
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011
367

PAPER

An Efficient Adaptive-Deniable-Concurrent Non-malleable
Commitment Scheme

Seiko ARITA†a), Member

SUMMARY It is known that composable secure commitments, that
is, concurrent non-malleable commitments exist in the plain model, based
only on standard assumptions such as the existence of claw-free permuta-
tions or even one-way functions. Since being based on the plain model, the
deniability of them is trivially satisfied, and especially the latter scheme
satisfies also adaptivity, hence it is adaptive-deniable-concurrent non-
malleable. However, those schemes cannot be said to be practically effi-
cient. We show a practically efficient (string) adaptive-deniable-concurrent
commitment scheme is possible under a global setup model, called the
Global CRS-KR model.
key words: commitment schemes, adaptivity, deniability, concurrency,
non-malleability

1. Introduction

As the advanced security properties, there are emerging con-
cerns on composability, deniability and adaptivity of cryp-
tographic protocols. The composability, culminating in the
Universal Composability (UC) [4], requires secure protocols
remain secure even if they are composed with other proto-
cols. The deniability requires secure protocols leave no ev-
idence of their executions. The adaptivity requires secure
protocols remain secure (to some reasonable extent) even if
some honest parties are corrupted during their executions.

In this paper, we want to construct practically efficient
commitment protocols with those advanced security proper-
ties in some global setup model.

It is known that composable secure commitments∗, that
is, concurrent non-malleable commitments exist in the plain
model, based only on standard assumptions such as the exis-
tence of claw-free permutations [8], [22], [24] or even one-
way functions [20], [25]. Since being based on the plain
model, the deniability of them is trivially satisfied, and es-
pecially the scheme of [22] satisfies also adaptivity, hence
it is already an adaptive-deniable-concurrent non-malleable
commitment scheme. However, those schemes cannot be
said to be practically efficient.

We show a practically efficient (string) adaptive-
deniable-concurrent non-malleable commitment scheme is
possible under a global setup model, called the Global CRS-
KR model.

• We define a notion of adaptive-deniable-concurrent
non-malleable commitments, that captures the three

Manuscript received March 12, 2010.
Manuscript revised June 21, 2010.
†The author is with Institute of Information Security,

Yokohama-shi, 221-0835 Japan.
a) E-mail: arita@iisec.ac.jp

DOI: 10.1587/transfun.E94.A.367

advanced properties all at once for commitment
schemes in the Global CRS-KR model.

• We define, as a more-easy-to-prove property, a straight-
line equivocal-extractability of commitment schemes
and prove that it (with some other auxiliary prop-
erties) yields the adaptive-deniable-concurrent non-
malleability in the Global CRS-KR model.

• We construct a straight-line equivocal-extractable com-
mitment scheme in the Global CRS-KR model, un-
der the decisional linear assumption and the knowl-
edge of exponent assumption on bilinear groups. The
scheme is efficient and practical, using a constant num-
ber of pairing computations and three-round exchanges
of linear-size messages.

Related works. In the literature, to our knowledge, there
exist two practically-efficient commitment schemes that es-
tablish the adaptive-deniable-concurrent non-malleability.
One is the commitment scheme by Canetti, Dodis, Pass and
Walfish [5] and the another is its improvement by Dodis,
Shoup and Walfish [16]. Both schemes rely on a global
setup model, called the Augmented CRS model (a kind of
global CRS model with an augmented functionality) and
are proved to be adaptively UC-secure in that model. The
scheme of [5] uses four-round message exchange of square
size O(k2) of security parameter k, and the scheme of [16]
uses six-round message exchange of linear size O(k). We
believe that our Global CRS-KR model is comparable to the
Augmented CRS model and our scheme, using three-round
message exchange of linear size O(k), is more simple and
efficient than those schemes.

2. An Adaptive-Deniable-Concurrent Non-malleable
Commitment

2.1 Commitment Schemes

In this paper, we deal with commitments in a tag-based man-
ner. On input value v and tag t, sender S commits to v
through a transcript c for receiver R using a CRS σ (Com-
mitment phase). Later, using local output d of the commit-
ment phase, S decommits c to the value v using the same
tag t and CRS σ (Decommitment phase). The hiding prop-
erty requires even adversarial receivers R∗ cannot know the
value v under the commitment c in the commitment phase.

∗From now on, the composability always addresses self-
composition in this paper.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

368
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

The binding property requires even adversarial senders S∗
cannot decommit the same commitment c to two different
values. More precisely,

Definition 1 (Commitment Schemes) A triple Σ = (K ,S,
R) of probabilistic polynomial time algorithms is called a
(tag-based) commitment scheme if it satisfies the following
three properties:

(Correctness) For any value v ∈ {0, 1}k and any tag, the
probability

Pr[σ ← K(1k), (d, c)← 〈Sσ,tag(v),Rσ,tag〉,
(−, v′)← 〈Sσ,tag(d),Rσ,tag(c)〉 : v = v′]

is negligibly close to 1 (with respect to k).

(Hiding) For any adversary R∗ and any tag, the probability

Pr[σ ← K(1k), (v0, v1, s)← R∗(σ, tag),
b

$← {0, 1}, (−, b′)← 〈Sσ,tag(vb),R∗(s)〉
: b = b′]

is negligibly close to 1/2 (with respect to k). Here, v0, v1 are
supposed to be in {0, 1}k.

(Binding) For any adversary S∗ and any tag, the probabil-
ity

Pr[σ ← K(1k),

((d1, d2), c) ← 〈S∗(σ, tag),Rσ,tag〉,
(−, v1) ← 〈S∗(d1),Rσ,tag(c)〉,
(−, v2) ← 〈S∗(d2),Rσ,tag(c)〉

: v1 � ⊥, v2 � ⊥, v1 � v2]

is negligible (with respect to k).

For our purpose, we need a new type of binding prop-
erty, the determining property.

Definition 2 (Determining Property) A commitment sch-
eme Σ = (K ,S,R) is said to be determining if there exists
a deterministic function det(·) (that depends only on Σ and
may not be efficiently computable) and for any feasible ad-
versary S∗ the probability

Pr[σ ← K(1k), (−, c)← 〈S∗(σ),Rσ,tag〉 :

∃ d, r s.t. (−, v) = 〈S∗(d),Rσ,tag(c; r)〉
⇒ v = det(c)]

is negligibly close to 1 (with respect to k). Here, the tag is
being chosen by S∗. We call the unique value v = det(c) the
determining value of c.

In the above definition we note that the d and r are
not supposed to be efficiently computable. The determining
property means that any commitment c generated by fea-
sible adversaries S ∗ must statistically determine the value v

Fig. 1 The Global CRS-KR model.

Fig. 2 The Augmented CRS model.

that can be committed to under c. If Σ is statistically binding
then it is determining, and if Σ is determining then it is com-
putationally binding†. In the rest of paper, we only consider
commitment schemes that are determining.

2.2 Definition of Adaptive-Deniable-Concurrent Non-
malleability

Intuitively, we call a commitment scheme adaptive-
deniable-concurrent non-malleable if the scheme permits no
fake commitments even by a man-in-the-middle adversary
that is able to invoke any number of left and right parties
concurrently to receive/make commitments and is able to
adaptively corrupt any number of left parties that complete
commitment phases, and in addition if the scheme leaves no
evidence of protocol execution.

2.2.1 The Global CRS-KR Model

To achieve the property in an efficient way, we rely on a
global setup model, called the Global CRS-KR model, which
is a simple extension of the KR model of [3]. In the Global
CRS-KR model, as in Fig. 1, parties must register their iden-
tities to receive their public keys and a global CRS. Secret
keys are sent only to corrupt participants.

For contrast, here we see the Augmented CRS model
of Canetti, Dodis, Pass and Walfish [5], in Fig. 2.

In the Augmented CRS model, the public value is the
same for all parties. However it needs different secret keys
for all corrupt parties, and thus needs a master secret. Mean-
while, in the Global CRS-KR model, although the public

†If a commitment scheme is not computationally binding, then
the d must be efficiently computable by commitment-phase S ∗ and
det(c) must be ambiguous, meaning that the scheme is not deter-
mining.

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
369

value depends on parties, it does not need any kind of mas-
ter secret.

Thus, we cannot say any one is better than the another,
unconditionally. The Augmented CRS model is better in the
view of efficiency of public values, and the Global CRS-KR
model is better in the cost of needed trust for the third party
that implements the functionality, since the model does not
need any master secret.

Note that, in both of the above two models, an ad-
versary is supposed to corrupt some party, to participate a
protocol-session as an active player. This means that an ad-
versary must register its id and get the secret key of corrupt
party that it plays.

2.2.2 The Definition

We define two experiments, for a commitment scheme Σ and
an adversary A, as in Fig. 3, in order to define the adaptive-
deniable-concurrent non-malleability of Σ.

Definition 3 A commitment scheme Σ = (K,S,R) is
said to be adaptive-deniable-concurrent non-malleable in
the Global CRS-KR model if for any feasible adversary
A, there exists a feasible algorithm S and the ensem-
ble

{
staΣS (v1, · · · , vm, z)

}
v1,··· ,vm,z is computationally indistin-

guishable from the ensemble
{
mimΣA(v1, · · · , vm, z)

}
v1,··· ,vm,z

with any polynomial m = m(k), any values v1, · · · , vm (∈
{0, 1}k) and any string z.

Note that Definition 3 incorporates the Global CRS-KR
model. An adversary needs to register its id ID∗ to mount
an attack.

Basically, Definition 3 is in the similar line to the def-
inition of concurrent non-malleability of [20], [22], [24]. In
the first experimentmimΣA, a man-in-the-middle adversary A
carries over a concurrent man-in-the-middle attack between
m left parties and n right parties. The resulting A’s view
and the determining values v∗j of right commitments must be
simulated by the stand-alone simulator S in the second ex-
periment staΣS . This means that commitments by left parties
are no use for A to make right commitments, i.e., concurrent
non-malleability.

