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PAPER

A Constant-Round Resettably-Sound Resettable Zero-Knowledge
Argument in the BPK Model

Seiko ARITA†a), Member

SUMMARY In resetting attacks against a proof system, a prover or a
verifier is reset and enforced to use the same random tape on various inputs
as many times as an adversary may want. Recent deployment of cloud
computing gives these attacks a new importance. This paper shows that
argument systems for any NP language that are both resettably-sound and
resettable zero-knowledge are possible by a constant-round protocol in the
BPK model. For that sake, we define and construct a resettably-extractable
conditional commitment scheme.
key words: resettable zero-knowledge, resettable soundness, conditional
commitment, resettably extractable

1. Introduction

(1) Resettable zero-knowledge proofs.

The notion of resettable zero-knowledge of proof systems
was proposed by Canetti, Goldreich, Goldwasser and Mi-
cali [4]. It requires that proofs be zero-knowledge even if a
prover is reset and enforced to use the same random tape on
various inputs as many times as an adversarial verifier may
want. This resetting attack is motivated by attacks against
smart cards, where a stolen card can be reset as many times
as an attacker wants. Recent deployment of cloud comput-
ing gives the notion new importance, because virtual ma-
chines in a cloud are far more easier for adversaries to reset
than real machines in the user’s perimeter [10], [13], [14].

[4] shows that assuming the existence of 2-round
perfectly-hiding commitments, there exist resettable zero-
knowledge proofs with a polynomial number of rounds for
all NP languages. Later, the round complexity is improved
to poly-logarithmic number by Kilian and Petrank [11].

[4] also presented the notion of the bare public key
(BPK) model. The only requirement in the BPK model is
that all verifiers deposit some public-key in a public file
before the prover begins the interaction. They constructed
constant-round resettable zero-knowledge arguments in the
BPK model, assuming some sub-exponential hardness as-
sumption.

(2) Resettably-soundness.

Barak, Goldreich, Goldwasser and Lindell [3] proposed the
notion of resettably-soundness, the dual notion of resettable
zero-knowledge. It requires that proofs be sound even if a
verifier is reset and enforced to use the same random tape on

Manuscript received March 22, 2012.
†The author is with Institute of Information Security,

Yokohama-shi, 221-0835 Japan.
a) E-mail: arita@iisec.ac.jp

DOI: 10.1587/transfun.E95.A.1390

various inputs as many times as an adversarial prover may
want. Resettably-sound zero-knowledge proofs exist only
for languages in non-uniform P. Even for arguments no
resettably-sound zero-knowledge arguments exist for lan-
guage outside BPP if the simulator is black-box.

[3] constructed a constant-round resettably-sound zero-
knowledge argument for NP only assuming collision-
resistant hash functions. In the construction, the Barak’s
non-black-box constant-round zero-knowledge argument
[1], especially the fact that it has only constant-round, plays
the essential role.

By utilizing that resettably-sound zero-knowledge ar-
gument, [3] also constructed a constant-round sequentially-
sound resettable zero-knowledge argument in the BPK
model. (We note that soundness in the BPK model is divided
into four subcategories; stand-alone, sequential, concurrent
and resettable soundness [12].)

(3) Resettably-sound resettable zero-knowledge argu-
ment.

How about simultaneous resettability ? Crescenzo, Persiano
and Visconti [5] showed that a constant-round concurrent-
sound resettable zero-knowledge argument is possible in
the BPK model assuming some sub-exponential hardness
assumption. Moreover, Deng and Lin [8] constructed a
constant-round concurrent-sound resettable ZK argument in
the BPK model only assuming collision resistant (against
polynomial-time adversaries) hash functions.

In the plain model, Deng and Lin [7] showed that
if there exist public-coin concurrent zero knowledge argu-
ments for NP, then there exist resettably-sound resettable
zero knowledge arguments for NP. However, it is not known
whether there exist public-coin concurrent zero knowledge
arguments for NP.

Recently, Deng, Goyal and Sahai [6] gave a break-
through. They gave a new non-back-box strategy based on
the Barak’s simulator and showed that there exists a both
resettably-sound and resettable zero-knowledge argument
system for all languages in NP in the plain model, assum-
ing trapdoor permutations and collision-resistant hash func-
tion families. Its round-complexity is square in the security
parameter.

Table 1 gives the summary of related proof/argument
systems.

(4) Our contribution.

This paper gives the first constant-round argument sys-
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Table 1 Summary of related proof/argument systems. In the table, rZKP
or rZKA denotes a resettable zero-knowledge proof or argument system,
respectively. ss , cs or rs for “sequentially sound”, “concurrently sound”
or “resettably sound”, respectively.

Reference System Rounds Model

Canetti et al. [4] rZKP polynomial plain
Kilian and Petrank [11] rZKP poly-log plain
Canetti et al. [4] rZKA constant BPK
Barak et al. [3] rs ZKA constant plain
Barak et al. [3] ss rZKA constant BPK
Crescenzo et al. [5] cs rZKA constant BPK
Deng and Lin [8] cs rZKA constant BPK
Deng et al. [6] rs rZKA square plain
Ours rs rZKA constant BPK

tem for all NP languages in the BPK model that is both
resettably-sound and resettable zero-knowledge.

To realize both resettably-sound and resettable zero-
knowledge argument system, we also rely on the Feige and
Shamir paradigm (as [5], [6], [8]). First, Verifier proves to
Prover that he knows some secret s (about his public key),
by using zero-knowledge AoK (Argument of Knowledge).
Then, Prover proves to Verifier that he knows a witness w
to the statement x to be proved or knows that secret s, also
by using zero-knowledge AoK. Since s is known only to
Verifier, Verifier is convinced that Prover should know the
witness w and the statement x is true.

To prove zero-knowledge or soundness property of
such scheme, the point is in the use of knowledge extractors
of the two AoKs. In the proof of zero-knowledge property,
a prover-simulator extracts the secret s from the first AoK.
Then this s is used as a fake witness by the prover-simulator
in the second AoK. On a while, in the proof of soundness,
a verifier-simulator extracts another secret s′ from the sec-
ond AoK claimed by a hypothetical cheating prover. This
leads to some contradiction to assumed security of secret
keys in the BPK model. (This is why the Feige and Shamir
paradigm requires the second proof also to be AoK in the
case of BPK model as well as the first proof. In the case
of plain model, it is possible that the second proof is just a
membership proof.)

