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An Identification Scheme with Tight Reduction

Seiko ARITA†a), Member and Natsumi KAWASHIMA†, Nonmember

SUMMARY There are three well-known identification schemes: the
Fiat-Shamir, GQ and Schnorr identification schemes. All of them are
proven secure against the passive or active attacks under some number-
theoretic assumptions. However, efficiencies of the reductions in those
proofs of security are not tight, because they require “rewinding” a cheating
prover. We show an identification scheme IDKEA1, which is an enhanced
version of the Schnorr scheme. Although it needs the four exchanges
of messages and slightly more exponentiations, the IDKEA1 is proved to
be secure under the KEA1 and DLA assumptions with tight reduction.
The idea underlying the IDKEA1 is to use an extractable commitment for
prover’s commitment. In the proof of security, the simulator can open the
commitment in two different ways: one by the non-black-box extractor of
the KEA1 assumption and the other through the simulated transcript. This
means that we don’t need to rewind a cheating prover and can prove the
security without loss of the efficiency of reduction.
key words: identification scheme, rewinding, KEA1 assumption, tight re-
duction

1. Introduction

1.1 Zero-Knowledge Identification Schemes

The zero-knowledge identification scheme is a triple
(K , P,V) of probabilistic polynomial-time algorithms. A
key-generator K generates a pair (pk, sk) of public and pri-
vate keys on input of the security parameter k. A prover
P with the secret key sk (and the public key pk) proves its
identity to a verifier V (with the public key pk) through in-
teractions showing its possession of sk in (honest-verifier)
zero-knowledge.

The major security goal of identification schemes is to
prevent an adversary A with no secret key sk from imperson-
ating the authentic prover P. Such an adversary A is called
passive if A only eavesdrops the message-flow between hon-
est P and V (to impersonate P after that). If A acts as a cheat-
ing prover or verifier beyond eavesdropping, A is called an
active adversary. In particular, if A can act as a cheating ver-
ifier concurrently against plural prover clones with the same
secret key, it is called a concurrent attack, in which interest
has been growing.

There are three well-known identification schemes: the
Fiat-Shamir [6], GQ [9] and Schnorr [11] identification
schemes. The Fiat-Shamir scheme is proven to be secure
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against impersonation by an active adversary based on the
difficulty of the integer factorization problem. However, it
needs rather long secret keys. The GQ identification scheme
is an extension of the Fiat-Shamir scheme, which reduces
both the number of messages exchanged and memory re-
quirements for secret keys. The GQ identification scheme
is proven to be secure against the passive and concurrent at-
tacks under the RSA and One-More-Inversion assumptions,
respectively [3]. The Schnorr identification scheme is an
alternative to the Fiat-Shamir and GQ schemes. It is also
proven to be secure against the passive and concurrent at-
tacks under the DLA (Discrete Logarithmic Assumption)
and One-More-DL assumptions, respectively [3].

1.2 Provable Security of Identification Schemes

Let us briefly recall how the proof of the security against
impersonation does work in the case of the Schnorr scheme.
In the Schnorr scheme, P has a secret key x and V has a
public key q, g, h(= gx). First, P randomly chooses a from
Zq, computes a commitment t = ga and sends t to V , which,
in turn, randomly chooses a challenge c from Zq and sends
c to P. Then, P responds y = a + xc to V . Finally, V sees
whether y can correctly open hct or not, that is, it checks the
equality of gy = hct.

Suppose there is an adversary A that can impersonate a
prover in the Schnorr scheme with a non-negligible success
probability. Using A we can construct the following simu-
lator S which computes the discrete logarithm x of a given
element h(= gx). A simulator S invokes a copy of A, gives
h to A as a public key of a prover in the Schnorr scheme,
and plays the role of a verifier against A. That is, the simu-
lator S , receiving a cheating commitment t∗ from A, sends
a random challenge c to A and gets a cheating response y∗.
Then, we have gy

∗
= hct∗ with probability of A’s success.