As seen above, in the second experiment, the simulator
S has to simulate left commitments in the simulated view
of A. After completing such simulated left commitments as
well as real right commitments, the simulator S is given the
values vi. This models the situation of adaptive corruption of
left honest parties, where left honest parties are corrupt just
after completing commitments and the committed values are
given to the adversary. Definition 3 requires that the simu-
lator S must be able to adapt decommitment of those sim-
ulated left commitments to those newly given values, i.e.,
adaptivity.

Moreover, note that the simulator S is not capable to
simulate the CRS σ in the second experiment. The σ is
merely a given string also for S . This brings us deniability.

Fig. 3 Experiments mimΣA and staΣS .

(Recall that it is the key that the simulator is able to program
CRS in the usual local CRS model. But this violated the
deniability.)

Thus, Definition 3 concerns the concurrent non-
malleability, adaptivity and deniability of commitment
schemes, all at once. (Note that we are not defining each
of those three property, separately.)

Remark In the above definition, adversary A is restricted
to be a type of “selective-tag,” namely, A is supposed to
choose left tags t1, . . . , tn before he knows the CRS and A
must use different tags t∗j from ti for his challenges. The
restriction is not restrictive. In fact, a tag-based commit-
ment scheme that is secure for selective-tag-type adversaries
is easily transformed into an ordinal commitment scheme
without tags that is secure for fully adaptive adversaries, by
using a method of the CHK transformation [7], just as in the

370
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

cases of encryption schemes. (Sender generates a key-pair
of strong one-time signature. It uses the verification key as
a tag and signs a transcript by the corresponding secret key.)

2.3 Definition of Straight-Line Equivocal-Extractability

As a more-easy-to-prove sufficient condition for the
adaptive-deniable-concurrent non-malleability, we define
straight-line equivocal-extractability of commitment sche-
mes, that involves only a “classical” (instead of concurrent)
man-in-the-middle adversary. The straight-line equivocal-
extractability requires that a left party can be adaptively sim-
ulated by some feasible algorithm EQV that knows an adver-
sary’s secret key and at the same time the property requires
that the value committed to by the adversary for a right party
can be extracted by some feasible algorithm EXT that knows
the trapdoor of the global CRS. More formally, we define
two experiments, for a commitment scheme Σ and an adver-
sary A, as in Fig. 4.

Definition 4 A commitment scheme Σ = (K,S,R) is
said to be straight-line equivocal-extractable in the Global
CRS-KR model if there exists a feasible algorithm EQV
such that for any feasible man-in-the-middle adversary A,
there exists a feasible algorithm EXT and the ensemble{
fakeComΣEQV,A,EXT(v, z)

}
v,z

is computationally indistinguish-

able from the ensemble
{
realComΣA(v, z)

}
v,z

with any value

v (∈ {0, 1}k) and any string z.

Note that Definition 4 incorporates the Global CRS-KR
model. An adversary needs to register its id ID∗ to mount
an attack.

Remark The definition requires that the algorithm EQV is
independent of adversaries A.

Theorem 1 If a commitment scheme Σ = (K,S,R) is de-
termining, public-coin for R and straight-line equivocal-
extractable in the Global CRS-KR model, then Σ is adaptive-
deniable-concurrent non-malleable in the Global CRS-KR
model.

Proof Idea To prove the theorem, we construct a stand-
alone man-in-the-middle adversary Ai j from an assumed
concurrent adversary A against the scheme, which internally
simulates left parties besides the i-th left party and right par-
ties besides the j-th right party for A. We use the straight-
line equivocal-extractability for Ai j to upper bound advan-
tage of the assumed A, using a hybrid argument. In doing
that, as one subtle point, we need to efficiently construct the
view of Ai2, . . . , Aim given the view of Ai1, that will be pos-
sible since the scheme is public-coin for receiver R.

Proof Let Σ = (K,S,R) be a commitment scheme that is

Fig. 4 Experiments realComΣA and fakeComΣEQV,A,EXT.

determining, public-coin for R and straight-line equivocal-
extractable. Let EQV be the algorithm that is guaran-
teed to exist by the definition of straight-line equivocal-
extractability for Σ. Let A be arbitrary feasible adversary
against Σ. We can assume A is deterministic without loss of
generality (by supposing A’s coins are included in its input
z). We want to construct a simulator S that satisfies

staΣS (v1, · · · , vm, z) ≡c mim
Σ
A(v1, · · · , vm, z) (1)

for any values v1, · · · , vm (∈ {0, 1}k) and any string z. We
construct such simulator S as follows:

Simulator S on input of a string z:

1. S invokes A on input z. A outputs ID∗, t1, . . . , tm. Then,
S also outputs ID∗, t1, . . . , tm.

2. S receives a CRS σ and a public/private-key pair
pkID∗ , skID∗ . Giving those σ, pkID∗ , skID∗ to A, S plays
each of m left parties for A by invoking EQV on

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
371

ti, skID∗ , w (Here, w is any string such as 0k) (i =
1, . . . ,m). S forwards messages of A to each of n right
parties to its own outside right parties Rσ,t∗j and for-
wards messages from Rσ,t∗j to A as its j-th right party
messages (j = 1, . . . , n). Let d′i be the local output of
EQV(ti, skID∗ , w) (i = 1, . . . ,m).

3. On halting A, S outputs its view viewA.
4. Receiving left values vi, S invokes the corresponding

second stage of EQV on d′i and vi to get its output di

and outputs di as its own output (i = 1, . . . ,m).

Toward showing Eq. (1) with the above S , we first con-
struct a (classical) man-in-the-middle adversary Ai, j using A
as follows (i = 0, . . . ,m − 1, j = 1, . . . , n).

A man-in-the-middle adversary Ai, j on input z, vi+2, . . . ,
vm:

1. Ai, j internally invokes A on input z. A outputs
ID∗, t1, . . . , tm. Then, Ai, j outputs ID∗, ti+1.

2. Receiving a CRS σ and a public/private-key pair
pkID∗ , skID∗ , Ai, j carries over a man-in-the-middle at-
tack against its (outside) left party and right party,
using the internally simulated A that is given those
σ, pkID∗ , skID∗ .

a. In the attack, Ai, j internally simulates m left par-
ties for A as follows.

i. Ai, j simulates each of the first i left parties
by using the α-th copy of EQV on tα, skID∗ , w
(α = 1, . . . , i). (w is any dummy string.)

ii. Ai, j forwards messages from its left party to
A as messages of A’s (i + 1)-th left party, and
forwards messages from A to its (i+1)-th left
party to its left party.

iii. Ai, j simulates the rest of m − i − 1 left parties
honestly to commit to vβ (β = i + 2, . . . ,m).

b. At the same time Ai, j internally simulates n right
parties for A as follows.

i. Ai, j honestly simulates each of n right parties
except the j-th right party for A.

ii. Ai, j forwards messages from its right party
to A as messages of A’s j-th right party, and
forwards messages from A to A’s j-th right
party to its right party.

Using the above Ai, j, we define hybrid experiments
hyb-iΣA(v1, . . . , vm, z) for i = 0, 1, . . . ,m as in Fig. 5. In the
experiments, when i = m, all of the left parties are simulated
by EQV and hyb-mΣA is exactly distributed as staΣS :

hyb-mΣA(v1, . . . , vm, z) ≡ staΣS (v1, · · · , vm, z). (2)

On the other hand, when i = 0, all of the left parties are
honestly simulated to commit to vi. Moreover the straight-
line equivocal-extractability of Σ means that det(c∗j) =
EXT(i, j)(τ, viewAi, j) (with exception of negligible probabil-
ity). Hence, we have

Fig. 5 Hybrid Experiments hyb-iΣA.

hyb-0ΣA(v1, . . . , vm, z) ≡s mim
Σ
A(v1, · · · , vm, z). (3)

By Eqs. (2) and (3), Eq. (1) follows from the next claim
by a standard hybrid argument.

Claim 1 For i = 0, . . . ,m − 1, we have

hyb-iΣA(v1, . . . , vm, z) ≡c hyb-(i + 1)ΣA(v1, . . . , vm, z).

Proof We define two auxiliary experiments realΣA and
idealΣA. The experiment realΣA(v1, . . . , vm, z) first constructs
B = Ai,1. Then, it computes

(τ, viewB, v
∗
1, di+1)← realComΣB(vi+1, (z, vi+2, . . . , vm)),

and returns

(viewA, v
∗
1, . . . , v

∗
n, d1, . . . , dn)

← Expand(τ, viewB, v
∗
1, di+1, (v1, . . . , vm)).

The experiment idealΣA is the same as realΣA except that it
uses fakeComΣEQV,B,EXT, instead of realComΣB, to compute
(τ, viewB, v

∗
1, di+1).

In the above, the procedure Expand reconstructs the

372
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

view of Ai, j from the view of B = Ai,1 and extracts values
v∗j committed to by A in right interactions using EXT with
trapdoor τ. More precisely, Expand proceeds as follows:

Procedure Expand(τ, viewB, v
∗
1, di+1, (v1, . . . , vm)):

1. For j = 2, . . . , n, do:

a. Construct Ai, j’s view viewi, j from viewB. (Recall
B = Ai,1 and Σ is public-coin with respect to re-
ceivers.)

b. v∗j ← EXT(i, j)(τ, viewi, j) with the algorithm

EXT(i, j) for Ai, j.