Here, we recall that we are in a resettable situation.
Such extractors must extract some knowledge even if they
receive resetting operations. Those resetting operations
bring serious problem to the strategy of extractors: ordinal
rewinding strategy causes contradictions in the simulated
adversary’s view, because many messages in different ses-
sions have related randomness in a resettable situation.

We need to provide “resettable-extractors” for the two
AoKs that tolerate resetting operations and enable to extract
secrets even in resetting situation. ([6] derives a new rewind-
ing strategy that works and tolerates resetting operations in
the plain model, but it requires square-round complexity.)

For the first AoK, since we are in the BPK model,
the difficulty turns out to be some technical one (and we
can keep constant-round). However, for the second AoK in
which the statement to be proved involves the original state-
ment x, the difficulty is essential. To sanitize resetting op-

erations in the second AoK, we define and construct a new
variant of commitment scheme, resettably-extractable con-
ditional commitment scheme. In the commitment scheme, a
receiver-simulator can extract the cheating sender’s commit-
ment value even if receiving resetting operations at arbitrary
moments under some “condition”. By using the resettably-
extractable conditional commitment scheme plugged into
the second AoK, a verifier-simulator can extract knowledge
from a cheating prover even if receiving resetting opera-
tions at arbitrary moments also under some “condition”.
We will see the introduction of such “condition” enables us
to use ZAPs (two-round public-coin witness indistinguish-
able proof [9]) effectively to control adversary’s behavior
with respect to its use of randomness, resulting sanitization
of its resetting operations. Then we will see that depend-
ing on such “condition” can be justified and will arrive at a
constant-round resettably-sound resettable zero-knowledge
argument in the BPK model.

2. Definitions

First, we recall some definitions regarding security against
resetting attacks, following [3], [4].

Let (P,V) be an interactive proof or argument sys-
tem for an NP-language L. We denote the possible num-
ber of sessions between P and V as t = poly(n). Let [t]
denote a range {1, 2, . . . , t}. We denote statements to be
proved as x = (x1, . . . , xt) with their corresponding wit-
nesses y = (y1, . . . , yt) (each yi witnesses xi ∈ L).

2.1 Resetting Attack by Cheating Verifiers

A resetting attack by a cheating verifier V∗ goes as follows.

1. We choose t independent random tapes ω1, . . . , ωt.
(These random tapes are supposed to be used in the
corresponding independent concurrent sessions by an
honest prover P, each of which can be reset by a cheat-
ing verifier V∗.) For i ∈ [t] and j ∈ [t], let P(i, j) :=
P(xi, yi;ω j) denote a prover on input a statement xi, its
witness yi and a random tape ω j. We call each P(i, j) an
incarnation of prover P.

2. A cheating verifier V∗ performs a polynomial number
of sessions with the incarnations P(i, j) in a sequential
manner. Here, V∗ can adaptively select which incarna-
tion P(i, j) it has a session with. Incarnations P(∗, j) that
shares same j can be selected many times. (This mod-
els the resetting operations by V∗.)

3. V∗ halts with an output based on its view. We denote
the output as (P(x, y),V∗(x)).

Definition 1 (resettable WI) An interactive proof or argu-
ment system (P,V) for an NP language L is said to be reset-
table witness indistinguishable, if the following two ensem-
ble are computationally indistinguishable in all resetting at-
tacks by arbitrary feasible cheating verifier V∗ :

• {(P(x, y1),V∗(x))}(x,y1 ,y2),



1392
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.8 AUGUST 2012

• {(P(x, y2),V∗(x))}(x,y1,y2).

Here, both y1 = (y1
i ) and y2 = (y2

i ) are sets of witnesses for
x = (xi) to be xi ∈ L.

Definition 2 (resettable ZK) An interactive proof or argu-
ment system (P,V) for an NP language L is said to be reset-
table zero-knowledge, if for any feasible cheating verifier
V∗ in a resetting attack there exists a feasible simulator M
and the following two ensemble are computationally indis-
tinguishable :

• {(P(x, y),V∗(x))}(x,y),
• {M(x)}(x,y).

Here, y = (yi) is a set of witnesses for x = (xi) to be xi ∈ L.

2.2 Resetting Attack by Cheating Provers

A resetting attack by a cheating prover P∗ goes as follows.

1. We choose t independent random tapes ω1, . . . , ωt.
(These random tapes are supposed to be used in the cor-
responding independent concurrent sessions by an hon-
est verifier V , each of which can be reset by a cheating
prover P∗.) For j ∈ [t], let V( j)(x) := V(x;ω j) denote
a verifier on input a statement x and a random tape ω j.
We call each V( j)(x) an incarnation of verifier V .

2. A cheating prover P∗ performs a polynomial number
of sessions with the incarnations V( j)(x) in a sequen-
tial manner. P∗ can adaptively select a statement x (not
necessary in L) to be proved and which incarnation V( j)

it has a session with. Same incarnation V( j) can be se-
lected many times on various statements x. (This mod-
els the resetting operations by P∗.)

Definition 3 (resettably-sound) An interactive proof or ar-
gument system (P,V) for an NP language L is said to be
resettably-sound if for any feasible cheating prover P∗ in
a resetting attack, the probability that some incarnation
V( j)(x) accepts a false statement x (� L) in some session in-
voked by P∗ is negligible.

2.3 The BPK Model

The BPK (bare public key) model is a kind of setup assump-
tion for proof systems proposed by [4], aiming to make it
easier to construct a simulator for concurrent or resettable
zero-knowledge proof systems.

The only requirement in the BPK model is that all ver-
ifiers deposit their public-keys in a public file before any
interaction occurs. That is,

• A public file F is a collection of records, each of which
is a pair of an index and a public key of a verifier.

• Prover P receives as inputs a statement x, its witness y,
a random tape r and the public file F with a verifier’s
index.

• Verifier V , at the first stage, generates its key pair
(pk, sk) and records the public key pk in the public file
F. Then, at the second stage, V receives a statement
x, its secret key sk and its random tape w as inputs and
performs the protocol with P, resulting in an output of
accept or reject.

3. Known Constructions

Here, we briefly review what is known about constant-round
resettable arguments and constant-round resettably-sound
arguments.

3.1 Constant-Round Resettable Arguments

By using the resettably-sound zero-knowledge argument (as
seen below), it is shown that there exists a constant-round re-
settable witness-indistinguishable argument of knowledge,
assuming the existence of collision-resistant hash functions
(in the plain model) [3].

