
Identification Schemes of Proofs of Ability Secure
against Concurrent Man-in-the-Middle Attacks

Hiroaki Anada and Seiko Arita

Institute of Information Security, Yokohama, Japan
hiroaki.anada@gmail.com, arita@iisec.ac.jp

Abstract. We give a series of three identification schemes. All of them
are basically 2-round interactive proofs of ability to complete Diffie-
Hellman tuples. Despite their simple protocols, the second and the third
schemes are proven secure against concurrent man-in-the-middle attacks
based on tight reduction to the Gap Computational Diffie-Hellman As-
sumption without the random oracle. In addition, they are more efficient
than challenge-and-response 2-round identification schemes from previ-
ously known EUF-CMA signature schemes in the standard model.

Our first scheme is similar to half the operation of Diffie-Hellman
Key-Exchange. The first scheme is secure only against two-phase at-
tacks based on strong assumptions. Applying the tag framework, and
employing a strong one-time signature for the third scheme, we get the
preferable schemes above.

Keywords: Identification Scheme, Concurrent Man-in-the-Middle At-
tack, the Gap Computational Diffie-Hellman Assumption, tight reduc-
tion

1 Introduction

An identification (ID) scheme enables a prover to convince a verifier that
the prover is certainly itself by proving possession of some secret identi-
fying information. In public key framework the prover holds a secret key
and the verifier refers to a matching public key. They interact for some
rounds doing necessary computations until the verifier feels certain.

Most of ID schemes, such as the Guillou-Quisquater scheme [14] and
the Schnorr scheme [21], are proofs of knowledge which belong to a class
called Σ-protocols [8]. A Σ-protocol consists of 3-round interaction and
satisfies the special soundness property. By the property it is possible to
extract witness of the prover via its adversary (the Reset Lemma [5]).
But when we depend on the property we must give up tight reduction to
computational hardness assumptions in its security proofs.

As for attacks on ID schemes, if someone malicious can impersonate
a prover then the ID scheme collapses. So the prime requirement for ID

schemes is robustness against impersonation by adversaries who attack
various cheating ways. Among attacks a concurrent man-in-the-middle
attack is one of the strongest threat. In concurrent man-in-the-middle
composition, while trying to impersonate a prover, an adversary may
interacts with prover clones in arbitrarily interleaved order of messages.

1.1 Our Contribution

This paper addresses to the problem to construct ID schemes secure
against concurrent man-in-the-middle attacks. Unlike the known schemes,
our principle is neither Σ-protocols nor proofs of knowledge, but are
proofs of ability ([13]) to complete Diffie-Hellman tuples.

The first scheme is like half the operation of Diffie-Hellman Key-
Exchange and consists of 2-round interaction. Three exponentiations and
one multiplication are build into the first scheme along the idea for the
tag-based encryption scheme of Kiltz [17]. A string “tag” is assumed to
be given to a prover and a verifier by the first round. To leave the tag
framework, the CHK transformation [9] is applied to the second scheme;
a strong one-time signature is build in to get the third scheme. The sec-
ond and the third schemes are proven secure against concurrent man-in-
the-middle attacks based on tight reduction to the Gap Computational
Diffie-Hellman (Gap-CDH) Assumption in the standard model.

As for efficiency, our schemes need less computational amount than
that of EUF-CMA signature schemes in the standard model. More pre-
cisely, using EUF-CMA signature schemes or IND-CCA encryption schemes,
we can construct challenge-and-response 2-round ID schemes secure against
concurrent man-in-the-middle attacks ([3]). However, note that known ef-
ficient such schemes are proven secure only in the random oracle model,
or, in the standard model, they need heavy exponentiations or pairing
computations under some artificial number theoretic assumptions, such
as the Strong Diffie-Hellman (SDH) Assumption ([2, 24, 18]).

Though each technique is already known, the second and the third
schemes are so secure and efficient that we establish them in this paper.

