Implement zeroization for SIGKILL.
■ System Managers

● Configure the system to not generate core dumps.
● Configure crash-reporting tools to avoid external transmissions.

■ Hardware / Platform Vendors
● Provide clear documentation on memory zeroization behavior during reboot.

■ Certification Testers
● Understand these system-level zeroization issues and require vendors to 

document how their platforms behave.



19Conclusion

■ Zeroization cannot be guaranteed by app code alone; 
OS/hardware interactions matter.

■ FPGA-based live forensics revealed duplication and 
persistence across layers and reboots.

■ Disclosed issues to OpenSSH/OpenSSL/Firefox; fixes landed 
for dump handling.

■ Code Available on GitHub
GitHub - Tyojan/Periodic-AESKeyFinder