In the BPK model, there exists a constant-round
(concurrent-sound) resettable zero-knowledge argument for
all NP languages, assuming collision-resistant hash func-
tions [8].

3.2 Constant-Round Resettably-Sound Arguments

Every constant-round public-coin argument can be con-
verted to a resettably-sound version, preserving prover’s
property such as witness-indistinguishability and zero-
knowledge [3].

It is known that there exists a constant-round
public-coin witness-indistinguishable argument (or zero-
knowledge argument) for all NP languages assuming one-
way functions (or collision-resistant hash-functions [1]).

Especially, we know that in the plain model:

• there exists a constant-round resettably-sound witness-
indistinguishable argument assuming one-way func-
tions, and

• there exists a constant-round resettably-sound zero-
knowledge argument assuming collision-resistant hash-
functions.

4. Resettably-Extractable Conditional Commitment

Now, we introduce a new variant of commitment scheme,
conditional commitment scheme. Then we see that
resettably-extractable conditional commitments are possi-
ble by a constant-round protocol in the plain model.

4.1 Conditional Commitment

In a conditional commitment scheme, a sender takes a condi-
tion x as input in addition to a string v to be committed. For
some given language L, hiding property of conditional com-
mitment is guaranteed only if its condition x is in L, and its
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binding property is assured only if its condition x is outside
from L.

More precisely, it is defined as follows. (In the sequel,
notation (y1, y2) ← (P1(x1), P2(x2)) means that by running
an interactive protocol (P1, P2) on input x1 for P1 and x2

for P2, parties P1 and P2 obtains local outputs y1 and y2,
respectively.)

Definition 4 (Conditional commitment) A pair of interac-
tive efficient algorithms (S ,R) is said to be conditional com-
mitment scheme with respect to a language L if the follow-
ing three conditions are satisfied : (In the below, “(o1, o2)←
(P1, P2)” means that party Pi gets a local output oi by run-
ning the protocol (i = 1, 2). When oi is “-”, it denotes that a
null output is gotten by an honest party, or that an output of
which we do not care is gotten by a cheating party.)

• (Correctness) For any v ∈ {0, 1}n and any x ∈ {0, 1}n, it
holds that

Pr[ (d, c) ← (S (v, x),R(x)),

(−, v′) ← (S (d),R(c))

: v′ = v ] = 1.

• (Conditional Hiding) For any non-uniform efficient
cheating receiver R∗ and any x ∈ L ∩ {0, 1}n, it holds
that

Pr[ (v0, v1, s) ← R∗(x),

b ← {0, 1},
(−, b′) ← (S (vb, x),R∗(s))

: b′ = b ] ≤ 1/2 + negl(n).

• (Conditional Binding) For any efficient cheating sender
S ∗ and any x ∈ {0, 1}n that is not in L, it holds that

Pr[ ((d1, d2), c) ← (S ∗(x),R(x)),

(−, v1) ← (S ∗(d1),R(c)),

(−, v2) ← (S ∗(d2),R(c))

: v1 � ⊥, v2 � ⊥, v1 � v2 ]

≤ negl(n).

4.2 Resettable-Extractability

Our motivation for introducing conditional commitment
is in enabling resettably-extractable commitment. The
resettably-extractable conditional commitment scheme de-
mands that there should be a simulator which can extract
a value committed to even by a cheating sender who can
mount a resetting attack against a victim receiver, under the
constraint that the adversarial commitment is made with re-
spect to the condition x that is not in language L.

First, we define a resetting attack for conditional com-
mitment schemes. For a conditional commitment scheme
(S ,R), a resetting attack by a cheating sender S ∗ goes as fol-
lows. (In our argument system in Sect. 5, we use conditional

commitment schemes without using explicit decommitment
phases. So, in the following definition it is sufficient to deal
with only commitment phases.)

1. We choose t independent random tapes ω1, . . . , ωt.
(These random tapes are supposed to be used in the cor-
responding independent concurrent sessions by an hon-
est receiver R, each of which can be reset by a cheating
sender S ∗.) For j ∈ [t], let R( j) := R(ω j) denote an
honest receiver on input random tape ω j. We call each
R( j) an incarnation of receiver R.

2. A cheating sender S ∗ performs a polynomial number of
sessions, composed of only commitment phases, with
the incarnations R( j) in a sequential manner with re-
spect to some conditions. Here, S ∗ is supposed to be
able to adaptively select a value v and a condition x
for commitments and is supposed to be able to choose
which incarnation R( j) it has a session with. Same in-
carnation R( j) can be selected many times on various
values v and conditions x. (This models the resetting
operations by S ∗.)

Definition 5 (Resettable-extractability) A conditional
commitment scheme (S ,R) with respect to language L is
said to be resettably-extractable if for every feasible cheat-
ing sender S ∗ mounting a resetting attack against an honest
receiver R there exists a feasible resettable-extractor E with
output

(view, value)← E(1n),

satisfying that

1. the output view is computationally indistinguishable
from the real view of S ∗, and

2. the output value contains one of the committed values
by S ∗ with respect to some condition x that is not in
L in the simulated view view of S ∗ with a noticeable
probability 1/poly(n) (if such a terminated commitment
with condition outside of L exists).

4.3 Construction of Resettably-Extractable Conditional
Commitment Scheme

Our construction of resettably-extractable conditional com-
mitment scheme is based on the commit-with-extract com-
mitment scheme of Barak [2], that is designed to enable a
straight-line extractor of strict polynomial time.

We enhances the Barak’s commitment scheme so as to
be extractable even against a cheating sender who can per-
form a resetting attack to a victim receiver, as follows.

Protocol 1 • Building Blocks:

– an NP language L,
– a pseudorandom function F,
– a trapdoor permutation f with a hardcore predi-

cate h,
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– a (computationally-hiding statistically-binding)
non-interactive commitment scheme Com,

– a ZAP (two-round public-coin witness indistin-
guishable proof [9]) and

– a (stand-alone) constant-round zero-knowledge
argument.

• Input for sender S : a condition x (∈ {0, 1}n), a value
v (∈ {0, 1}n) and a random tape ωS .

• Input for receiver R : a condition x and a random tape
ωR.

• The Protocol (Commitment Phase) :

1. S → R : S selects a trapdoor permutation f with
a hardcore predicate h and commits to its random
tape ωS : cS ← Com(ωS ). S sends f , cS to R.