1.2 Related Works

Our first, prototype scheme is similar to the scheme of Stinson and Wu
[22, 23]. They proved it secure in the random oracle model under the
CDH and the Knowledge-of-Exponent Assumption (KEA) [11]. Unlike
theirs, we provide a security proof in the standard model. Although the

2

assumptions utilized, the KEA and the Gap Discrete Logarithm (Gap-
DL) Assumption, are fairly strong, we stress that the first scheme is a
steppingstone towards the second and the third schemes.

Concerning man-in-the-middle attacks, Katz [15] constructed a non-
malleable proof of knowledge. It is basically a Σ protocol. It utilizes the
so-called OR-Proof technique and is rather complicated.

Gennaro [12] constructed a concurrently non-malleable proof of knowl-
edge. It is also a Σ protocol. The security proof is based on “strong-type”
assumption (the SDH or the Strong RSA).

Concerning tight reduction to computational hardness assumptions,
Arita and Kawashima [1] proposed an ID scheme whose security proof
is based on tight reduction to the One More Discrete Log (OMDL) [5]
type assumption and the KEA. Here the KEA is considered a strong
assumption and our first scheme also depends on the KEA. But our second
and third schemes succeed in leaving the KEA.

1.3 Organization of This Paper

In the next section we fix some notations. We briefly review the model
of attacks on ID schemes, then we describe computational hardness as-
sumptions. In Section 3 we discuss the first, prototype ID scheme. Our
main results, the second and the third schemes and their security, are
presented in Section 4 and 5, respectively. In Section 6 we conclude our
work.

2 Preliminaries

The empty string is denoted ϕ. The security parameter is denoted k.
On input 1k a group parameter generater Grp runs and outputs (q, g),
where q is a prime of bit length k and g is a base element of order q in
a multiplicative cyclic group Gq. Gq is a general cyclic group of order q
throughout this paper. The ring of exponent domain of Gq, which consists
of integers from 0 to q − 1 with modulo q operation, is denoted Zq.

When an algorithm A on input a outputs z we denote it as z ← A(a).
When A on input a and B on input b interact and B outputs z we denote it
as ⟨A(a), B(b)⟩ = z. When A does oracle-access to an oracle O we denote
it asAO. WhenA does concurrent oracle-access to n oraclesO1, . . . ,On we
denote it as AO1|···|On . Here concurrent means that A accesses to oracles
in arbitrarily interleaved order of messages.

A probability of an event X is denoted Pr[X]. A probability of an event
X on conditions Y1, . . . ,Ym is denoted Pr[Y1; · · · ; Ym : X].

3

2.1 ID Schemes

An ID scheme ID is a triple of probabilistic polynomial time (PPT) al-
gorithms (K, P, V). K is a key generater which outputs a pair of a public
key and a matching secret key (pk, sk) on input 1k. P and V implement a
prover and a verifier, recpectively. We require ID to satisfy the complete-
ness condition that boolean decision output by V(pk) after interaction
with P(sk) is one with probability one. We say that V(pk) accepts if its
boolean decision is one.

2.2 Attacks on ID Schemes

The aim of an adversary A on an ID scheme ID is impersonation. We say
that A wins when A(pk) succeeds in making V(pk) accept.

Attacks on ID schemes are divided into two kinds. One is passive
and the other is active. We are concentrating on active attacks. Active
attacks are divided into four patterns according to whether they are serial
or concurrent and whether they are two-phase or man-in-the-middle.

Firstly a concurrent attack ([3, 5]) means that an adversary A(pk)
interacts with polynomially many clones Pi(sk)s of the prover P(sk) in
arbitrarily interleaved order of messages. Here all prover clones Pi(sk)s
are given independent random tapes and independent inner states. A
serial attack is a special case that an adversary A(pk) interacts with the
prover clone P(sk) arbitrary times, but with only one clone at a time. So
concurrent attacks are stronger than serial attacks.