2. For α = 1, . . . , i, i + 2, . . . ,m, do:

a. Reconstruct from viewB the local output d′α of the
simulated α-th left party. (Recall B = Ai,1 inter-
nally simulates the α-th left party.)

b. dα ← EQV(d′α, vα)

3. Return (viewA, v
∗
1, . . . , v

∗
n, d1, . . . , dn)

It is easy to see that the view of A (included in viewB) in
realΣA(v1, . . . , vm, z) is exactly distributed as viewA in hyb-iΣA.
(In both cases, the first i left parties are simulated by EQV.)
Then, by definition of Expand, we have

hyb-iΣA(v1, . . . , vm, z) ≡ realΣA(v1, . . . , vm, z). (4)

Similarly, we have

hyb-(i + 1)ΣA(v1, . . . , vm, z) ≡ idealΣA(v1, . . . , vm, z). (5)

The straight-line equivocal-extractability of Σ against B
means that the outputs of realComΣB and fakeComΣEQV,B,EXT
are indistinguishable and then, since Expand is an efficient
procedure, realΣA(v1, . . . , vm, z) and idealΣA(v1, . . . , vm, z) are
indistinguishable. The claim follows from Eqs. (4) and (5).

�
�

Remark We can construct a deniable concurrent zero-
knowledge argument if the adaptive-deniable-concurrent
non-malleable commitment scheme once exists, by using
the GMW protocol of graph 3-coloring instantiated with it.
That means

• It is difficult (if not impossible) to construct
adaptive-deniable-concurrent non-malleable commit-
ment schemes only using the CRS model, since deni-
able concurrent zero-knowledge arguments are known
to be difficult in the CRS model [23].

• An efficient construction of adaptive-deniable-concu-
rrent non-malleable commitment scheme in the Global
CRS-KR model, that will be shown in the next section,
gives an efficient deniable concurrent zero-knowledge
argument in the Global CRS-KR model. (We remark
that the efficient concurrent zero-knowledge scheme of
[13] in the auxiliary string is not deniable.)

3. A Construction of Straight-Line Equivocal-Extrac-
table Commitment

This section constructs a determining, public-coin for re-
ceivers, and straight-line equivocal-extractable (and there-
fore adaptive-deniable-concurrent non-malleable) commit-
ment scheme in the Global CRS-KR model, using bilinear
groups. The scheme is practically efficient, using a constant
number of pairing computations and three-round exchanges
of linear-size messages.

3.1 The Design Principle

The basic design of our commitment scheme follows the one
of Damgård and Nielsen [15]. Generate a one-time commit-
ment key of a base commitment using a coin-flipping pro-
tocol and then commit to a value by the base commitment
with the generated one-time key. The CRS is used in the
coin-flipping.

However, in our scheme, the generated coins used to
form a one-time commitment key are not opened to a re-
ceiver, remaining secret of a sender. To assure the coins are
honestly generated and used to form one-time commitment
key, the sender appends a non-interactive zero-knowledge
argument for proving that honesty. (As seen later, the used
NIZK argument can be constructed without using Cook re-
duction, depending on the property of the bilinear map.)
More accurately, the argument proves that the sender formed
the one-time commitment key honestly or the sender knows
the receiver’s secret key, which enables only simulator EQV
to form a fake equivocal commitment.

The scheme “duplicates” some items in the sender mes-
sages so that extractor EXT can extract the generated coins
(used to form a one-time commitment key) and values com-
mitted to by adversaries in the course of proving security
with help of some KEA extractors.

3.2 Building Blocks

(1) The Homomorphic Commitment.

As the base commitment, we use the homomorphic commit-
ment of Groth, Ostrovsky, Sahai [19]. The homomorphic
commitment is built on a group G with bilinear map. The
commitment to a value m is computed as Com(m; r, t) =
(M1 = g

m
1 g

r
4,M2 = g

m
2 g

t
5,M3 = g

m
3 g

r+t
6) with a tuple

(g1, . . . , g6) of six elements in G as a commitment key.
A tuple (g1, . . . , g6) is called linear when there ex-

ist α and β that satisfy g1 = g
α
4 , g2 = g

β
5, g3 = g

α+β
6 .

A linear tuple (g1, . . . , g6) defines an equivocal (so per-
fectly hiding) commitment: Com(m0; r0, t0) = Com(m; r0 +

α(m0 − m), t0 + β(m0 − m)). Meanwhile, a non-linear tu-
ple (g1, . . . , g6) defines perfectly binding commitment. The
commitment (M1,M2,M3) with a non-linear tuple (gi =

gci) determines its underlying value m through gm =

(M1/c4

1 M1/c5

2 M−1/c6

3)1/(c1/c4+c2/c5−c3/c6).

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
373

(2) The Perfect Non-interactive Zero-Knowledge Argu-
ment.

To prove the above-mentioned honesty of generation of one-
time commitment key, we incorporate the non-interactive
zero-knowledge argument of Abe and Fehr [1] into our
scheme in a following way.

Let CRS be a pair of elements g, gc in a group G with
bilinear map. A common input to a prover and a verifier is
a triple of A, b, g̃ and a statement to be proved is: “There
exist a and s satisfying that A = gags

c and g̃ = gab.” The
proof is simply a single element P = gs, which is verified as
e(A, gb) = e(g̃, g)e(P, gb

c). The NIZKA is perfectly simulated
in zero-knowledge, if one knows ec satisfying gc = g

ec , as
P = (Ag̃−1/b)1/ec . The NIZKA is computationally sound,
for example, under the Diffie-Hellman inversion assumption
in a following way. Given an opening (a, s) of A = gags

c,
an opening c of g̃ = gc and a convincing proof P, one can
efficiently compute g1/ec as g1/ec = (g−sP)b/(ab−c) if ab � c.
Note that we need openings of A and g̃ to use the soundness,
which would require some use of KEA extractors, as in [1].

3.3 The Commitment Scheme

We describe our commitment scheme. Our scheme Σ =
(Σ′|Σ′) executes two parallel independent copies of sub-
scheme Σ′ = (K, S ,R) in the Global CRS-KR model. Each
of these two executions uses an independent global CRS and
an independent public/private key pair. If both executions of
Σ′ output the same value m, the scheme Σ outputs that value
m. (Otherwise, it outputs ⊥.)

Let G be a group of prime order q with bilinear map
e(·, ·) : G × G → GT and let H be an injective function
from {0, 1}tagLen to Zq (with length tagLen of tag strings).
The subscheme Σ′ = (K,S,R) on group G proceeds as in
Fig. 6. (DH(·, ·, ·, ·) means that a given tuple constitutes a
DH-tuple.) It relies on a global CRS consisting of five ele-
ments (g, gc, gx, hx, gy) in G and requires the knowledge of
receiver’s public-key gID that is also an element of G.

First, parties run a coin-tossing protocol using (part of)
the CRS to generate random coins c1, . . . , c6 in Zq

∗. Then,
sender S forms a one-time commitment key (g1, . . . , g6) us-
ing the generated coins c1, . . . , c6 as gi = g

ci , and com-
putes NIZK arguments P1, . . . , P6 that yield the one-time
key (g1, . . . , g6) was honestly generated from c1, . . . , c6 or S
knows the secret key of R. (Construction of the OR proof
follows the standard way of making OR-proof of Σ proto-
cols [9].) In the process, some part of the CRS is used
only after it is ‘twisted’ with the tag tag to prevent adver-
saries from copying generated coins from/to another ses-
sions. Main body of commitment to input m is generated
with the homomorphic commitment using that one-time key
as M1 = g1

mg4
r, M2 = g2

mg5
t, M3 = g3

mg6
r+t.

In the scheme, several messages are duplicated such
as h1, . . . , h6 for g1, . . . , g6 and Q1, . . . ,Q6 for P1, . . . , P6.
Those will be used by KEA-extractors to extract the coins
generated by adversaries from its view in the proof of secu-

Fig. 6 The Commitment Subscheme Σ′ = (K,S,R).

rity. A decommitment is done in a canonical way.
As seen, the proposed scheme is practically efficient,

using a constant number of pairing computations and three-
round exchanges of linear-size messages.

3.4 Security

First, we review two necessary assumptions. Let G denote a
group of k-bit prime order q. The decisional linear assump-
tion holds on G if linear tuples (g4

α, g5
β, g6

α+β, g4, g5, g6)
are computationally indistinguishable from random tuples
(g4
α, g5

β, g6
γ, g4, g5, g6) with random elements g4, g5, g6 in

G and random α, β, γ in Zq.
The knowledge of exponent assumption [12] means

that it is possible only if one knows b to generate a pair
(gb, gab) given a random ga. More formally, for feasible al-

374
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

gorithms H,H∗ and any string w, an experiment ExpwG,H,H∗
is defined as follows. H is given q, g, A = ga (with random
a from Zq) and w, and outputs (B,W). On the same inputs
q, g, A and w, H∗ is invoked and outputs b. If W = Ba and
B � gb, the experiment outputs 1, otherwise outputs 0. The
knowledge of exponent assumption holds on G if for any w
and any feasible adversary H (called KEA-adversary) there
exists a feasible H∗ (called KEA-extractor) with negligible
advantage AdvwG,H,H∗(k) := Pr[ExpwG,H,H∗(k) = 1].

We begin to analyze security of the proposed commit-
ment scheme Σ = (Σ′|Σ′). In the analysis, we use ordinal
characters such as a, b, c, . . . for items in one of the two par-
allel executions of the subscheme Σ′ on which we have a
current focus, and use characters with superscript + such as
a+, b+, c+, . . . for the corresponding items in the another par-
allel execution. First we see its computational hiding prop-
erty.

Proposition 1 Under the decisional linear assumption on
G, the proposed commitment scheme is computationally hid-
ing in the Global CRS-KR model.