2. S ← R : R computes ω∗R = FωR (x, f , cS ). (From
now on to the end of the protocol, R uses ω∗R as its
random tape instead of ωR.) R selects a random
string r2 of length n2 and commits to it : c2 ←
Com(r2). R generates a first-round message σR of
a ZAP. R sends c2, σR to S .

3. S → R : S selects a random string r1 of length n2

and sends to R the string r1 attached with a ZAP
showing that “r1 is taken from ωS (that is commit-
ted to under cS ), or x ∈ L.” If the attached ZAP is
invalid, R aborts the protocol immediately.

4. S ← R : R sends r2 to S .
5. S ⇐ R : R proves to S using the zero-knowledge

argument that “there exists a w satisfying c2 =

Com(r2;w),” where

– every S ’s message (as a verifier) is coupled
with a ZAP claiming that “the sent message
is computed using ωS as a random tape ac-
cording to the protocol, or x ∈ L.” If any
of the attached ZAPs is invalid, R aborts the
protocol.

6. S → R : (If R’s proof is valid) S computes
(r1, . . . , rn) = r = r1 ⊕ r2 and takes those inverses
si = f −1(ri) for i = 1 to n. S computes and sends
C = (v1 ⊕ h(s1), . . . , vn ⊕ h(sn)) to R.

• The Protocol (Decommitment Phase) :

1. S → R : S sends s = (s1, . . . , sn) and v =
(v1, . . . , vn) to R.

2. R : R checks whether ri = f (si) for all i = 1 to n
and whether C = (v1⊕h(s1), . . . , vn⊕h(sn)) or not.
If all of the equations hold R outputs v, otherwise
outputs ⊥.

Theorem 1 Under the assumption that the primitives de-
scribed in Building Blocks exist, Protocol 1 is resettably-
extractable conditional commitment scheme.

Proof of conditional hiding:
The hiding property of Protocol 1 is inherited from the
hiding property of the commit-with-extract commitment

scheme of Barak [2]. First we review the Barak’s com-
mitment scheme (S ′,R′) (in a slightly changed form (in an
unessential way) for our purpose):

• Building Blocks:

– a trapdoor permutation f with a hardcore predi-
cate h,

– a (computationally-hiding statistically-binding)
non-interactive commitment scheme Com and

– a (stand-alone) constant-round zero-knowledge
argument.

• Input for sender S ′ : a value v (∈ {0, 1}n).
• Input for receiver R′ : a security parameter 1n.
• The Protocol (Commitment Phase) :

1. S ′ → R′ : S ′ selects a trapdoor permutation f
with a hardcore predicate h. S ′ sends f to R′.

2. S ′ ← R′ : R′ selects a random string r2 of length
n2 and commits to it : c2 ← Com(r2). R′ sends c2

to S ′.
3. S ′ → R′ : S ′ selects a random string r1 of length

n2. S ′ sends r1 to R′.
4. S ′ ← R′ : R′ sends r2 to S ′.
5. S ′ ⇐ R′ : R′ proves to S ′ using the zero-

knowledge argument that “there exists a w satis-
fying c2 = Com(r2;w).”

6. S ′ → R′ : S ′ computes (r1, . . . , rn) = r = r1 ⊕ r2

and takes those inverses si = f −1(ri) for i = 1 to n.
S ′ computes and sends C = (v1 ⊕ h(s1), . . . , vn ⊕
h(sn)) to R′.

• The Protocol (Decommitment Phase) :

1. S ′ → R′ : S ′ sends s = (s1, . . . , sn) and v =
(v1, . . . , vn) to R′.

2. R′ : R′ checks whether ri = f (si) for all i = 1 to n
and whether C = (v1⊕h(s1), . . . , vn⊕h(sn)) or not.
If all of the equations hold R′ outputs v, otherwise
outputs ⊥.

Suppose some efficient cheating receiver R∗ breaks the
hiding property of Protocol 1 on some condition x ∈ L.
We construct a non-uniform efficient cheating receiver (R′)∗
that breaks the hiding property of the Barak’s commitment
scheme (S ′,R′) as follows.

Cheating receiver (R′)∗ on auxiliary input x and w (w is a
witness to x ∈ L) works as follows :

• Invoke a copy of R∗ and receive its challenge v0, v1.
Send v0, v1 as its own challenge to its challenger S ′.

• Receiving f from S ′, commit to a dummy string (of
sufficient length) : cS ← Com(0∗). Send cS , f to the
internal R∗.

• Receiving c2, σR from R∗, forward c2 to S ′.
• Receiving r1 from S ′, forward it to R∗, appending to it

the corresponding ZAP computed from the witness w
(instead of the random tape of S ′).

• Receiving r2 from R∗, forward it to S ′. Then, relay the
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following zero-knowledge argument between R∗ and
S ′. In the relay of argument, append to every message
from S ′ (to R∗) the corresponding ZAP computed from
the witness w (instead of the random tape of S ′).

• Receiving the final commitment C from S ′, forward it
to R∗.

• When R∗ halts, halt with an output that R∗ output.

By the hiding property of Com and the witness-
indistinguishability of ZAP, it is easy to see that the sim-
ulated view of R∗ is indistinguishable from its real view.
Here, we note that since the statement x is true, i.e., x is
in the language L, the ZAP accompanying the last zero-
knowledge proof in step 5 can be trivially generated using
the witness w for x ∈ L (that is being given to (R′)∗ as a
nonuniform hint information). Therefore, the ZAP actually
puts no restriction to the simulated zero-knowledge proof in
step 5, i.e., any proof of R∗ can be utilized by (R′)∗ by adding
the trivial ZAP.

So, the advantage of R∗ against S (w.r.t. x) to break the
hiding property is essentially the same as the one of (R′)∗
against S ′. But this must be negligible by the hiding prop-
erty of (S ′,R′).

Proof of conditional binding:
The scheme uses the Blum commitment for the final com-
mitment C and clearly it is “unconditionally” (that is, even
if x ∈ L or not) statistically binding.

Proof sketch of resettable-extractability:
For any feasible cheating sender S ∗ with respect to condi-
tions x � L in a resetting attack, we construct an efficient
resettable-extractor E as follows.

Resettable-Extractor E on a security parameter 1n works
as follows:

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R)

• Select a random index α that indicates a pair of some
incarnation R( j) and its some first message f msg.