Secondly a two-phase attack ([3, 5]) means that an adversary A con-
sists of two algorithms (A1,A2). In the first phase, the learning phase, A1

starts with input pk, interacts with prover clones Pi(sk)s and outputs its
inner state. In the second phase, the impersonation phase, A2 starts with
input the state, interacts with the verifier V(pk) and tries to make V(pk)
accept. On the other hand, a man-in-the-middle attack means that an
adversary A starts with input pk, interacts with both Pi(sk)s and V(pk)
simultaneously in arbitrarily interleaved order of messages. So man-in-
the-middle attacks are stronger than two-phase attacks.

Note that man-in-the-middle adversary A is prohibited from relaying
a transcript of a whole interaction. This is the standard and natural
rule when we consider a man-in-the-middle attack. Denote the set of
transcripts between Pi(sk)s and A(pk) as Π and a transcript between
A(pk) and V(pk) as π, then the rule is described as π ̸∈ Π.

4

We define imp-2pc (impersonation by two-phase concurrent attack)
advantage of A = (A1,A2) over ID as;

Advimp-2pc
ID,A (k)

def
=Pr[(pk, sk)← K(1k); st← AP1(sk)|···|Pn(sk)

1 (pk)

: ⟨A2(st), V(pk)⟩ = 1].

We say that ID is secure against two-phase concurrent attacks if, for any
PPT algorithm A, Advimp-2pc

ID,A (k) is negligible in k.
In an analogous way, we define imp-cmim (impersonation by concur-

rent man-in-the-middle (cmim) attack) advantage of A over ID as;

Advimp-cmim
ID,A (k)

def
=Pr[(pk, sk)← K(1k)

: ⟨AP1(sk)|···|Pn(sk)(pk), V(pk)⟩ = 1 ∧ π ̸∈ Π].

We say that an ID is secure against concurrent man-in-the-middle attacks
if, for any PPT algorithm A, Advimp-cmim

ID,A (k) is negligible in k.

2.3 Tag-Based ID Schemes

A tag-based ID scheme TagID works in the same way as an ordinary
scheme ID except that a string tag t is a priori given to P and V by the
first round. An interaction depends on the given tag t.

As for attacks, the selective-tag attack is considered in this paper,
referring to the line of Kiltz [17]. That is, an attack on TagID by an
adversaryA is modeled in the same way as on ID except that, an adversary
A designates a target tag t∗ firstly, and then A gets a public key pk. A
gives a tag ti(̸= t∗) to each Pi(sk) and t∗ to V(pk)

We define selective-tag imp-cmim advantage of A over TagID as;

Advstag-imp-cmim
TagID,A (k)

def
= Pr[(pk, sk)← K(1k); t∗ ← A(1k)

: ⟨AP1(t1,sk)|···|Pn(tn,sk)(pk), V(t∗, pk)⟩ = 1 ∧ (ti ̸= t∗, ∀i)].

We say that TagID is secure against selective-tag concurrent man-in-the-
middle attacks if, for any PPT algorithm A, Advstag-imp-cmim

TagID,A (k) is neg-
ligible in k.

2.4 Computational Hardness Assumptions

We say a solver S, an algorithm, wins when S succeeds in solving a
computational problem instance.

5

The Gap-CDH Assumption A quadruple (g,X, Y, Z) of elements in
Gq is called a Diffie-Hellman (DH) tuple if (g,X, Y, Z) is written as
(g, gx, gy, gxy) for some elements x and y ∈ Zq. A CDH problem instance
consists of (q, g,X = gx, Y = gy), where the exponents x and y are hidden.
The CDH oracle CDH is an oracle which, queried about a CDH problem
instance (q, g,X, Y), answers Z = gxy. A DDH problem instance con-
sists of (q, g,X, Y, Z). The DDH oracle DDH is an oracle which, queried
about a DDH problem instance (q, g,X, Y, Z), answers a boolean decision
whether (g,X, Y, Z) is a DH-tuple or not. A CDH problem solver is a PPT
algorithm which, given a random CDH problem instance (q, g,X, Y) as
input, tries to return Z = gxy. A CDH problem solver S that is allowed
to access DDH arbitrary times is called a Gap-CDH problem solver. We
consider the following experiment.