Now, S rewinds A to the point receiving a challenge and
sends a new random challenge c1 once more to get a new re-
sponse y∗1 from A. We have gy

∗
1 = hc1 t∗ also with probability

of A’s success. Using the two equations, S can compute the
discrete logarithm x of h by x = (y∗−y∗1)(c−c1)−1 with prob-
ability of the square of A’s success. Thus, we have the fol-
lowing relation between the advantage Advimp

ID,A of A against

ID and the advantage Advdl
G,S of S against DLP (Discrete

Logarithmic Problem) (on G = 〈g〉):

Advimp
ID,A(k) ≤

√
Advdl

G,S (k) + η(k)
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with some negligible function η (of security parameter k).
This means a contradiction to DLA. Here, the running time
tS of S is around the twice the running time tA of A: tS (k) ≤
2tA(k) + O(k3).

The above (standard) proof depends on the well-known
technique “rewinding to extract.” As seen above, the tech-
nique sacrifices efficiency of the reduction. The probability
to extract the secret is only the square of probability of the
successful attack.

The similar situation holds also for the Fiat-Shamir and
GQ schemes.

1.3 Our Results

We show an identification scheme IDKEA1, which is an en-
hanced version of the Schnorr scheme. Although it needs
four messages exchanged and slightly more exponentiations
for both a prover and a verifier than the Schnorr scheme, the
IDKEA1 is proved to be secure under the two assumptions
of KEA1 [4], [10] and DLA with tight reduction. Here, by
the term “tight reduction” under two assumptions A1 and A2

we mean a reduction in which an adversary who breaks the
scheme with probability ε in time t can be used to break
the underlying problems of the assumption Ai with proba-
bility εi in time ti (i = 1, 2), and we have ε ≈ ε1 + ε2 and
t ≤ Min(O(t1),O(t2)).

The idea underlying the IDKEA1, which is inspired by
Barak’s generic non-back-box techniques [1], [2], is to use
an extractable commitment for prover’s commitment. The
extractable commitment is actually extractable only by the
simulator who can use the non-black-box extractor of the
KEA1 assumption. In the proof of security, the simulator
can open the commitment in two different ways: one by the
non-black-box extractor and the other through the simulated
transcript. This means that we don’t need to depend on the
rewind technique and can prove the security without loss of
the efficiency of reduction.

Our first theorem is as follows.

Theorem 1 If the generator G is both (t′, ε′)-DLA and
(t′′, ε′′)-KEA1, then the IDKEA1 scheme ID with the gen-
erator G is (t, ε)-secure under the passive attack with

t ≤ Min

{
1
2

(t′ − 6.4texp), t′′
}

ε ≥ ε′ + ε′′

(texp denotes the time to compute an exponentiation in the
group generated by G).

In addition, using a variant OMDL+ of the OMDL as-
sumption [3], we can prove the IDKEA1 is secure even under
the concurrent attack also with tight reduction:

Theorem 2 If the generator G is both (t′, n+1, ε′)-OMDL+
and (t′′, ε′′)-KEA1, then the IDKEA1 scheme ID with the
generator G is (t, n, ε)-secure under the concurrent attack
with

t ≤ Min

{
1
2

(t′ − (4.2 + n)texp), t′′
}

ε ≥ ε′ + ε′′.

1.4 Related Works

A signature scheme whose security can be tightly reduced to
difficulty of the discrete logarithm problem in the standard
model is proposed by Cramer and Damgard [5]. [5] built
the signature scheme based on Σ-protocol, which can be
viewed as a generalization of identification schemes treated
in the presented paper. However, note that the security of
Σ-protocol itself is not tightly reduced to difficulty of the
discrete logarithm problem in [5]. Our aim here is at the se-
curity of an identification scheme itself, not at the resulting
signature scheme.

Bellare and Palacio [4] show a 3-Round Zero-
Knowledge protocol in which the KEA3 assumption (a vari-
ant of KEA1) is used to prove its soundness. The role played
by the KEA3 assumption is different from ours. In fact, the
proof of the soundness in [4] needs the rewinding technique
to extract the secret of the cheating prover.

Fischlin [7] shows a non-interactive proof of knowl-
edge with online extractors. The online extractor plays the
similar role as extractors (without rewinding) in the proof
of our scheme. The online extractor needs the random ora-
cle model and unfortunately the communication complexity
(i.e., the length of the proof) in the scheme is rather high
although it can be said feasible. Our scheme can be viewed
as an interactive and practical (but restricted) version of [7]
based on the non-black-box assumption instead of the ran-
dom oracle.