• Invoke a copy of S ∗.
• For each incarnation R( j), receiving the first message

f msg = (x, f , cS ) from S ∗, simulate R( j) as follows:

– If the current (R( j), f msg) does not correspond to
the selected index α, simulate the behavior of R( j)

completely honestly as in a real run.
– If the current (R( j), f msg) corresponds to the se-

lected index α, do as follows.

∗ Check whether f msg is fresh with respect to
j or not. If it is not fresh, retrieve the tran-
script of the past session between S ∗ and R( j)

that shares the same first message f msg and
simulate this session by taking-and-replaying
or by resuming-and-continuing the corre-
sponding messages from the transcript. In
the following, we assume f msg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a
random tape for the following simulation of
R( j) for this interaction. Commit to a dummy
string 0n2

: c2 ← Com(0n2
). Send c2, σR to

S ∗.
∗ Receiving r1 with a valid ZAP (abort this in-

teraction if any of the ZAPs is invalid), gen-
erate a random string s = s1, . . . , sn of length
n2. Compute ri = f (si) for i = 1 to n and
send r2 = r ⊕ r1 to S ∗ with r = r1, . . . , rn.
Then “prove” that the already-sent c2 is a
commitment to r2 using the zero-knowledge
simulator, while checking the ZAPs attached
to each S ∗’s message. (Abort this interaction
if any of the ZAPs is invalid.)

∗ Receiving a final commitment C, compute
vi = Ci ⊕ h(si) for i = 1, . . . , n, and set
value = (v1, . . . , vn).

• When S ∗ halts, output its simulated view and value.

Only difference between E’s simulation and a real run
is in the interaction indexed by α = (R( j), f msg).

When the first message f msg = (x, f , cS ) is not fresh
with respect to j, in the real sessions, the random tape
ω∗R = Fω j

R
( f msg) used by R( j) is the same as the one used

in the past session between S ∗ and R( j) that shares the same
first message f msg. So, c2, r2 are replays of the ones sent
in that session. Here, we see that r1 sent from S ∗ also must
be a replay. In fact, since x � L, r1 must be taken from
ωS that is bound by cS in f msg by the soundness of the at-
tached ZAPs. (Note that ZAPs are always resettably-sound.)
Similarly, all of the messages in the zero-knowledge argu-
ment must be also replays by the effect of the attached ZAPs.
(Since x � L, the messages from S ∗ must be computed using
ωS that is bound by cS in f msg by the soundness of the at-
tached ZAPs.) Thus, we know that the above E’s simulation
by taking-and-replaying or by resuming-and-continuing the
transcript of the corresponding past session is valid in the
case of non-fresh f msg. (The point is that S ∗ cannot change
her messages as long as R( j) does not change his messages,
due to the attached ZAPs, even in the resetting attack. So,
even if R( j) uses an independent random r2 (of c2), the re-
setting S ∗ cannot detect it, as long as R( j) uses the same r2

consistently. And this is the behavior of our simulated R( j).
(Note that an honest receiver also chooses random r2 con-
sistently from ω∗R = FωR (x, f , cS ).))

When the first message f msg = (x, f , cS ) is fresh with
respect to j, the incarnation R( j) uses a fresh random tape
ω∗R = Fω j

R
( f msg) by pseudorandomness of F. Therefore, by

the hiding property of Com and the zero-knowledge prop-
erty of the argument, it is easy to see the above simulation
by E is indistinguishable from the real cases. Note that the
stand-alone zero-knowledge suffices here.

Thus, the simulated view of S ∗ produced by E is indis-
tinguishable from the real view of S ∗.

Finally, in the interaction indexed by α = (R( j), f msg),
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E knows the inverses s = (s1, . . . , sn) of ri = f (si) and E
can trivially extract value = (vi = Ci ⊕ h(si)) from the final
commitment C. �

A detailed proof of the resettable-extractability of Pro-
tocol 1 is given in the appendix.

Since the primitives in Building Blocks of Protocol
1 exist if trapdoor permutations (for ZAPs) and collision-
resistant hash functions (for constant-round ZKA) exist, we
have :

Corollary 1 If trapdoor permutations and collision-resis-
tant hash functions exist, then a constant-round resettably-
extractable conditional commitment scheme exists in the
plain model.

5. A Constant-Round Resettably-Sound Resettable
Zero-Knowledge Argument in the BPK Model

Here we construct a constant-round argument system for
all NP languages in the BPK model that is both resettably-
sound and resettable zero-knowledge.

First, making use of the resettably-extractable commit-
ment scheme of the last section, we construct a constant-
round resettably-sound concurrent zero-knowledge argu-
ment system in the BPK model, following the design princi-
ple of Deng and Lin [8]. (They constructed a constant-round
concurrent-sound resettable zero-knowledge argument sys-
tem.)

Then, we apply to the constructed argument sys-
tem the transformation of [6] that transforms resettably-
sound relaxed-concurrent zero-knowledge arguments into
resettably-sound resettable zero-knowledge arguments.
That results in a constant-round resettably-sound resettable
zero-knowledge argument system for any NP languages in
the BPK model.

5.1 Construction of Constant-Round Resettably-Sound
Concurrent Zero-Knowledge Argument in the BPK
Model

Our resettably-sound concurrent zero-knowledge argument
follows the design principle of Deng and Lin [8]. A rough
sketch of their principle follows. First, a verifier proves to
a prover that it knows its own secret key (or a dummy se-
cret) in a witness-indistinguishable way. Then, the prover
commits to a dummy value for the verifier: c ← Com(0n).
Finally, the prover proves that it knows the witness to the
claimed statement or the last commitment c was to the ver-
ifier’s secret key (or the dummy secret) also in a witness-
indistinguishable manner.

In the proof of concurrent-soundness of their argument,
a knowledge-extractor (played by verifier-simulator) of the
second argument plays a crucial role [8]. It extracts some
witness from the cheating prover by rewinding strategy.
However, in our situation where a cheating prover P∗ can

mount a resetting attack against a verifier (beyond a con-
current attack), such rewinding strategy does not work: the
extractor must rewind P∗ while being get itself rewound.

We address the problem by employing the resettably-
extractable conditional commitment scheme from the last
section in place of the commitment c.

Let L be an NP language. Our argument system for L
in the BPK model works as follows.