Experimentgap-cdhGrp,S (1k)

(q, g)← Grp(1k), x, y ← Zq, X := gx, Y := gy

If SDDH(q, g,X, Y) outputs Z = gxy then return WIN else LOSE.

Then we define Gap-CDH advantage of S over Grp as;

Advgap-cdh
Grp,S (k)

def
= Pr[Experimentgap-cdhGrp,S (1k) returns WIN].

We say that the Gap-CDH assumption [20] holds when, for any PPT

algorithm S, Advgap-cdh
Grp,S (k) is negligible in k.

The Gap-DL Assumption A discrete log (DL) problem instance con-
sists of (q, g,X = gx), where the exponent x is hidden. A DL problem
solver is a PPT algorithm which, given a random DL problem instance
(q, g,X) as input, tries to return x. A DL problem solver S that is al-
lowed to access CDH arbitrary times is called a Gap-DL problem solver.
We consider the following experiment.

Experimentgap-dlGrp,S (1k)

(q, g)← Grp(1k), x← Zq, X := gx

If SCDH(q, g,X) outputs x∗ and gx
∗
= X then return WIN else LOSE.

Then we define Gap-DL advantage of S over Grp as;

Advgap-dl
Grp,S (k)

def
= Pr[Experimentgap-dlGrp,S (1k) returns WIN].

6

We say that the Gap-DL assumption holds when, for any PPT algorithm
S, Advgap-dl

Grp,S (k) is negligible in k.
Though the Gap-DL assumption is considered fairly strong, it is be-

lieved to hold for a certain class of cyclic groups [19].

The Knowledge-of-Exponent Assumption Bellare and Palacio [6]
and Canetti and Dakdouk [7, 10] discussed the Knowledge-of-Exponent
Assumption (KEA) [11]. Informally, the KEA says that, given a randomly
chosen h ∈ Gq as input, a PPT algorithm H can extend (g, h) as a DH-
tuple (g, h,X,D) only when H knows the exponent x of X = gx. The
formal definition is as follows.

Let H and H′ be any PPT algorithms and W be any distribution. H
and H′ take input of the form (g, h, w). Here g is any fixed base and h is
a randomly chosen element in Gq. w is a string in {0, 1}∗ output by W
called an auxiliary input [7, 10]. We consider the following experiment.

Experimentkea-indauxGrp,H,H′ (1k)

(q, g)← Grp(1k), w ←W,a← Zq, h := ga

(X,D)← H(g, h, w), x′ ← H′(g, h, w)

If(Xa = D and gx
′ ̸= X) then return WIN else LOSE.

Note that w is independent auxiliary input with respect to h in our ex-
periment above. This independency is crucial ([7, 10]).

Then we define KEA advantage of H over Grp and H′ as;

Advkea-indaux
Grp,H,H′ (k)

def
= Pr[Experimentkea-indauxGrp,H,H′ (1k) returns WIN].

Here an algorithm H′ is called the KEA extractor. We say that the KEA
holds when, for any PPT algorithm H, there exists a PPT algorithm H′

such that for any distribution W Advkea-indaux
Grp,H,H′ (k) is negligible in k.

3 A Prototype ID Scheme Secure against Two-phase
Concurrent Attacks

In this section we construct and discuss a prototype ID scheme IDproto.

3.1 IDproto and Its Security

IDproto consists of a triple (K, P, V) as shown in the Fig.1. On input
1k, a key generator K runs as follows. A group parameter generator Grp

7

outputs (q, g) on input 1k. Then K chooses x ∈ Zq, puts X = gx and sets
pk = (q, g,X) and sk = (q, g, x). Then K returns (pk, sk).