Proof Suppose that a feasible adversary R∗ with identity
ID∗ breaks the hiding property of the proposed scheme Σ us-
ing tag tag with non-negligible probability. Using such R∗,
we construct an efficient distinguisher D that distinguishes
between a pair of linear tuples and a pair of random tuples.
Given a pair of tuples as input, D simulates a sender for R∗
and plugs the input tuple into the second sender-message
as a one-time commitment key, for each of the two paral-
lel executions of the subscheme Σ′. In doing that, D uses
the knowledge of simulated secret key of R∗, and proves it
knows the secret key in the OR proof, instead of proving
honesty of the fake one-time commitment key. More details
follow.

Distinguisher D on input ((g1, . . . , g6), (g+1 , . . . , g
+
6)):

1. (Simulate a sender for R∗.) D invokes R∗ and does as
follows, for each of the two parallel executions of the
subscheme.

a. (Emulate CRS and a key-pair.) D selects ran-
dom eID∗ from Zq

∗ and a random g from G. D
sets gID∗ = g

eID∗ and gives (gID∗ , eID∗) as his
pair of public/private keys to R∗. In addition, D
chooses random ec, ex, dx, ey from Zq, sets gc =

gec , gx = g
ex , hx = g

dx
x , gy = g

ey , and gives
tag and (g, gc, gx, hx, gy) to R∗. D records η =
ex · (H(tag) + dx) for later use. (Note Gx = g

η.)
b. (Emulate the first message.) Receiving a pair

of messages (m0,m1) from R∗, D selects a ran-
dom bit b (only this process is common for the
two parallel executions). Then, D selects random

(si), (ki), (b′′i) from Zq and computes Ai = g
1/b′′i
i gsi

c

(with gi in the input) and Ui = g
ki for i = 1, . . . , 6.

D sends (Ai), (Ui) to R∗.

c. (Emulate the second message.) Receiving chal-
lenge (b∗i) from R∗, to generate the second sender-
message ((gi), (hi), . . . , (Mi)), D uses its own input
(gi) (or (g+i)) as the (gi) in the second message,
computes (hi) as hi = g

η
i with η recorded at Step 1a

and honestly computes the proofs Pi = g
si , Qi =

gy
si . Then, with b′i = b∗i /b

′′
i , D computes wi =

ki − b′i eID∗ using the secret key eID∗ . Finally, D
computes (M1,M2,M3) as honest homomorphic
commitment to mb with its own input (g1, . . . , g6)
using as a commitment key. D sends the sec-
ond message ((gi), (hi), (Pi), (Qi), (b′i), (wi), (Mi))
to R∗.

2. (Output.) If R∗ outputs b̂ which is equal to b, then D
outputs 1, otherwise outputs 0.

We evaluate the probability that D outputs 1. When
given both (g1, . . . , g6) and (g+1 , . . . , g

+
6) are linear, the simu-

lated view of R∗ in D is completely independent of b by the
perfect hiding property of homomorphic commitment with
linear tuples. So, the probability that D outputs 1 is 1/2.

Suppose both (g1, . . . , g6) and (g+1 , . . . , g
+
6) are random

tuples. Let ci and ai be values defined by gi = g
ci and ai =

ci/b′′i . As for transcripts generated by D, we have

Ai = g
1/b′′i
i gsi

c = g
ci/b′′i gsi

c = g
aigsi

c

Ui = g
ki = gwi+b′i eID∗ = gwigID∗

b′i

gi = g
ci , hi = g

η
i = (gci)η = (gη)ci = Gci

x

Pi = g
si , Qi = gy

si .

Thus, the simulated transcript is also determined by val-
ues (ai), (si), (wi), (b′i), (ci) just as the real transcripts. Here,
by the description of D, we see (ci), (b′′i), (si), (ki) among
them are independently uniformly distributed and the rest
(ai), (b′i), (wi) are determined through the relations ci =

aib′′i , b∗i = b′ib
′′
i , wi = ki − b′i xID by them. Meanwhile,

in the real transcript, (ai), (b′i), (si), (wi) are independently
uniform and the remaining (ci), (b′′i), (ki) are determined by
the same relations by them. So, we see the distribution of
(ai), (si), (wi), (b′i), (ci) is identical regardless whether it is
simulated or real. Hence, the simulated view of R∗ by D
is same as the real view of R∗, and the probability that D
outputs 1 given random tuples (g1, . . . , g6) and (g+1 , . . . , g

+
6)

is equal to the success probability ofR∗ to guess the commit-
ted values in the definition of hiding property. This must be
nonnegligibly larger than 1/2 by the contradictive assump-
tion.

Hence, D has non-negligible advantage to distinguish
between a pair of linear tuples and a pair of random tuples.
Such D, by standard argument, implies a distinguisher be-
tween a linear tuple and a random tuple with non-negligible
advantage, contradicting the decisional linear assumption.

�

Second, we show the determining property (Definition
2) of the proposed scheme.

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
375

Proposition 2 Under the discrete logarithm assumption
and the knowledge of exponent assumption on G, the pro-
posed commitment scheme is determining in the Global
CRS-KR model.

Proof Since the homomorphic commitment with non-
linear tuples is perfectly binding, it is enough to show that
any feasible adversarial sender S∗ can generate linear one-
time commitment keys (g1, . . . , g6) in (both of) the two par-
allel executions of the subscheme only with negligible prob-
ability.

Suppose a feasible adversary S∗ generates a linear tu-
ple (g1, . . . , g6) as its one-time commitment key in either of
the two parallel executions of the subscheme Σ′ for a honest
receiver with identity ID (using tag tag) with non-negligible
probability. Without loss of generality, we assume S∗ gen-
erates a linear tuple in the second execution with non-
negligible probability. Using S∗, we construct an efficient
invertor I that breaks the discrete-logarithm assumption on
G with help of some KEA-extractors. Given g, gc(= gec),
I sets (g, gc) in the corresponding part of CRS and simu-
lates a receiver of ID for internally invoked S∗. In an exe-
cution of the subscheme, I would receive the second sender-
message (gi), (hi), (Pi), (Qi), . . . from S∗. If the messages
passes the specified test by Σ′, there should be some ci and
si that satisfy (gi, hi) = (gci ,Gx

ci) and (Pi,Qi) = (gsi , gy
si).

Then, I can use some KEA-extractors H∗ci
and H∗si

to extract
such ci and si respectively, which provide I with an opening
ai(= cib′i/bi), si of Ai = g

aigsi
c in the first sender-message of

S∗. (For example, KEA-adversary Hci on input (g, gx) repro-
duces the exact view of S∗ invoked in I using some auxil-
iary input wx, and outputs (gi(= gci), h1/(H(tag)+dx)

i (= gci
x)).)

By rewinding S∗, I can obtain another opening âi, ŝi of
the same Ai = g

âigŝi
c from another second sender-message

(ĝi), (ĥi), (P̂i), (Q̂i), By the contradictive assumption we
can suppose both (gi) and (ĝi) are linear, and we will see it
means that ai � âi with some i. Then I can compute the
desired discrete-log ec of gc over g, using such ai, si, âi, ŝi as
ec = (âi − ai)(si − ŝi)−1. More details follow.

Invertor I on input (g, gc (= gec)):

1. (Simulate a receiver for S∗.) I invokes S∗ and simu-
lates an honest receiver for S∗ as follows, for each of
the two parallel executions of the subscheme.

a. (First execution.) For the first execution, I hon-
estly generates a CRS and a public key for S∗ and
simulates the receiver in a completely honest way.

b. (Second execution.) For the second execution, I
simulates the receiver in a following way, using its
input (g, gc) as part of CRS.

i. (Emulate a public/private-key pair and a
CRS.) I selects a random δ from Zq

∗, sets
gID = g

δ
c and gives gID as receiver’s public-

key (for the second execution) to S∗. I also
selects random ex, dx, ey from Zq

∗ under con-
straint that H(tag) + dx � 0 and sets gx =

gex , gy = g
ey , hx = g

dx
x (with g in the input).

I gives (g, gc, gx, hx, gy) as a CRS (for the sec-
ond execution) to S∗, using g, gc in the input.

ii. (Emulate the challenge.) Receiving the first
sender-message (Ai), (Ui) from S∗, I takes
random (bi) from Zq

∗ and sends them to S∗.
iii. (Extract values generated by S∗.) Receiv-

ing the second sender-message (gi), . . . , (b′i),
. . . from S∗, I extracts values (ci), (ai), (si) as
follows, after verifying the equations speci-
fied by Σ′.

A. (Extract (ci)) I sets

wx = (δ, gc, dx, ey, b1, . . . , b6, coins1)

(where coins1 denotes the coins used
to honestly simulate the first execution)
and for i = 1, . . . , 6, I invokes KEA-
extractor H∗ci

on input (g, gx;wx) and
obtains the result ci to compute ai =

cib′i/bi. (Note that ex is independent of
wx.)

B. (Extract (si)) I sets

wy = (δ, gc, ex, dx, b1, . . . , b6, coins1)

and for i = 1, . . . , 6, I invokes KEA-
extractor H∗si

on input (g, gy;wy) and ob-
tains the result si. (Note that ey is inde-
pendent of wy.)

iv. (Rewind and extract the new values.) I
rewinds S∗ to Step 1(b)ii and repeats the pro-
cesses with new challenge (b̂i) to get the new
extracted values (ĉi), (âi), (ŝi), receiving an-
other second message (ĝi), . . . , (b̂′i), . . . from
S∗.

2. (Compute the discrete log.) Finally,

a. If there exists some i satisfying b′i � b̂′i , then I
computes the discrete-log ec using wi, b′i , ŵi, b̂′i (as
shown below).

b. Otherwise if there exists some i satisfying ai �
âi, then I computes the discrete-log ec using
ai, si, âi, ŝi (as shown below).

c. Otherwise I aborts.