2. Definitions and Assumptions

In this section, following [3], we state the definitions of the
security of identification schemes under the passive and con-
current attacks and introduce the KEA1 and OMDL+ as-
sumptions.

2.1 Security Definitions of Identification Schemes

Let a triple ID = (K , P,V) of probabilistic polynomial-time
algorithms be an identification scheme. A key-generator K
generates a pair (pk, sk) of public and private keys on input
of the security parameter k. A prover P with the secret key
sk (and the public key pk) proves its identity to verifier V
(with the public key pk) through interactions showing its
possession of sk.

The security of an identification scheme ID under the
passive attack is defined as follows. In the following A1

acts as an eavesdropper of conversations between an honest
prover and an honest verifier. After halting A1 with an output
St, A2 tries to impersonate the prover using St.

Definition 1 (Security under passive attacks) Let a triple
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ID = (K , P,V) of probabilistic polynomial-time algorithms
be an identification scheme. Let A = (A1, A2) be any proba-
bilistic polynomial-time adversary. For ID and A, an exper-
iment Expimp−pa

ID,A is defined as follows (λ denotes the empty
string).

Expimp−pa
ID,A :

(pk, sk)← K ;
Invoke A1(pk);

When A1 makes a query λ, reply with an honest
transcript between P(sk, pk) and V(pk);

Let St be an output of A1;
Invoke A2(St);

Play the role of honest verifier V(pk) to A2(St);
Output 1 if the V accepts; otherwise output 0.

In the above, A is assumed to make a query λ at most once.
The advantage of adversary A against ID under the

passive attack is defined as

Advimp−pa
ID,A = Pr[Expimp−pa

ID,A = 1].

ID is called (t, ε)-secure under the passive attack if for any
probabilistic polynomial-time adversary A that runs in time
at most t, the advantage Advimp−pa

ID,A is upper bounded by ε.

The security of an identification scheme ID under the
concurrent attack is defined as follows. In the following A1

acts as a cheating verifier that can take place in concurrent
sessions with plural prover clones Pi(sk) with the same se-
cret key sk. Those sessions can be interleaved in any ways.
After halting A1 with an output St, A2 with St tries to imper-
sonate the prover P(sk).

Definition 2 (Security under concurrent attacks) Let a
triple ID = (K , P,V) of probabilistic polynomial-time al-
gorithms be an identification scheme. Let A = (A1, A2) be
any probabilistic polynomial-time adversary. For ID and
A = (A1, A2), an experiment Expimp−ca

ID,A is defined as follows.

Expimp−ca
ID,A :

(pk, sk)← K ;
Invoke A1(pk);

Play the role of prover clones Pi(sk)
concurrently to A1;

Let St be an output of A1;
Invoke A2(St);

Play the role of honest verifier V(pk) to A2;
Output 1 if the V accepts; otherwise output 0.

(In the above, A1 is assumed to play the role of verifier at
most once with each of prover clone Pi. So, if there are n
prover clones invoked, A1 plays the verifier at most n times.)
The advantage of adversary A against ID under the concur-
rent attack is defined as

Advimp−ca
ID,A = Pr[Expimp−ca

ID,A = 1].

ID is called (t, n, ε)-secure under the concurrent attack if for

any probabilistic polynomial-time adversary A that runs in
time at most t, and makes interactions with at most n prover
clones, the advantage Advimp−ca

ID,A is upper bounded by ε.

2.2 Assumptions on Groups

We use three number-theoretic assumptions on groups: the
DLA, KEA1 and OMDL+ assumptions. The DLA is the
standard Discrete Logarithmic Assumption. We use the
DLA in the concrete manner as follows. The group gen-
erator G that outputs a generator g of a group of order q, is
called to satisfy (t, ε)-DLA if for any adversary A that runs
in time at most t, we have

Pr[(q, g)← G; x
$← Zq; y = gx; x̂← A(q, g, y) | x = x̂] < ε.

The probability is taken over the coins of G, randomness
choosing x and the coins of A as usual.

The definitions of the KEA1 and OMDL+ assumptions
are as follows.