P and V interact as follows. In the first round, V is given pk as input,
chooses a ∈ Zq randomly and computes h = ga. Then V sends h to P. In
the second round, P is given sk as input and receives h as input message,
computes D = hx. Then P sends D to V. Receiving D as input message, V
verifies whether (g,X, h,D) is a DH-tuple. For this sake, V checks whether
D = Xa holds. If so, then V returns 1 and if not, then 0.

Key Generation
– K: given 1k as input;

• (q, g)← Grp(1k), x← Zq,X := gx

• pk := (q, g,X), sk := (q, g, x), return (pk, sk)
Interaction
– V: given pk as input;

• a← Zq, h := ga, send h to P

– P: given sk as input and receiving h as input message;
• D := hx, send D to V

– V: receiving D as input message;
• If D = Xa then return 1 else return 0

Fig. 1. A Prototype ID Scheme IDproto

Theorem 1 IDproto is secure against two-phase concurrent attacks
under the Gap-DL assumption and the KEA; for any PPT two-phase
concurrent adversary A = (A1,A2), there exists a PPT Gap-DL problem
solver S which satisfies the following tight reduction;

Advimp-2pc
IDproto,A(k) 6 Advgap-dl

Grp,S (k) +Advkea-indaux
Grp,H,H′ (k).

3.2 Proof of Theorem 1

LetA = (A1,A2) be as in Theorem 1. UsingA as subroutine, we construct
a Gap-DL problem solver S. The construction is illustrated in Fig.2.
S is given q, g,X = gx as a DL problem instance, where x is random

and hidden. S initializes inner state, sets pk = (q, g,X) and invokes A1

on pk.
In the first phase S replies in answer to A1’s queries as follows. In

case that A1 sends hi to the i-th prover clone Pi(sk), S queries its CDH
oracle CDH for the answer of a CDH problem instance (q, g,X, hi) and
gets Di. Then S sends Di to A. In case that A1 outputs its inner state
st, S stops A1 and invokes A2 on st.

8

In the second phase S replies in answer to A2’s query as follows. In
case that A2 queries V(pk) for the first message by an empty string ϕ, S
chooses a∗ ∈ Zq randomly and computes h∗ = ga

∗
. Then S sends h∗ to

A2. In case that A2 sends D∗ to V(pk), S verifies whether (g,X, h∗, D∗)
is a DH-tuple. For this sake, S checks whether D∗ = Xa∗ holds. If it does
not hold then S returns a random element z ∈ Zq. If it holds then S
invokes the KEA extractor H′ on (g, h∗, st). Here H′ is the one associated
with the H below;

H(g, h∗, st){D∗ ← A2(st, h
∗), return(X,D∗)}.

Note that (g, h∗, X,D∗) is a DH-tuple because (g,X, h∗, D∗) is a DH-
tuple. Note also that a distribution W is A1 here. An auxiliary input st
output by A1 satisfies independency with respect to h∗.

When H′ outputs x∗ S checks whether x∗ is the discrete log of X on
base g. If so, S outputs z = x∗ and if not, a random element z ∈ Zq.

It is obvious that S simulates both concurrent Pi(sk)s and V(pk) per-
fectly. Now we evaluate Gap-DL advantage of S. A wins iff Xa∗ = D∗. If
Xa∗ = D∗ then x∗ is output by H′. If gx

∗
= X then S wins. Therefore;

Pr[S wins] > Pr[A wins ∧ gx
∗
= X]

= Pr[A wins]− Pr[A wins ∧ gx
∗ ̸= X].

So Pr[S wins] > Pr[A wins]− Pr[Xa∗ = D∗ ∧ gx
∗ ̸= X].

That is; Advgap-dl
Grp,S (k) > Advimp-2pc

IDproto,A(k)−Advkea-indaux
Grp,H,H′ (k). (Q.E.D.)

3.3 Discussion

Though the Gap-DL and the KEA are fairly strong assumptions, the fact
that IDproto is proven secure against two-phase concurrent attacks is
rather surprising, because it is obvious that IDproto is insecure under
man-in-the-middle attacks. To see it just recall the typical man-in-the-
middle attack on Diffie-Hellman Key-Exchange.