It is direct to see I perfectly simulates a real view of S∗
using its input (g, gc) as part of CRS of the second execution.
Then, I invokes KEA-extractors H∗ci

at Step 1(b)iiiA and H∗si

at Step 1(b)iiiB, respectively twice, by rewinding S∗. From
now on we condition ourselves on the non-negligible event
in which S∗ generates a linear tuple (g1, . . . , g6) as its one-
time commitment key in the second parallel execution, and
completes the commitment phase. For a while, assume that

Claim 2 The extracted values (ci) (or (ĉi)) at Step 1(b)iiiA
and (si) (or (ŝi)) at Step 1(b)iiiB satisfy gi = g

ci , Pi = g
si

376
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

(or ĝi = g
ĉi , P̂i = g

ŝi) for i = 1, . . . , 6 with overwhelming
probability.

Under the claim, we can change the right-hand side of
the verifier equation as

e(Ai, g
bi/b′i) = e(gi, g) e(Pi, g

bi/b′i
c)

= e(gci , g) e(gsi , g
bi/b′i
c)

= e(g, gcib′i/bigsi
c)bi/b′i

that means Ai = g
cib′i/bigsi

c = g
aigsi

c for i = 1, . . . , 6. Simi-
larly, we have Ai = g

âigŝi
c for i = 1, . . . , 6.

Suppose there exists some i satisfying b′i � b̂′i at Step
2a. Then, by the verifier equation on wi, we have Ui =

gwig
b′i
ID = g

ŵig
b̂′i
ID, which means gID = g

(ŵi−wi)(b′i−b̂′i)
−1

. Then,
since gID = g

δ
c, I can compute the desired discrete-log ec as

ec = (ŵi − wi)(b′i − b̂′i)
−1δ−1.

Else if there exists some i satisfying ai � âi at Step 2b,
since we have Ai = g

aigsi
c = g

âigŝi
c as seen above under Claim

2, it holds that gc = g
(âi−ai)(si−ŝi)−1

. Hence, I can compute the
discrete-log ec by ec = (âi − ai)(si − ŝi)−1.

Otherwise, we have b′i = b̂′i and ai = âi for any i, then it
must hold ĉi/ci = b̂i/bi for any i. In this case, the probabil-
ity that both tuples (gi(= gci)) and (ĝi(= gĉi)) are simultane-
ously linear is negligible (since the ratio ĉi/ci is uniformly
random) and we see that I reaches Step 2c only with negli-
gible probability.

Thus, to complete the proof, all we need is to prove
Claim 2.

Proof (of Claim 2) KEA-extractors H∗ci
correspond to the

following KEA-adversaries Hci .

KEA-Adversary Hci on input (g, gx; wx = (δ, gc, dx, ey, b1,
. . . , b6, coins1)):

1. (Reproduce the view of S∗.) Hci invokes S∗ and re-
produces the view of S∗ using wx as follows, for each
of the two parallel executions.

a. (First execution.) Hci takes coins1 in wx and uses
it to honestly simulate the first execution of the
subscheme.

b. (Second execution.) For the second execution,
Hci simulates the receiver in a following way.

i. (Emulate a public/private-key pair and a
CRS.) Hci takes δ and gc from its auxiliary
input wx to regenerate gID = g

δ
c and gives

it as receiver’s public-key (for the second
execution) to S∗. Hci takes dx, ey from wx

to regenerate hx = g
dx
x , gy = g

ey and gives
(g, gc, gx, hx, gy) as a CRS to S∗.

ii. (Emulate the challenge.) Receiving the first
sender-message (Ai), (Ui) from S∗, Hci takes
(bi) from wx and sends them to S∗.

iii. (Generate an output.) Receiving the re-
sponse (gi), (hi), . . . from S∗, Hci picks up gi

and hi from it and outputs (gi, h
1/(H(tag)+dx)
i).

(Recall I generated dx so that H(tag) + dx �
0.)

On input (g, gx), Hci reproduces the exact view ofS∗ in-
voked in I using the auxiliary input wx, and generates (gi, hi)
satisfying DH(g,Gx, gi, hi) with the same probability as S∗
in I does so. When (g,Gx, gi, hi) is a DH-tuple and gi = g

ci ,
we have h1/(H(tag)+dx)

i = Gci/(H(tag)+dx)
x = gci

x . (Here, recall that
I generated dx so that H(tag) + dx � 0.) Thus Hci outputs
(gci , gci

x) on input (g, gx). As directly verified, the items in wx

are independent of the discrete-log ex of gx over g. Hence,
by the knowledge of exponent assumption, we see that the
corresponding KEA-extractor H∗ci

(in I) outputs ci satisfy-
ing gi = g

ci only with negligible exception (whenever S∗
generates valid (gi, hi)).

KEA-adversary Hsi on input (g, gy;wy) proceeds as Hci

and outputs (Pi = g
si ,Qi = gy

si). By a similar argument, we
see H∗si

in I outputs si satisfying Pi = g
si only with negligible

exception. �
�

Now we show the straight-line equivocal-extractability
(Definition 4) of the proposed scheme.

Proposition 3 Under the decisional linear assumption and
the knowledge of exponent assumption on G, the proposed
commitment scheme is straight-line equivocal-extractable in
the Global CRS-KR model.

Proof Idea To show the proposition, we need to construct
a simulator EQV of a left party and an extractor EXT of the
values committed to by any feasible adversary A for a right
party, that satisfy Definition 4.

EQV is given A’s secret key eID∗ and proves that it
knows eID∗ in the second sender-message, instead of proving
its honesty to the generation of one-time commitment key.
By doing this, EQV can use a linear tuple as the one-time
commitment key for its commitment. Since linear tuples
define equivocal commitments, EQV is able to adaptively
simulate left parties without knowing values actually being
committed to. We show such simulation of left parties by
EQV is indistinguishable from the real left parties for feasi-
ble adversaries A under the decisional linear assumption on
G with help of some KEA-extractors. (To show the indistin-
guishability, we need to extract the values committed to by
A, that is enabled by using some KEA-extractors.)

EXT extracts the value committed to by A from its view
viewA using the trapdoor information of the CRS. For that
sake, EXT needs to extract the coins c∗i , used by A to gener-
ate its one-time commitment key. EXT invokes some KEA
extractors on input (g, gx) using (some part of) the view
viewA as auxiliary information to extract such coins c∗i . Here,
we need to take care to use the knowledge of exponent as-
sumption in the right way for such KEA-extractors, because

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
377

the view viewA itself is dependent on the discrete-log be-
tween g and gx which are included in the CRS. (We can
use the knowledge of exponent assumption only for KEA-
extractors that uses auxiliary information that is independent
of its input.) We will carefully examine the distribution of
viewA and pick up some portion from viewA that is indepen-
dent of that discrete-log, by making use of zero-knowledge
simulators for proofs Pi.

In the course of the proof, one key point is to ensure
that the adversary A cannot use linear tuples as its own one-
time commitment key, even if A receives linear tuples as
one-time commitment keys from the simulated left party by
EQV. This impossibility is brought by the use of tag tag
in the scheme for generation of Gx = g

H(tag)
x hx, that is in

turn used for the generation of (hi) in the second sender-
message. This dependency on tag prevents the flipped coins
generated for one-time commitment keys from being copied
from/to other sessions.

The detailed proof of Proposition 3 is in Appendix A.
By Theorem 1, Proposition 2 and Proposition 3, we

have

Theorem 2 Under the decisional linear assumption and
the knowledge of exponent assumption on G, the proposed
commitment scheme is adaptive-deniable-concurrent non-
malleable in the Global CRS-KR model.

4. Conclusion

We defined a notion of adaptive-deniable-concurrent non-
malleable commitments, which captures the composability,
deniability and adaptivity at once for commitment schemes.
Then we defined a more-easy-to-prove property of straight-
line equivocal-extractability of commitment schemes and
proved that it yields the adaptive-deniable-concurrent non-
malleability in the Global CRS-KR model. We also gave
a construction of a straight-line equivocal-extractable (es-
pecially, adaptive-deniable-concurrent non-malleable) com-
mitment scheme in the Global CRS-KR model, under the
decisional linear assumption and the knowledge of exponent
assumption on bilinear groups. The scheme is practically ef-
ficient, using a constant number of pairing computations and
the three-round exchanges of linear-size messages.

References

[1] M. Abe and S. Fehr, “Perfect NIZK with adaptive soundness,” TCC
2007, LNCS 4392, pp.118–136, 2007.

[2] B. Barak, “How to go beyond the black-box simulation barrier,”
Proc. 42nd FOCS, pp.106–115, IEEE, 2001.

[3] B. Barak, R. Canetti, J.B. Nielsen, and R. Pass, “Universally com-
posable protocols with relaxed set-up assumptions,” Proc. 45th
FOCS, pp.186–195, IEEE, 2004.

[4] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Proc. FOCS, pp.136–145, 2001.

[5] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally compos-
able security with global setup,” TCC 2007, LNCS 4392, pp.61–85,
2007.

[6] R. Canetti and M. Fischlin, “Universally composable commit-
ments,” CRYPTO 2001, LNCS 2139, pp.19–40, 2001.

[7] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertext security
from identity-based encryption,” EUROCRYPT 2004, LNCS 3027,
pp.207–222, 2004.

[8] Z. Cao, I. Visconti, and Z. Zhang, “Constant-round concurrent non-
malleable statistically binding commitments and decommitments,”
PKC 2010, LNCS 6056, pp.193–208, 2010.

[9] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of par-
tial knowledge and simplified design of witness hiding protocols,”
CRYPTO 1994, LNCS 839, pp.174–187, 1994.

[10] G.D. Crescenzo, Y. Ishai, and R. Ostrovsky, “Non-interactive and
non-malleable commitment,” pp.141–150, STOC 1998.