2.2.1 The KEA1 Assumption

The KEA1 assumption [4], [10] for a group G = 〈g〉 means
that it is possible only when one knows b to generate a DH-
pair (gb, gab) for a randomly selected ga.

Definition 3 (The KEA1 Assumption [4]) Let G be a
probabilistic polynomial-time algorithm which on input of
the security parameter k, outputs a prime number q of k
bits and a generator g of a group of order q. Let H be any
probabilistic polynomial-time algorithm which on input of
q, g, A(∈ 〈g〉) and an auxiliary input w, outputs a pair (B,W)
of elements in G. Let H∗ be an extractor for H, that is, any
probabilistic polynomial-time algorithm which on input of
q, g, A and an auxiliary input w, outputs b.

For any string w and such G,H,H∗, an experiment
ExpwG,H,H∗ is defined as follows.

ExpwG,H,H∗ :

(q, g)← G(1k); a
$← Zq; A = ga;

(B,W)← H(q, g, A, w);
b← H∗(q, g, A, w);
If W = Ba and B � gb then return 1;
Otherwise return 0.

Then, the advantage of adversary H in G for extractor H∗ is
defined as

AdvwG,H,H∗ (k) = Pr[ExpwG,H,H∗ (k) = 1].

G is called to satisfy (t, ε)-KEA1 if any adversary H that
runs in time at most t, there exists an extractor H∗ that runs
also in time at most t and the AdvwG,H,H∗ is upper bounded
by ε for any w.

The KEA1 assumption in [4] is stated only in terms of
the asymptotic behavior. The above concrete version of the
definition seems to be natural with respect to the intrinsic
meaning of the assumption.



1952
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.9 SEPTEMBER 2007

2.2.2 The OMDL+ Assumption

The OMDL+ assumption is a stronger version of the OMDL
assumption used in [3]. The OMDL assumption means that
it is difficult to solve one more DLP (Discrete Logarithmic
Problem) instance even if one is provided with several ran-
domly selected DLP instances with their answers, all shar-
ing the same base element. The OMDL+ assumption is
stronger in the sense that the challenge problems are given
with some hints.

Definition 4 (OMDL+ Assumption) Let G be a proba-
bilistic polynomial-time algorithm which on input of the se-
curity parameter k, outputs a prime number q of k bits and
a generator g of a group of order q. Let I be any probabilis-
tic polynomial-time algorithm which on input of q, g outputs
x1, . . . , xn using the challenge oracle CO and the DL oracle
DL. The challenge oracle COg given query h answers with
a pair of gx and hx, where x is randomly chosen from Zq

independently by every query. The DL oracle DLg, given
query h, answers with x satisfying h = gx.

For such G and I, an experiment Expomdl+
G,I is defined as

follows.

Expomdl+
G,I :

(q, g)← G(1k);
Invoke ICOg,DLg(q, g);

When I makes a query h to COg,
let COg reply with such (gi, hi);
When I makes a query h toDLg,
letDLg reply with logg(h);

Let (x1, . . . , xn) be an output of I;
Let (g1, h1), . . . , (gn, hn) be challenges issued by COg;
Let m be the number of answers given byDLg;
If gi = g

xi for all i = 1, . . . , n and m < n
then return 1;

Otherwise return 0.

The advantage of adversary I against G is defined as

Advomdl+
G,I = Pr[Expomdl+

G,I = 1].

G is called to satisfy (t, n, ε)-OMDL+ if for any probabilistic
polynomial-time adversary I that runs in time at most t and
makes at most n queries to the challenge oracle CO, the
advantage Advomdl+

G,I is upper bounded by ε.

It is easily seen that the OMDL+ assumption means the
OMDL assumption and that the OMDL assumption means
the CDH assumption or the OMDL+ assumption.

3. The Identification Scheme IDKEA1

We describe our identification scheme IDKEA1= {K , P,V}.
Let G be a probabilistic polynomial-time algorithm which
given the security parameter k outputs a prime number q of
k bits and a generator g of a group of order q.

A key-generation algorithm K of the IDKEA1 on input
k runs G(k) to get q, g1, chooses x randomly from Zq, com-
putes h1 = g

x
1 and outputs x and q, g1, h1 as a secret key and

a public key, respectively.
In the IDKEA1, a prover P (with a secret key x) proves

its identity to a verifier V (with a public key q, g1, h1) as
follows.