Analogous phenomenon also occurs, for example, for the Schnorr ID
scheme [5]. It seems that the security against two-phase concurrent at-
tacks is somewhat artificial. In Section 4 and Section 5 we modify IDproto
to strengthen its security up to (concurrent) man-in-the-middle level.

4 A Tag-Based ID Scheme Secure against CMIM Attacks

In this section we construct an ID scheme TagIDcmim. Referring to the
idea of the tag-based encryption scheme of Kiltz [17], we apply the tag
framework to IDproto to get TagIDcmim.

9

Given (q, g,X) as input;
Initial Setting
– Initialize inner state, pk := (q, g,X), invoke A1 on pk

The First phase : Answering A1’s Queries
– In case that A1 sends hi to Pi(sk);

• Di ← CDH(g,X, hi), send Di to A1

– In case that A1 outputs its inner state st ;
• Stop A1, invoke A2 on st

The Second phase : Answering A2’s Query
– In case that A2 queries V(pk) for the first message;

• a∗ ← Zq, h
∗ := ga

∗
, send h∗ to A2

– In case that A2 sends D∗ to V(pk);
• If Xa∗

̸= D∗ then return random element z ∈ Zq

• else invoke H′ on (g, h∗, st) and get x∗ from H′

If gx
∗
= X then return z := x∗

else return random element z ∈ Zq

Fig. 2. A Gap-DL Problem Solver S for the Proof of Theorem 1

4.1 TagIDcmim and Its Security

TagIDcmim consists of a triple (K, P, V). The construction is as shown in
the Fig.3. A string tag t is a priori given to P and V by the first round.
In our composition we set t in Zq.

On input 1k, a key generator K runs as follows. A group parameter
generator Grp outputs (q, g) on input 1k. Then K chooses x, y ∈ Zq, puts
X = gx and Y = gy, and sets pk = (q, g,X, Y) and sk = (q, g, x, y). Then
K returns (pk, sk).

P and V interact as follows. In the first round, V is given pk as input. V
chooses a ∈ Zq randomly and computes h = ga and d = (XtY)a. Then V

sends (h, d) to P. In the second round, P is given sk as input and receives
(h, d) as input message. P verifies whether (g,XtY, h, d) is a DH-tuple.
For this sake, P checks whether htx+y = d holds. If it does not hold then
P puts D =⊥. Otherwise P computes D = hx. Then P sends D to V.
Receiving D as input message, V verifies whether (g,X, h,D) is a DH-
tuple. For this sake, V checks whether Xa = D holds. If so, then V returns
1 and if not, then 0.

Theorem 2 TagIDcmim is secure against selectiev-tag concurrent man-
in-the-middle attacks under the Gap-CDH assumption; for any PPT selectiev-
tag concurrent man-in-the-middle adversary A there exists a PPT Gap-
CDH problem solver S which satisfies the following tight reduction;

Advstag-imp-cmim
TagIDcmim,A (k) 6 Advgap-cdh

Grp,S (k).

10

Tag-Receiving
– P and V receive a tag t ∈ Zq by the first round
Key Generation
– K: given 1k as input;

• (q, g)← Grp(1k), x, y ← Zq, X := gx, Y := gy

• pk := (q, g,X, Y), sk := (q, g, x, y), return (pk, sk)
Interaction
– V: given pk as input;

• a← Zq, h := ga, d := (XtY)a, send (h, d) to P

– P: given sk as input and receiving (h, d) as input message;
• If htx+y ̸= d then D :=⊥ else D := hx, send D to V

– V: receiving D as input message;
• If Xa = D then return 1 else return 0

Fig. 3. A Tag-Based ID Scheme TagIDcmim

4.2 Proof of Theorem 2

Let A be as in Theorem 2. Using A as subroutine, we construct a Gap-
CDH problem solver S. The construction is illustrated in Fig.4.