[11] G.D. Crescenzo, J. Katz, R. Ostrovsky, and A. Smith, “Efficient and
non-interactive non-malleable commitments,” EUROCRYPT 2001,
LNCS 2045, pp.40–59, 2001.

[12] I. Damgård, “Towards practical public-key cryptosystems provably-
secure against chosen-ciphertext attacks,” CRYPTO’91, LNCS 576,
pp.445–456, 1991.

[13] I. Damgård, “Efficient concurrent zero-knowledge in the auxiliary
string model,” EUROCRYPT 2000, LNCS 1807, pp.418–430, 2000.

[14] I. Damgård and J. Groth, “Non-interactive and reusable non-
malleable commitment schemes,” Proc. STOC 2003, pp.426–437,
ACM Press, 2003.

[15] I. Damgård and J.B. Nielsen, “Perfect hiding and perfect binding
universally composable commitment schemes with constant expan-
sion factor,” CRYPTO 2002, LNCS 2442, pp.581–596, 2002.

[16] Y. Dodis, V. Shoup, and S. Walfish, “Efficient constructions of com-
posable commitments and zero-knowledge proofs,” CRYPTO 2008,
LNCS 5157, pp.515–535, 2008.

[17] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,”
SIAM J. Comput., vol.30, no.2, pp.391–437, 2000.

[18] M. Fischlin and R. Fischlin, “Efficient non-malleable commitment
schemes,” CRYPTO 2000, LNCS 1880, pp.413–431, 2000.

[19] J. Groth, R. Ostrovsky, and A. Sahai, “Perfect non-interactive zero
knowledge for NP,” EUROCRYPT, LNCS 4004, pp.339–358, 2006.

[20] H. Lin, R. Pass, and M. Venkitasubraamaniam, “Concurrent non-
malleable commitments from any one-way function,” TCC 2008,
LNCS 4948, pp.571–588, 2008.

[21] P.D. MacKenzie, M.K. Reiter, and K. Yang, “Alternatives to non-
malleability: Definitions, constructions, and applications,” TCC
2004, pp.171–190, LNCS 2951, 2004.

[22] R. Ostrovsky, G. Persiano, and I. Visconti, “Simulation-based con-
current non-malleable commitments and decommitments,” TCC
2009, LNCS 5444, pp.91–108, 2009.

[23] R. Pass, “On deniabililty in the common reference string and random
oracle model,” CRYPTO 2003, LNCS 2729, pp.316–337, 2003.

[24] R. Pass and A. Rosen, “Concurrent non-malleable commitments,”
pp.563–572, FOCS 2005.

[25] Z. Zhang, Z. Cao, N. Ding, and R. Ma, “Non-malleable statisti-
cally hiding commitment from any one-way function,” ASIACRYPT
2009, LNCS 5912, pp.303–318, 2009.

Appendix A: Proof of Proposition 3

Let Σ = (Σ′|Σ′) with Σ′ = (K, S ,R) denote the proposed
commitment scheme on G. We want to show there exists a
feasible algorithm EQV such that for any feasible adversary
A, there exists a feasible algorithm EXT and

fakeComΣEQV,A,EXT(m, z) ≡c realCom
Σ
A(m, z) (A· 1)

with any value m (∈ Zq) and any string z (Definition 4).
For that sake, we define four experiments Exp0, . . . ,

378
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

Exp3 in the sequel and proves indistinguishability of their
outputs step by step. Exp0 is nothing but the experiment
realComΣA(m, z) instantiated with our Σ, and the final exper-
iment Exp3 gives EQV and EXT, proving Eq. (A· 1).

A.1 Exp0

Given m and z as input, Exp0 invokes an adversary A on
z. First, A selects a tag tag for the left interaction, its own
id ID∗ and right-party’s id ID. A receives a CRS σ, its
public/private-key pair (gID∗ , eID∗) and the right-party’s pub-
lic key gID, for each of the two parallel executions of the
subscheme. Then, Exp0 simulates the left party that com-
mits to m and the right party for A, honestly. Exp0 re-
turns the trapdoor (τ, τ+) of the CRSs of both executions,
the simulated A’s view viewA, the determining value m∗ of
A’s commitment in viewA and the left-party’s decommitment
((m, r, t), (m, r+, r+)) which corresponds to the left-party’s
commitment in viewA. A full description of Exp0 is in
Sect. Appendix B.

A.2 Exp1

Only the behavior of the left party is changed as follows.
The new left party proves the knowledge of A’s secret key
eID∗ , instead of proving the honesty of the generation of the
one-time commitment key. More precisely, for each of the
two parallel executions of the subscheme, the new left party
computes Ui as Ui = g

ki with random ki (instead of Ui =

gwigID∗
b′i with b′i selected in advance). Moreover, the left

party selects a random one-time commitment key (gi = g
ci)

independently of Ai = g
aigsi

c in the first message. Although
the proofs Pi = g

si , Qi = gy
si are honestly computed using

si, the response wi is computed as wi = ki − b′i eID∗ using A’s
secret key eID∗ for challenge b′i , that is now computed from
A’s challenge b∗i through b′′i = ci/ai, b′i = b∗i /b

′′
i .

Claim 3 The output of Exp1 is perfectly indistinguishable
from the output of Exp0.

Proof The only difference between Exp0 and Exp1 is in
the order of generation of challenges b′i and b′′i : Generate
random b′i and set b′′i = b∗/b′i , or generate random b′′i =
ci/ai and set b′i = b∗/b′′i . This difference does not affect the
resulting distribution of left party’s messages and the output
of Exp1 distributes exactly as the output of Exp0. �

A.3 Exp2

The third experiment Exp2 proceeds just as Exp1, except
that (ci) is now selected so that (gci) becomes a linear tuple,
instead of a random tuple.

In order to prove indistinguishability between the out-
puts of Exp2 and Exp1, first we prepare a following lemma.

Lemma 1 Under the same assumption as Proposition 3,

any feasible adversary A outputs a linear tuple (g∗1, . . . , g
∗
6)

as the one-time commitment key for the right interaction in
either of the two execution of the subscheme only with neg-
ligible probability in Exp1 (or Exp2).

Proof The proof is similar to the proof of Proposition 2,
where we have shown that any feasible sender S∗ in a stand-
alone setting can generate a linear tuple (g1, . . . , g6) as the
one-time commitment key only with negligible probability,
by exhibiting an invertor I that computes the discrete-log of
gc over g with help of the KEA-extractors Hci and Hsi using
such S∗.

To prove this lemma, we again construct an invertor I
that computes the discrete-log of gc over g using such A. In
addition to the work done by I in the proof of Proposition
2, the new I needs to simulate the honest left party. Since
also this I, which sets up the public key for the simulated A,
knows A’s secret key eID∗ , there is no difficulty for this I to
simulate the left party in Exp1 (or Exp2).

One subtle point is in the construction of the new
KEA-adversary Hci . Recall that the work of Hci is
to compute (gi(= gci), gci

x) on input (g, gx) (and wx =

(δ, gc, dx, ey, b1, . . . , b6, coins1)). In the proof of Proposi-
tion 2, the trapdoor dx (in wx), which is generated to satisfy
H(tag)+dx � 0, is used to compute the gci

x by Hci . Hci picked
up hi (= Gci

x) from the S∗’s second message and computed
gci

x = h1/(H(tag)+dx)
i . (Recall Gx = gx

H(tag)+dx .) However in the
case of this lemma, Hci must deal with the right interaction

and need to compute g
c∗i
x from hi (= G∗x

c∗i) in the right inter-
action with G∗x = g

H(tag∗)
x hx. Now tag∗, which also belongs

to the right interaction, is selected by A after it sees the CRS
(which includes g, gx). So, we have no guarantee of being
H(tag∗) + dx � 0 and the new Hci cannot mimic the old Hci

just doing as g
c∗i
x = h1/(H(tag∗)+dx)

i .
To remedy this situation, the new I generates gx and

hx in CRS in a following manner. First, I selects a ran-
dom ex, η from Z∗q, and sets gx = g

ex , hx = g
−H(tag)
x gη.

(Note Gx = g
η and remember the left tag tag is selected

by A before it sees CRS.) Then, Hci can compute g
c∗i
x as(

h∗i
g∗i
η

) 1
H(tag∗)−H(tag)

, using η that will be newly added in the aux-

iliary input wx. (Note when (g,G∗x, g∗i , h
∗
i) is a DH-tuple and

g∗i = g
c∗i , we have h∗i = (G∗x)c∗i = (gηgH(tag∗)−H(tag)

x)c∗i =

g∗i
η(g

c∗i
x)H(tag∗)−H(tag). So,

(
h∗i
g∗i
η

) 1
H(tag∗)−H(tag)

= g
c∗i
x .) Because

A must choose distinct tag∗ from tag (to gain a nontrivial
advantage), it is guaranteed that H(tag∗) − H(tag) � 0. �

Claim 4 Under the same assumption as Proposition 3, the
output of Exp2 is computationally indistinguishable from
the output of Exp1.

The proof is in the same line to the proof of Proposi-
tion 1, where in order to show the hiding property a distin-
guisher between linear and random tuples was constructed
and it simulated an honest sender for adversarial receiver R∗

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
379

to gain his advantage. In the proof of this claim, a new dis-
tinguisher does the same simulation for the left interaction
for adversary A, and in addition it simulates an honest right
party and extracts the value committed to by A for the right
party in some efficient way, using some KEA-extractors,
which is needed for the assumed distinguisher to distinguish
between the two experiments.

Proof Suppose that the output of Exp2 is distinguishable
from the output of Exp1 by some efficient distinguisher D12

with some non-negligible advantage (with respect to m and
z).