1◦ V randomly selects a from Zq and computes g2 = g
a
1. V

sends g2 to P.
2◦ P randomly selects m0 from Zq and computes c1 =

gm0

1 , c2 = g
m0

2 . P sends c1, c2 to V .
3◦ V sees whether c2 = ca

1 or not. If not, V aborts. Other-
wise V randomly selects r from Zq and sends r to P.

4◦ P computes m = m0 − rx and sends m to V .
5◦ V sees whether c1 = g

m
1 hr

1 does hold or not. If it does, V
accepts. Otherwise V rejects.

As seen above, the IDKEA1 needs two exponentiations
for a prover and two exponentiations and a two-exponent
multi-exponentiation for a verifier, and it needs four mes-
sages exchanged. (Assuming (as in [8]) that a two-exponent
multi-exponentiation takes 1.2 texp, the time for a verifier is
dominated by 3.2 texp, where texp denotes the time to com-
pute an exponentiation.) Thus, the IDKEA1 is not so effi-
cient as the Schnorr scheme in computations and communi-
cations. However, the IDKEA1 has the security proof with
tight reduction without loss of the security.

4. Security of the IDKEA1

We prove the security of the IDKEA1. In the proof, the sim-
ulator can open the cheating prover’s commitment in two
different ways: one by the non-black-box extractor of the
KEA1 assumption and the other through the simulated tran-
script. This means we don’t need to rewind the cheating
provers.

4.1 Security under the Passive Attack

Security of the IDKEA1 under the passive attack is proven
under the DLA and KEA1 assumptions with tight reduction.

Theorem 1 If the generator G is both (t′, ε′)-DLA and
(t′′, ε′′)-KEA1, then the IDKEA1 scheme ID with the gen-
erator G is (t, ε)-secure under the passive attack with

t ≤ Min

{
1
2

(t′ − 6.4texp), t′′
}

ε ≥ ε′ + ε′′

(texp denotes the time to compute an exponentiation in the
group generated by G).

Proof Assume we have a passive adversary A = (A1, A2)
against ID = {K , P,V}, running in time at most t, which
succeeds in impersonating the honest prover P with proba-
bility at least ε. We use A to construct a KEA1-adversary H
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running in time at most t′′ and we use A and H to construct a
DL-extractor E running in time at most t′ with the advantage
AdvE at least ε − ε′′(≥ ε′). The stated result follows.

Let q, g1, h1 be generated as in K :

q, g1 ← G; x
$← Zq; h1 = g

x
1.

On inputs q, g1, h1, the DL-extractor E proceeds as fol-
lows.

1◦ E starts the adversary A1 with inputs q, g1, h1. When A1

makes a query ε, E computes

a′
$← Zq; g′2 = g

a′
1

m′, r′
$← Zq

c′1 = g
m′
1 hr′

1 ; c′2 = c′1
a′

and answers A1 with a transcript (g′2, (c
′
1, c
′
2), r′,m′).

Note the simulated transcript is distributed just as the
real one between an honest P and V . Suppose A1 halts
and outputs a string St.

2◦ E starts the adversary A2 with the input St and with ran-
dom coins R. E randomly selects a from Zq, computes
g2 = g

a
1, and gives g2 to A2. Suppose A2 replies with the

message c∗1, c
∗
2. If c∗1

a � c∗2, then E aborts. Otherwise
E randomly selects r from Zq and sends r to A2. Then,
A2 is supposed to output m∗ and halt. If c∗1 � g

m∗
1 hr

1, E
aborts. Note the messages given to A2 are distributed just
as the real ones given by an honest V .

3◦ Consider the following KEA1 adversary H on inputs (of
the above) q, g1, g2 and w = St,R:

KEA1 adversary H(q, g1, g2, (St,R)):
Invoke A2(St; R);
Give g2 to A2;
Get c∗1, c

∗
2 from A2;

Output c∗1, c
∗
2.

E invokes the corresponding extractor H∗ to H on the
same inputs and gets m∗0:

m∗0 ← H∗(q, g1, g2, (St,R));

4◦ E outputs x̂ = (m∗0 − m∗)r−1.