Protocol 2 • Building Blocks:

– a one-way function f ,
– a constant-round resettably-extractable condi-

tional commitment scheme rCom with respect to
L (Sect. 4),

– a constant-round resettable witness-indistinguish-
able argument of knowledge for language
{(y0, y1) : ∃α, y0 = f (α) OR y1 = f (α)}
(Sect. 3.1),

– a constant-round resettably-sound witness-indist-
inguishable argument for language {(x, c, y0, y1) :
∃β, β is a witness to x ∈ L OR β = (β′, r), c =
rCom(x, β′; r), y0 = f (β′) OR β = (β′, r), c =
rCom(x, β′; r), y1 = f (β′)} (Here, c =

rCom(x, β′; r) means that the commitment c is a
commitment to β′ with random tape r under con-
dition x).

• Input for prover P : a statement x (∈ L), its witness
w, a public file F and an index i of a verifier (pki =

( f , y0, y1) ∈ F).
• Input for verifier V : x and a secret key α (satisfying
yb = f (α)).

• The protocol :

1. P ⇐ V : V proves to P using the resettable
witness-indistinguishable argument of knowledge
that “there exists α satisfying y0 = f (α) OR
y1 = f (α)”.

2. P ⇒ V : P commits to 0n for V under condition
x with transcript c using the resettably-extractable
conditional commitment scheme rCom.

3. P⇒ V : P proves to V using the resettably-sound
witness-indistinguishable argument with witness
β = w that “there exists β satisfying that β
is a witness to x ∈ L OR β = (β′, r), c =
rCom(x, β′; r), y0 = f (β′) OR β = (β′, r), c =
rCom(x, β′; r), y1 = f (β′).”

Theorem 2 Under the assumption that the primitives listed
in Building Blocks exist, Protocol 2 is a constant-round
resettably-sound concurrent zero-knowledge argument of L
in the BPK model.

Proof Completeness of the protocol is immediate.
Concurrent zero-knowledge property of the protocol is

proved by a standard argument in the BPK model. Let V∗
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be any feasible cheating verifier in a concurrent attack. We
construct an efficient simulator S im for V∗ as follows.

Simulator S im :

• Run the first phase of V∗ and receive the public file F.
• Run the second phase of V∗ :

– When V∗ passes the first argument in some inter-
action I with public key pki, run the stand-alone
non-black-box extractor of the resettable witness-
indistinguishable argument of knowledge to ex-
tract the corresponding knowledge αi as to pki if
not yet extracted. (Note that the stand-alone ex-
tractor suffices since the target statement is only
pki that is fixed in the first phase. See [4] for the
full formal argument.)

– When it is time for S im (as a prover) to make a
commitment c for some interaction I, commit to
the extracted value αi under condition x (that is a
claimed statement) with transcript c using rCom.

– When it is time for S im (as a prover) to perform
the second argument for some interaction I, run
the prover algorithm for the second argument us-
ing β = (αi, ri) as a witness.

Since F is a polynomial size, the number of invocation
of the extractor by S im is also a polynomial. Hence, S im
runs in a polynomial time. By the conditional hiding prop-
erty of rCom (note that x ∈ L) and the witness indistinguish-
able property of the second argument, the simulated view of
V∗ by S im is easy to see indistinguishable from real view
of V∗. (Use a hybrid experiment where c is a commitment
to αi under x but the second argument uses the real witness
w.) This completes proof of the concurrent zero-knowledge
property.

Now we prove the resettably-soundness of the protocol.
Let P∗ be a supposed feasible cheating prover in a resetting
attack that convinces some verifier incarnation V(x) on some
x � L with a non-negligible probability. Using P∗ we con-
struct an algorithm A that breaks one-wayness of one-way
function f . We can suppose that P∗ invokes verifier incar-
nations V(x) only on x’s that are not in L. (We can simulate
V(x) honestly if x ∈ L and we can guess randomly which
incarnation V(x) is invoked with respect to x � L.)

Algorithm A: on input y (= f (β)),

• Choose a random b ← {0, 1} and set yb = y. (This
defines βb = β implicitly.)

• Select a random β1−b ← {0, 1}n and set y1−b = f (β1−b).
• Invoke P∗ and give a public file F = (id, y0, y1) to it.
• For every incarnation V(x) that P∗ invokes, do as fol-

lows:

– Run the prover algorithm of the first argument us-
ing β1−b as a witness.

– For P∗’s commitment c under condition x (� L)

with rCom, invoke the resettable-extractor E and
simulate its receiver using the view output by E.

– Run the honest verifier algorithm for the second
argument.

• Select a random incarnation Vj∗ (x∗) (with x∗ � L) that
has accepted in the above simulation. The committed
value β′ under commitment c in the interaction with
Vj∗ (x∗) is being extracted as the value output by E with
a noticeable probability.

• For the first component β′1 of β′ check whether f (β′1) =
y or not. If so output β′1 otherwise output ⊥ and halt.

It is obvious that A runs in a polynomial time.
Since the coin b is hidden from P∗, the simulated first

argument is the same as the real first argument. Since the
view output by the resettable extractor E of rCom is indistin-
guishable from the real view even for a resetting sender, the
simulated commitment c is indistinguishable from the real
commitment. The second argument is simulated honestly.
Hence, the simulated view of P∗ by A is indistinguishable
from its real view.

We evaluate the output by A. By the contradictive as-
sumption, the incarnation Vj∗ (x∗) selected by A is being con-
vinced by P∗ on x∗ � L with a non-negligible probability.
Since x∗ � L, the resettably-soundness of the second argu-
ment means that its witness β′ must be the second or third
type : β′ includes the inverse images β0 or β1 of y0 or y1,
respectively (as its first component β′1) and means that β0 or
β1 must be committed to under c with respect to condition
x∗. Therefore, the extracted value β′ from c by resettable-
extractor E must include β0 or β1. By the resettable witness
indistinguishability of the first argument, we can see that
this extracted value is equal to βb at probability 1/2 except
with a negligible error. Thus, we know that A outputs βb = β
with a non-negligible probability, contradicting to the one-
wayness of f �

The primitives listed in Building Blocks of Protocol 2
exist if trapdoor permutations and collision-resistant hash
functions exist. So, we have:

Corollary 2 Under the assumption that trapdoor permu-
tations and collision-resistant hash functions exist, there
exists a constant-round resettably-sound concurrent zero-
knowledge argument for any NP language in the BPK
model.