Using such distinguisher D12, we construct an efficient
(non-uniform) distinguisher DLIN between a pair of linear
tuples and a pair of random tuples with non-negligible ad-
vantage, that would contradict to the decisional linear as-
sumption on G.

Given a pair of tuples (g1, . . . , g6), (g+1 , . . . , g
+
6) as in-

puts, DLIN simulates the left party for A in such a way that
the (g1, . . . , g6), (g+1 , . . . , g

+
6) would occupy one-time com-

mitment keys of the left interactions in the two parallel
executions. Note that, due to the modification introduced
in Exp1, one-time commitment keys included in the sec-
ond sender-message are being chosen independently from
the first sender-message (Ai), (Ui). So, such simulation is
quite easy. After generating the view of A, DLIN invokes
KEA-extractors H∗ci

, that are essentially the same as the
ones used by I in the proof of Lemma 1, to extract coins
c∗i satisfying g∗i = g

c∗i for the one-time commitment key
(g∗i) in the right interaction. Because, by Lemma 1, the
commitment keys (g∗1, . . . , g

∗
6) can be supposed to be non-

linear, DLIN is able to compute gm∗ (with the determining
value m∗ of A’s commitment in the right interactions) as
gm∗ = (M∗1

1/c∗4 M∗2
1/c∗5 M∗3

−1/c∗6)1/(c∗1/c
∗
4+c∗2/c

∗
5−c∗3/c

∗
6) using those

c∗i , and as well as g+m∗ . This means that DLIN can ex-
tract m∗ by using another KEA-extractor (that corresponds
to another KEA-adversary that outputs (gm∗ , g+m∗) on in-
put (g, g+)) and then can invoke the assumed distinguisher
D12 on m∗ (and other easy-to-collect items) to distinguish
the given tuples. A formal description of DLIN is given in
Fig. A· 1.

As easily seen (from the comments in the description),
DLIN perfectly simulates the view of A in Exp1 if the input
(gi), (g+i) are random, and perfectly simulates the view of A
in Exp2 if the input (gi), (g+i) are linear. Then, DLIN extracts
the value m∗, which is supposed to be committed to by A
for the right party, by using KEA-extractor H∗. Assuming
the extracted m∗ is in fact the one committed to by A, DLIN

is now able to use the assumed distinguisher D12 on m∗ and
other items, to distinguish the input tuples are linear or ran-
dom, contradicting the assumption.

Thus, now all we need to show is that the KEA-
extractor H∗, which corresponds to following KEA-
adversary H, extracts the right determining value m∗ of A’s
commitment in the right interaction only with negligible ex-
ceptions.

Fig. A· 1 Distinguisher DLIN .

KEA-Adversary H on input (g, g+; z,m, w, w+):

1. (Reproduce the view of A.) H invokes A on z. Re-
ceiving ID∗, ID, tag from A, H reproduces the view of
A using the coins given in w, w+, for each of the two
parallel executions of the subscheme.

2. (Extract coins generated by A.) For each of the above
two parallel executions, H extracts the coins (c∗i) that

380
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

defines the one-time commitment key (g∗i) in the right
interactions. Namely, H sets

wx = (z, eID∗ , gID, gc, η, ey, g1, . . . , g6, coinL,

b1, . . . , b6, w
+)

(where notation is the same as in DLIN besides coinL,
that denotes the coins used to simulate the left party
in this execution) and invokes KEA-extractor H∗ci

on
input (g, gx;wx) to obtain c∗i satisfying g∗i = g

c∗i for i =
1, . . . , 6. Then, H computes

u = (M∗1
1/c∗4 M∗2

1/c∗5 M∗3
−1/c∗6)1/(c∗1/c

∗
4+c∗2/c

∗
5−c∗3/c

∗
6).

(Note it should be u = gm∗ with determining value m∗
of A’s homomorphic commitment in this execution.)

3. (Generate an output.) Output a pair of extracted val-
ues (u, u+) of the two executions.

Given (g, g+) as input, the KEA-adversary H uses the
coins given in the auxiliary input w, w+ to reproduce the ex-
act view of A in DLIN and then extracts coins c∗i generated
by A, which are expected to satisfy g∗i = g

c∗i by using KEA-
extractors H∗ci

on (g, gx) and

wx = (z, eID∗ , gID, gc, η, ey, g1, . . . , g6, coinL, b1, . . . , b6, w
+).

For a while, assume the coins c∗i are right. Then, since
(g∗1 = g

c∗1 , . . . , g∗6 = g
c∗6) is not linear by Lemma 1 (only

with negligible exceptions), it defines perfectly binding ho-
momorphic commitment and so H can compute the value
u = (M∗1

1/c∗4 M∗2
1/c∗5 M∗3

−1/c∗6)1/(c∗1/c
∗
4+c∗2/c

∗
5−c∗3/c

∗
6) that must be

equal to gm∗ with m∗ = det(M∗1 ,M
∗
2,M

∗
3). The output of H

is a pair (u, u+) of such u for the two executions of the sub-
scheme. Thus, H outputs (gm∗ , g+m∗) on input (g, g+), and
since clearly Logg(g

+) is independent from the auxiliary in-
put (z,m, w, w+), we see the corresponding H∗ extracts the
right determining value m∗ of A’s commitment only with
negligible exceptions, by the knowledge of exponent as-
sumption, as desired.

Now, all we have to do is to show the above KEA-
extractors H∗ci

, which correspond to the following KEA-
adversaries, extract the right coins c∗i satisfying g∗i =
gc∗i only with negligible exceptions. As in the proof
of Lemma 1, given (g, gx) as input, Hci reproduces the
exact view of A invoked in H using the auxiliary in-
put wx, and picks up g∗i and h∗i from the view and out-

puts

(
g∗i (= gc∗i),

(
h∗i
g∗i
η

) 1
H(tag∗)−H(tag)

(= g
c∗i
x)

)
. Namely, Hci outputs

(gc∗i , g
c∗i
x) on input (g, gx). In addition, as directly verified, all

items in wx are independent of the discrete-log ex of gx over
g. Hence, by the knowledge of exponent assumption, H∗ci

in
H must output c∗i satisfying g∗i = g

c∗i only with negligible
exception. This completes the proof of Claim 4. �

A.4 Exp3

In the final experiment Exp3, the simulated left party is

changed to commit to a dummy value m0 through the ho-
momorphic commitment M1 = g

m0

1 g
r0

4 , M2 = g
m0

2 g
t0
5 , M3 =

gm0

3 g
r0+t0
6 , instead of committing to the true value m, for

each of the two executions of subscheme. Since by the
modification introduced in Exp2 the one-time commitment
key (gi(= gci)) of the left interaction is linear, its decom-
mitment to the true value m (to be included in the out-
put) exists and is computed by r = r0 +

c1
c4

(m0 − m), t =
t0 +

c2
c5

(m0 − m). In addition, in Exp3, the computation of
the determining value m∗ = det(M∗1 ,M

∗
2,M

∗
3) of A’s com-

mitment is changed. It is now efficiently extracted by us-
ing KEA-extractor H∗ on (g, g+; z,m, w, w+) with w =
(eID∗ , gID, τ, (Ai), (Ui), (bi), (gi), (b′i), (Mi)).

Claim 5 The output of Exp3 is statistically indistinguish-
able from the output of Exp2.

Proof In Exp2, the homomorphic commitment M1,M2,M3

in the left interaction is perfectly hiding and equivocal since
the used one-time commitment key g1, . . . , g6 is linear. So,
it is trivial to see the viewA in Exp3 is exactly distributed as
the viewA in Exp2.

Then, all we need to show is that given input
(g, g+; z,m, w, w+), H∗ in Exp3 correctly outputs the de-
termining value m∗ = det(M∗1 ,M

∗
2,M

∗
3) of A’s commit-

ment in the right interaction only with negligible excep-
tions. This H∗ is similar as H∗ used by DLIN in the proof
of Claim 4. However, there is an important difference.
As seen below, the new H (that corresponds to the new
H∗) also uses extractors H∗ci

of c∗i on input (g, gx). How-
ever, in the current setting, the information given to this H∗ci

through auxiliary input wx will contain (part of) A’s view
(Ai), (Ui), (bi), (gi), (b′i), (Mi), instead of the used coins as
before. So, as to the new Hci , there is no direct guarantee
that the discrete-log ex of the given input (gx, g) is indepen-
dent of the given auxiliary input wx. (The left party’s second
message, especially (b′i = b∗i /b

′′
i), depends on the A’s chal-

lenge (b∗i), which possibly depends on the CRS, which in-
cludes g, gx.) So, before describing the new KEA-adversary
H, we need to give an equivalent code for simulating the left
party in Exp3, to avoid such problem.

Fix arbitrary left party’s first message (Ai), (Ui) and ar-
bitrary right party’s first message (bi) in Exp3. (Note then
A’s challenge (b∗i) for the left party is also fixed.) Then, in
Exp3, the second left-party message (gi), (hi), . . . , (wi) (ex-
cluding (Mi) which is clearly independent of g, gx) is be-
ing generated by the following procedure. (Note the fixed
(Ui = g

ki) implicitly determines ki.)

• The original procedure:
1. Take a random tuple (c1, . . . , c6) so that (g1 =

gc1 , . . . , g6 = g
c6) is linear and a random tuple

(s1, . . . , s6) from Z∗q. (Note si implicitly deter-
mines ai through the fixed Ai = g

aigsi
c .)

2. For i = 1 to 6, compute gi = g
ci , hi = Gci

x , Pi =

gsi , Qi = g
si
y , b′′i = ci/ai, b′i = b∗i /b

′′
i , wi =

ki − b′i eID∗ .