In the above, note that the extractor E opens the com-
mitment c∗1 made by the adversary A2 in the two different
ways: the one is m∗0 obtained by the KEA1-extractor H∗ and
the other is m∗ through the simulated transcript.

Now we evaluate the advantage AdvE = Pr[x̂ = x] of
the DL extractor E. Let Imp be an event that A2 successfully
impersonates P in the above simulation by E and Ext be an
event the equation c∗1 = g

m∗0
1 does hold. Note that Pr[Imp] ≥

ε and if Imp holds, we have

c∗2 = c∗1
a, c∗1 = g

m∗
1 hr

1. (1)

If Ext holds, we have

c∗1 = g
m∗0
1 . (2)

By the second equation of Eq. (1) and Eq. (2), we see

x = (m∗0 − m∗)r−1 = x̂.

Thus,

AdvE = Pr[x̂ = x] ≥ Pr[Imp ∧ Ext]

≥ Pr[Imp] − Pr[¬Ext ∧ Imp].

So,

Pr[Imp] ≤ AdvE + Pr[¬Ext ∧ Imp]. (3)

By the definition of Ext and Imp,

Pr[¬Ext∧Imp] ≤ Pr[c∗2 = c∗1
a∧c∗1 � g

m∗0
1 ] ≤ AdvH . (4)

Now since the running time of H is bounded by the
running time of A2, it is not greater than t′′. So, by the as-
sumption of G being (t′′, ε′′)-KEA1, we have

AdvH < ε
′′. (5)

Then, by Eqs. (3), (4) and (5), we have

ε ≤ Pr[Imp] ≤ AdvE + ε
′′,

and

AdvE ≥ ε − ε′′.
Here, as easily seen from the description of E, the run-

ning time time(E) of E includes the running time of A, the
running time of H (which is less than the one of A) and
is otherwise dominated by the four exponentiations and the
two two-exponent multi-exponentiations. Assuming (as in
[8]) that a two-exponent multi-exponentiation takes time
1.2texp, we have time(E) ≤ 2 · t + (4 + 2.4)texp ≤ t′, as de-
sired. �

4.2 Security under the Concurrent Attack

Under the OMDL+ and KEA1 assumptions, IDKEA1 is
proven to be secure even under the concurrent attack also
with tight reduction.

Theorem 2 If the generator G is both (t′, n+1, ε′)-OMDL+
and (t′′, ε′′)-KEA1, then the IDKEA1 scheme ID with the
generator G is (t, n, ε)-secure under the concurrent attack
with

t ≤ Min

{
1
2

(t′ − (4.2 + n)texp), t′′
}

ε ≥ ε′ + ε′′.

Proof Assume we have an adversary A = (A1, A2) against
ID = {K , P,V} in the concurrent attack, running in time
at most t and making interactions with at most n prover
clones, which succeeds in impersonating the honest prover
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P with probability at least ε. We use A to construct a KEA-
adversary H running in time at most t′′ and we use A and H
to construct an OMDL+ solver I that runs in time at most t′,
making at most n + 1 queries to the challenge oracle, with
the advantage AdvI at least ε − ε′′(≥ ε′). The stated result
follows.

Let q, g1 be generated by

q, g1 ← G(k).

On inputs q, g1, the OMDL+ solver I proceeds as fol-
lows.

1◦ I randomly chooses a′ from Zq and computes g′2 = g
a′
1 . I

sends g′2 to the challenge oracle COg1 to get the response
h1(= gx0

1 ), h′2(= g′2
x0 ). I starts the adversary A1 with in-

puts q, g1, h1.
2◦ When A1 sends the message g∗2

(i) to some prover clone
(in the i-th session), I forwards the message g∗2

(i) to
the challenge oracle COg1 and get the response c(i)

1 (=
gxi

1 ), c(i)
2 (= g∗2

(i)xi ). I delivers c(i)
1 , c

(i)
2 to A1. When A1

sends the response r∗(i) to the prover clone, I makes a
query c(i)

1 h−r∗(i)

1 to the DL oracle DLg1 and gets the re-
sponse m(i), which is transferred to A1 by I. Suppose
A1 halts and outputs a string St after performing concur-
rently such n sessions (i = 1, . . . , n) with the simulated
prover clones. It is easy to see that the above simulation
of prover clones for A1 is perfect.