5.2 Transformation to Resettably-Sound Resettable Zero-
Knowledge Argument

Deng, Goyal and Sahai showed a transformation that
transforms any resettably-sound relaxed-concurrent zero-
knowledge argument into a resettably-sound resettable
zero-knowledge argument (The relaxed-concurrent zero-
knowledge is a property that weakens concurrent zero-
knowledge in some way) [6]. The transformation works in



1398
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.8 AUGUST 2012

the plain model and preserves the property of being con-
stant rounds. (The transformation uses a resettably-sound
zero-knowledge argument as a main building block, that is
implemented by a constant-round protocol in a plain model.)

Therefore, by applying the Deng-Goyal-Sahai transfor-
mation to Protocol 2, we see that:

Corollary 3 Under the assumption that trapdoor permu-
tations and collision-resistant hash functions exist, there
exists a constant-round resettably-sound resettable zero-
knowledge argument for any NP language in the BPK
model.

6. Conclusion

This paper has shown that argument systems for any NP
language that are both resettably-sound and resettable zero-
knowledge are possible by a constant-round protocol in the
BPK model. For that sake, we defined and constructed a
resettably-extractable conditional commitment scheme.
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Appendix: Detailed Proof of the Resettable-Extract-
ability of Protocol 1

We prove the resettable-extractability of Protocol 1. We de-
fine a sequence of experiments Real, Hyb1, . . . , Hyb4, pre-
serving indistinguishability among their outputs. The first
experiment Real corresponds to a real resetting attack by a
cheating sender S ∗ against Protocol 1 and the final experi-
ment Hyb4 gives us the claimed resettable-extractor for the
protocol. (In the sequel ‘≡c’ (or ‘≡s’) denotes computational
(or statistical) indistinguishability of both hands.)

Real :

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R).

• Invoke a copy of S ∗.
• For each incarnation R( j) that S ∗ invokes, simulate it as

follows:

– Receiving the first message f msg = (x, f , cS )
from S ∗, compute ω∗R = FωR( j) ( f msg). Use ω∗R
as a random tape for the following simulation of
R( j) for this interaction. Take a random string r2 of
length n2 and commit to it : c2 ← Com(r2). Send
c2, σR to S ∗.

– Receiving r1 with a valid ZAP (abort this inter-
action if the ZAP is invalid), send r2 to S ∗ and
prove that c2 is a commitment to r2 using the zero-
knowledge argument, while checking the ZAPs
attached to each S ∗’s message. (Abort this inter-
action if any of the ZAPs is invalid.)

– Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

• When S ∗ halts, output its simulated view.

The following Hyb1 differs from Real only around the
treatment of receiver random-tape for some selected inter-
actions.

Hyb1 :

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R).

• Select a random index α that indicates a pair of some
incarnation R( j) and its some first message f msg.

• Invoke a copy of S ∗.
• For each incarnation R( j) receiving the first message

f msg = (x, f , cS ) from S ∗, simulate it as follows:

– If the current (R( j), f msg) does not correspond to
the selected index α, simulate the behavior of R( j)

honestly as in Real.
– If the current (R( j), f msg) corresponds to the se-

lected index α, do as follows.

∗ Check whether f msg is fresh with respect to
j or not. If it is not fresh, retrieve the tran-
script of the past session between S ∗ and R( j)
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that shares the first message f msg and sim-
ulate this session by taking-and-replaying or
by resuming-and-continuing the correspond-
ing messages from the transcript. In the fol-
lowing, we assume f msg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as
a random tape for the following simulation
of R( j) for this interaction. Take a random
string r2 of length n2 and commit to it : c2 ←
Com(r2). Send c2, σR to S ∗.
∗ Receiving r1 with a valid ZAP (abort this

interaction if any of the ZAPs is invalid),
send r2 to S ∗ and prove that c2 is a commit-
ment to r2 using the zero-knowledge argu-
ment, while checking the ZAPs attached to
each S ∗’s message. (Abort this interaction if
any of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

• When S ∗ halts, output its simulated view.

Claim 1

Hyb1 ≡c Real.

Proof Only difference between Hyb1 and Real is in the
simulation of the interaction indexed by α = (R( j), f msg).

Suppose f msg is fresh with respect to j. Then, ω∗R =
Fω( j)

R
( f msg) is indistinguishable from a fresh random-tape

by pseudorandomness of F in Real. So, the simulation of
Hyb1 is indistinguishable from the simulation of Real.

Consider the cases where f msg is not fresh for j. In
Real, the random tape ω∗R = Fω( j)

R
( f msg) used by R( j) is the

same as the one used in the past session between S ∗ and R( j)

that shares the first message f msg. So, c2, r2, that are chosen
from ω∗R, are replays of the ones sent in that session.

We see that r1 sent from S ∗ must be also a replay. In
fact, since x � L, r1 must be taken from ωS that is bound
by cS in f msg by the soundness of the attached ZAPs. Note
that ZAPs are always resettably-sound.

Similarly, all of the messages in the zero-knowledge
argument must be also replays. Since x � L, the messages
from S ∗ must be computed using ωS that is bound by cS in
f msg by the soundness of the attached ZAPs.

Thus, also in non-fresh f msg case we know that the
simulation by Hyb1 (that replays R( j)’s messages in the cor-
responding past transcript) is indistinguishable from Real.

�

The next Hyb2 differs from Hyb1 only in that Hyb2
uses the zero-knowledge simulator instead of the real argu-
ment to prove that c2 commits to r2 for the interaction in-
dexed by α = (R( j), f msg).

Hyb2 :

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R).

• Select a random index α that indicates a pair of some
incarnation R( j) and its some first message f msg.

• Invoke a copy of S ∗.
• For each incarnation R( j), receiving the first message

f msg = (x, f , cS ) from S ∗, simulate it as follows:

– If the current (R( j), f msg) does not correspond to
the selected index α, simulate the behavior of R( j)

honestly as in Real
– If the current (R( j), f msg) corresponds to the se-

lected index α, do as follows.

∗ Check whether f msg is fresh with respect to
j or not. If it is not fresh, retrieve the tran-
script of the past session between S ∗ and R( j)

that shares the first message f msg and sim-
ulate this session by taking-and-replaying or
by resuming-and-continuing the correspond-
ing messages from the transcript. In the fol-
lowing, we assume f msg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as
a random tape for the following simulation
of R( j) for this interaction. Take a random
string r2 of length n2 and commit to it: c2 ←
Com(r2). Send c2, σR to S ∗.
∗ Receiving r1 with a valid ZAP (abort this in-

teraction if any of the ZAPs is invalid), send
r2 to S ∗ and “prove” that c2 is a commitment
to r2 using the zero-knowledge simulator,
while checking the ZAPs attached to each
S ∗’s message. (Abort this interaction if any
of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

• When S ∗ halts, output its simulated view.