ARITA: AN EFFICIENT ADAPTIVE-DENIABLE-CONCURRENT NON-MALLEABLE COMMITMENT SCHEME
381

This procedure is re-written as follows, using trapdoor
information τ and the zero-knowledge simulator of proof Pi.

• The second procedure:
1. Take a linear tuple (g1, . . . , g6) from G and a ran-

dom tuple (b′′1 , . . . , b
′′
6) from Zq.

2. For i = 1 to 6, compute hi = g
η
i , Pi =

(Aig
−1/b′′i
i)1/ec , Qi = P

ey
i , b′i = b∗i /b

′′
i , wi =

ki − b′i eID∗ , with η = ex · (H(tag) + dx).

We can select random (b′i), instead of random (b′′i),
preserving the distribution and the above procedure is re-
written as follows.

• The third procedure:
1. Take a linear tuple (g1, . . . , g6) from G and a ran-

dom tuple (b′1, . . . , b
′
6) from Zq.

2. For i = 1 to 6, compute hi = g
η
i , b′′i = b∗i /b

′
i , Pi =

(Aig
−1/b′′i
i)1/ec , Qi = P

ey
i , wi = ki − b′i eID∗ .

The third procedure shows that the second left-party
message includes the three independent random components
(gi), (b′i), (Mi) and the other items (hi), (Pi), (Qi), (wi) are de-
termined by them. Thus, we see that the discrete-log ex of
gx over g is independent of the part of viewA consisting of
(Ai), (Ui), (bi) and (gi), (b′i), (Mi).

Now we describe the KEA-adversary H that uses the
above third procedure to simulate the left-party messages.

KEA-Adversary H on input (g, g+; z, w = (eID∗ , gID, τ,
(Ai), (Ui), (bi), (gi), (b′i), (Mi)), w+):

1. (Reproduce the view of A.) H invokes A on z. Receiv-
ing ID∗, ID, tag from A, H reproduces the view of A
using w as follows, for each of the two parallel execu-
tions of the subscheme.

a. (Emulate a public/private-key pair and a
CRS.) H takes the trapdoor information τ
from w to regenerate A’s public/private-key pair
(gID∗ , eID∗), right-party’s public key gID and a
CRS (g, gc, gx, hx, gy), and gives them to A. H
records η = ex · (H(tag) + dx) for later use.

b. (Emulate a first left-party message.) Receiving
a request for a first left-party message from A, H
takes (Ai), (Ui) from w and sends them to A.

c. (Emulate a first right-party message.) Receiving
a first message tag∗, (A∗i), (U∗i) to the right-party
from A, H takes (bi) from w and sends them to A.

d. (Emulate a second left-party message.) Re-
ceiving a first message (b∗i) to the left-party
from A, H takes (gi), (b′i), (Mi) from w, com-
putes hi = g

η
i , b′′i = b∗i /b

′
i , Pi =

(Aig
−1/b′′i
i)1/ec , Qi = P

ey
i , wi = ki − b′i eID∗ , and

sends (gi), (hi), (Pi), (Qi), (b′i), (wi), (Mi) to A.
e. (Extract the coins generated by A.) Receiv-

ing the second message (g∗i), (h∗i), . . . , (M∗i) to the
right-party from A, H extracts the coins (c∗i) that

A generated. Namely, H sets

wx = (z, eID∗ , gID, ec, η, ey, (Ai), (Ui), (bi),

(gi), (b
′
i), (Mi), view

+
A)

(where view+A denotes the view of A in the another
execution of the subscheme) and invokes KEA-
extractor H∗ci

on input (g, gx;wx) to obtain c∗i , for
i = 1, . . . , 6.

f. (Extract gm∗ generated by A.) H computes u =
(M∗1

1/c∗4 M∗2
1/c∗5 M∗3

−1/c∗6)1/(c∗1/c
∗
4+c∗2/c

∗
5−c∗3/c

∗
6).

2. (Generate an output.) Return a pair of the extracted
values (u, u+) at Step 1f.

Given (g, g+) as input, KEA-adversary H reproduces
the exact view of A in Exp3 by using the third proce-
dure on those independent random components given in
the auxiliary input w, and then extracts A’s coins c∗i that
are expected to satisfy g∗i = g

c∗i by KEA-extractor H∗ci
on

(g, gx) and wx = (z, eID∗ , gID, ec, η, ey, (Ai), (Ui), (bi),
(gi), (b′i), (Mi), view+A). For a while, assume the expec-
tations are right. Then, since (g∗1 = g

c∗1 , . . . , g∗6 = g
c∗6) is

not linear by Lemma 1, it defines a perfectly binding ho-
momorphic commitment and so H can compute the value
u = (M∗1

1/c∗4 M∗2
1/c∗5 M∗3

−1/c∗6)1/(c∗1/c
∗
4+c∗2/c

∗
5−c∗3/c

∗
6) that must be

equal to gm∗ with m∗ = det(M∗1 ,M
∗
2,M

∗
3). The output of

H is a pair (u, u+) of such u for the two executions of the
subscheme. Thus, H outputs (gm∗ , g+m∗) on (g, g+). Since
clearly the discrete-log of g+ over g is independent from the
auxiliary input (z,m, w, w+), by the knowledge of exponent
assumption, the corresponding KEA-extractor H∗ extracts
the right determining value m∗ of A’s commitment only with
negligible exceptions, as desired.

Now, all we have to do is to show that the KEA-
extractor H∗ci

, which corresponds to the following KEA-
adversary Hci , extracts the coins c∗i satisfying g∗i = g

c∗i

only with negligible exceptions. Given (g, gx) as in-
put, Hci reproduces the exact view of A invoked in H
using the auxiliary input wx by using the third proce-
dure, and picks up g∗i and h∗i from them and outputs(
g∗i (= gc∗i), (h∗i /g

∗
i
η)1/(H(tag∗)−H(tag))(= g

c∗i
x)

)
. As discussed be-

fore, the items in wx (especially the ones that belongs to the
view of A) was chosen to be independent of the discrete log
ex of gx with g. Hence, by the knowledge of exponent as-
sumption, H∗ci

outputs c∗i satisfying g∗i = g
c∗i only with negli-

gible exceptions. That completes the proof of Claim 5. �

By Claims 3, 4 and 5, Eq. (A· 1) is satisfied by EQV and
EXT in Fig. A· 2, that are immediate from the description
of Exp3 and the third procedure, completing the proof of
Proposition 3. �

Appendix B: A Full Description of Exp0

Experiment Exp0 on input m ∈ Zq and z ∈ {0, 1}∗:
1. (Simulate left and right parties for A.) Invoke A on

z. Receiving ID∗, ID and tag from A, simulate the left

382
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

Fig. A· 2 EQV and EXT.

and right parties for A as follows, for each of the two
parallel executions of the subscheme.

a. (Emulate a public/private-key pair and a CRS for
A.) Select a random eID∗ from Zq and a random el-
ement g from G, and set gID∗ = g

eID∗ . Select a ran-
dom element gID from G. Give to A (gID∗ , eID∗) as
A’s pair of public/private key and gID as the right-
party’s public key. In addition, choose ec, ex, dx, ey
randomly from Zq, set gc = g

ec , gx = g
ex , hx =

gdx
x , gy = g

ey , and give (g, gc, gx, hx, gy) as the
CRS to A.

b. (Emulate a first left-party message.) Receiving
a request for a first left-party message from A,
choose

a1, . . . , a6, s1, . . . , s6, w1, . . . , w6, b
′
1, . . . , b

′
6

randomly from Z∗q and compute Ai = g
aigsi

c , Ui =

gwigID∗
b′i for i = 1, . . . , 6. Send A1, . . . , A6, U1,

. . . , U6 to A.
c. (Emulate a first right-party message.) Receiving

a first message tag∗, A∗1, . . . , A
∗
6,U

∗
1, . . . ,U

∗
6 to the

right-party from A, choose b1, . . . , b6 randomly
from Zq

∗ and send them to A.
d. (Emulate a second left-party message.) Receiv-

ing a first message b∗1, . . . , b
∗
6 to the left-party from

A, compute

b′′i = b∗i /b
′
i , ci = aib

′′
i , gi = g

ci ,

hi = Gx
ci , Pi = g

si , Qi = gy
si

for i = 1, . . . , 6 with Gx = gx
H(tag)hx. Then,

take two random r, t from Zq and compute M1 =

gm
1 g

r
4, M2 = gm

2 g
t
5, M3 = gm

3 g
r+t
6 . Send

(gi), (hi), (Pi), (Qi), (b′i), (wi), (Mi) to A.
e. (Complete the commitment phases.) Receiving

a second message (g∗i), (h∗i), . . . , (M∗i) to the right-
party from A, compute b′′∗i = bi/b′∗i and check

DH(g,G∗x, g
∗
i , h
∗
i), DH(g, gc, P

∗
i ,Q

∗
i),

U∗i = g
w∗i gID

b′∗i ,

e(A∗i , g
b′′∗i) = e(g∗i , gc)e(P∗i , g

b′′∗i
c)

with G∗x = g
H(tag∗)
x hx for i = 1, . . . , 6. If any of

them (for any i) is not true, abort with output ⊥.

2. (Generate an output.) Let viewA be the view of
A after completing the above commitment phase. If
the two values of m∗ = det(M∗1 ,M

∗
2,M

∗
3) determined

in the two parallel executions are the same, return
((τ, τ+), viewA,m∗, ((m, r, t), (m, r+, t+))), otherwise re-
turn ⊥.

Seiko Arita has been interested in prime
numbers, algebraic curves and cryptographic
protocols. He is with Institute of Information
Security, Yokohama, Japan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages false
 /ColorImageFilter /None
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF96fb6c175b664f1a8a8c7528306e8a2d5b9a3002753b50cf306e57277e2e309251683066004f00460046306b3002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