3◦ I starts the adversary A2 with the input St and with ran-
dom coins R. I randomly selects a from Zq, computes
g2 = g

a
1, and gives g2 to A2. Suppose A2 replies with

the message c∗1, c
∗
2. If c∗1

a � c∗2, then I aborts. Otherwise
I randomly selects r from Zq and sends r to A2. Then,
A2 is supposed to output m∗ and halt. If c∗1 � g

m∗
1 hr

1, I
aborts. Note the above simulation of the honest verifier
is perfect for A2.

4◦ Consider the following KEA1 adversary H on inputs (of
the above) q, g1, g2 and w = St,R:

KEA1 adversary H(q, g1, g2, (St,R)):
Invoke A2(St; R);
Give g2 to A2;
Get c∗1, c

∗
2 from A2;

Output c∗1, c
∗
2.

I invokes the corresponding extractor H∗ to H on the
same inputs and gets m∗0:

m∗0 ← H∗(q, g1, g2, (St,R));

5◦ I outputs x̂0 = (m∗0 − m∗)r−1 and x̂i = m(i) + x̂0r∗(i) for
i = 1, . . . , n.

In the above, note that the solver I opens the commit-
ment c∗1 made by the adversary A2 in the two different ways:
the one is m∗0 obtained by the KEA1-extractor H∗ and the
other is m∗ through the simulated transcript.

Now we evaluate the advantage AdvI = Pr[x̂i = xi (i =
0, 1, . . . , n)] of the OMDL+ solver I. Let Imp be an event

that A2 successfully impersonates P in the above simulation
by I and Ext be an event the equation c∗1 = g

m∗0
1 does hold.

Note that Pr[Imp] ≥ ε and if Imp holds, we have

c∗2 = c∗1
a, c∗1 = g

m∗
1 hr

1. (6)

If Ext holds, we have

c∗1 = g
m∗0
1 . (7)

By the second equation of Eq. (6) and Eq. (7), we see

x0 = (m∗0 − m∗)r−1 = x̂0,

and since g1
m(i)
= c(i)

1 h−r∗(i)

1 , we have

xi = DLg1 (c(i)
1 ) = m(i) + x0r∗(i) = x̂i.

Thus,

AdvI = Pr[x̂i = xi (i = 0, 1, . . . , n)]

≥ Pr[Imp ∧ Ext]

≥ Pr[Imp] − Pr[¬Ext ∧ Imp]

So,

Pr[Imp] ≤ AdvI + Pr[¬Ext ∧ Imp]. (8)

By the definition of Ext and Imp,

Pr[¬Ext∧Imp] ≤ Pr[c∗2 = c∗1
a∧c∗1 � g

m∗0
1 ] ≤ AdvH . (9)

Now since the running time of H is bounded by the
running time of A2, it is not greater than t′′. So, by the as-
sumption of G being (t′′, ε′′)-KEA1, we have

AdvH < ε
′′. (10)

Then, by Eqs. (8), (9) and (10), we have

ε ≤ Pr[Imp] ≤ AdvI + ε
′′,

and

AdvI ≥ ε − ε′′.
Here, as easily seen from the description of I, the num-

ber of queries made by I to the challenge oracle is at most
n + 1 (one in generating the simulated public key and n
in generating the commitments for A1). The running time
time(I) of I includes the running time of A, the running
time of H (which is less than the one of A) and is other-
wise dominated by the (3+n) exponentiations and the one
two-exponent multi-exponentiation. Assuming (as in [8])
that a two-exponent multi-exponentiation takes time 1.2texp,
we have time(I) ≤ 2 · t + (4.2 + n)texp ≤ t′, as desired. �
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5. Conclusion

The paper has shown an identification scheme IDKEA1
which is an enhanced version of the Schnorr scheme by
making the prover’s commitment extractable. Although it
needs four exchanges of messages and slightly more ex-
ponentiations than the Schnorr scheme, IDKEA1 is proved
to be secure under the KEA1 and DLA assumptions with
tight reduction. Moreover, using the variant OMDL+ of the
OMDL assumption, we proved IDKEA1 is secure even un-
der the concurrent attack also with tight reduction.
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