The stand-alone zero-knowledge property shows :

Claim 2

Hyb2 ≡c Hyb1.

Proof Suppose towards the contradiction that Hyb2 and
Hyb1 is distinguishable by some distinguisher D. Using
D, we construct a following cheating verifier V∗ against the
zero-knowledge property of the argument.

V∗ :

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R).

• Select a random index α that indicates a pair of some
incarnation R( j) and its some first message f msg.

• Invoke a copy of S ∗.
• For each incarnation R( j), receiving the first message

f msg = (x, f , cS ) from S ∗, simulate it as follows:

– If the current (R( j), f msg) does not correspond to
the selected index α, simulate the behavior of R( j)

honestly as in Real using the tape ω j
R.
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– If the current (R( j), f msg) corresponds to the se-
lected index α, do as follows.

∗ Check whether f msg is fresh with respect to
j or not. If it is not fresh, retrieve the tran-
script of the past session between S ∗ and R( j)

that shares the first message f msg and sim-
ulate this session by taking-and-replaying or
by resuming-and-continuing the correspond-
ing messages from the transcript. In the fol-
lowing, we assume f msg is fresh.

∗ Take a random string r2 of length n2 and
commit to it: c2 ← Com(r2). Send c2, σR

to S ∗.
∗ Receiving r1 with a valid ZAP (abort this

interaction if the ZAP is invalid), send a
statement that c2 is a commitment to r2 to-
wards its challenger (a prover or a simula-
tor) and transfer to S ∗ the received proof,
while checking the ZAPs attached to each
S ∗’s message. (Abort this interaction if any
of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

• When S ∗ halts, invoke the assumed distinguisher D on
input S ∗’s simulated view and output its output.

In the above, if the proof that V∗ receives from its chal-
lenger is a real proof (or a simulated proof respectively),
then the simulated view of S ∗ is the same as the one in Hyb1
(or in Hyb2). This implies that the above V∗ violates the
zero-knowledge property of the argument. �

The next Hyb3 differs from Hyb2 only in that Hyb3
commits to a dummy string 0n2

for c2 instead of r2 for the
interaction indexed by α = (R( j), f msg).

Hyb3 :

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R).

• Select a random index α that indicates a pair of some
incarnation R( j) and its some first message f msg.

• Invoke a copy of S ∗.
• For each incarnation R( j), receiving the first message

f msg = (x, f , cS ) from S ∗, simulate it as follows:

– If the current (R( j), f msg) does not correspond to
the selected index α, simulate the behavior of R( j)

honestly as in Real
– If the current (R( j), f msg) corresponds to the se-

lected index α, do as follows.

∗ Check whether f msg is fresh with respect to
j or not. If it is not fresh, retrieve the tran-
script of the past session between S ∗ and R( j)

that shares the first message f msg and sim-
ulate this session by taking-and-replaying or
by resuming-and-continuing the correspond-
ing messages from the transcript. In the fol-
lowing, we assume f msg is fresh.

∗ Generate a new random tape ω∗. Use
ω∗ as a random tape for the follow-
ing simulation of R( j) for this interaction.
Commit to string 0n2

: c2 ← Com(0n2
).

Send c2, σR to S ∗.
∗ Receiving r1 with a valid ZAP (abort this

interaction if any of the ZAPs is invalid),
generate and send r2 of length n2 to S ∗ and
“prove” that c2 is a commitment to r2 using
the zero-knowledge simulator, while check-
ing the ZAPs attached to each S ∗’s message.
(Abort this interaction if any of the ZAPs is
invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

• When S ∗ halts, output its simulated view.

As usual, the hiding property of Com means :

Claim 3

Hyb3 ≡c Hyb2.

The final Hyb4 differs from Hyb3 only in the way of
generating the random string r2 for the interaction indexed
by α = (R( j), f msg).

Hyb4 :

• Choose t independent random tapes ω1
R, . . . , ω

t
R. For

j ∈ [t], let R( j) := R(ω j
R).

• Select a random index α that indicates a pair of some
incarnation R( j) and its some first message f msg.

• Invoke a copy of S ∗.
• For each incarnation R( j), receiving the first message

f msg = (x, f , cS ) from S ∗, simulate it as follows:

– If the current (R( j), f msg) does not correspond to
the selected index α, simulate the behavior of R( j)

honestly as in Real
– If the current (R( j), f msg) corresponds to the se-

lected index α, do as follows.

∗ Check whether f msg is fresh with respect to
j or not. If it is not fresh, retrieve the tran-
script of the past session between S ∗ and R( j)

that shares the first message f msg and sim-
ulate this session by taking-and-replaying or
by resuming-and-continuing the correspond-
ing messages from the transcript. In the fol-
lowing, we assume f msg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a
random tape for the following simulation of
R( j) for this interaction. Commit to a dummy
string 0n2

: c2 ← Com(0n2
). Send c2, σR to

S ∗.
∗ Receiving r1 with a valid ZAP (abort this

interaction if any of the ZAPs is invalid),
generate a random string s = s1, . . . , sn of
length n2. Compute ri = f (si) for i = 1 to n
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and send r2 = r⊕ r1 to S ∗ with r = r1, . . . , rn.
Then “prove” that c2 is a commitment to r2

using the zero-knowledge simulator, while
checking the ZAPs attached to each S ∗’s
message. (Abort this interaction if any of the
ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

• When S ∗ halts, output its simulated view.

Since r2 distributes uniformly over {0, 1}n2
also in

Hyb4, we have

Claim 4

Hyb4 ≡s Hyb3.

Now it is immediate that the simulation in Hyb4 gives
the claimed resettable-extractor of Protocol 1. In fact, in
Hyb4 we can efficiently extract the values committed un-
der final commitments C using the knowledge of si =

f −1(ri) (i = 1, . . . , n) for the interaction indexed by α =
(R( j), f msg). That completes the proof.

Seiko Arita received his B.S. and M.S. de-
grees from Kyoto University and his Doctor of
Engineering degree from Chuo University. Be-
fore joining Institute of Information Security at
April 2004, he worked for NEC from 1990 to
2003.
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