S is given q, g,X1 = gx1 , X2 = gx2 as a CDH problem instance, where
x1 and x2 are random and hidden. S initializes inner state. S invokes A on
input 1k and gets the target tag t∗ from A. S chooses r ∈ Zq randomly.
S puts Y = X−t∗

1 gr, sets pk = (q, g,X1, Y) and inputs pk into A. Note
that S knows neither x1 nor y, where y is the discrete log of Y ;

y = logg(Y) = −t∗x1 + r.

S replies in answer to A’s queries as follows.
In case that A queries V(pk) for the first message by ϕ, S chooses

a∗ ∈ Zq randomly and S puts h∗ = X2g
a∗ and d∗ = (h∗)r. Then S sends

(h∗, d∗) to A (Call this case SIM-V).

In case that A gives a tag ti and sends (hi, di) to the i-th prover clone
Pi(sk), S verifies whether (g,Xti

1 Y, hi, di) is a DH-tuple. For this sake,
S queries its DDH oracle DDH for the answer. If it is not satisfied then
S puts Di =⊥. Otherwise S puts Di = (di/h

r
i)

1/(ti−t∗) (Call this case
SIM-P). S sends Di to A. Note that, in the selective-tag framework, A is
prohibited from using t∗ as ti (i.e. t

∗ ̸= ti for any i).

In case that A outputs D∗ to V(pk), S verifies whether (g,X1, h
∗, D∗)

is a DH-tuple. For this sake, S queries DDH for the answer. If so, then
S returns Z = D∗/Xa∗

1 and if not, S returns random element Z ∈ Gq.

In the case SIM-V, S simulates V(pk) perfectly. This is because the
distribution of (h∗, d∗) is equal to that of (h, d). To see it, note that (h∗, d∗)

11

corresponds to (h, d) when x2 + a∗ is substituted for a;

h∗ = gx2+a∗ , d∗ = (gx2+a∗)r = (gr)x2+a∗ = (Xt∗
1 Y)x2+a∗ .

In the case SIM-P, S simulates concurrent Pi(sk)s perfectly. This is
because Di is equal to hx1

i by the following equalities;

di/h
r
i = htix1+y−r

i = h
(ti−t∗)x1+(t∗x1+y−r)
i = h

(ti−t∗)x1

i .

As a whole S simulates both V(pk) and Pi(sk)s perfectly. Now we
evaluate Gap-CDH advantage of S. When A wins (g,X1, h

∗, D∗) is a
DH-tuple and the followings hold;

D∗ = (gx1)x2+a∗ = gx1x2Xa∗
1 .

So S wins because its output Z is gx1x2 . Therefore the probability that
S wins is lower bounded by the probability that A wins;

Pr[S wins] > Pr[A wins].

That is; Advgap-cdh
Grp,S (k) > Advstag-imp-cmim

TagIDcmim,A (k). (Q.E.D.)

Given (q, g,X1, X2) as input;
Initial Setting
– Initialize inner state, invoke A on input 1k, get the target tag t∗ from A
– r ← Zq, Y := X−t∗

1 gr, pk := (q, g,X1, Y), input pk into A
Answering A’s Queries
– In case that A queries V(pk) for the first message (the case SIM-V);

• a∗ ← Zq, h
∗ := X2g

a∗
, d∗ := (h∗)r, send (h∗, d∗) to A

– In case that A gives ti and sends (hi, di) to Pi(sk);
• If DDH(g,Xti

1 Y, hi, di) ̸= 1 then Di :=⊥
• else Di := (di/h

r
i)

1/(ti−t∗) (the case SIM-P)
• Send Di to A

– In case that A sends D∗ to V(pk);
• If DDH(g,X1, h

∗, D∗) = 1 then return Z := D∗/Xa∗
1

• else return random element Z ∈ Gq

Fig. 4. A Gap-CDH Problem Solver S for the Proof of Theorem 2

4.3 Discussion

By virtue of the tag framework, the solver S can simulate concurrent
prover clones (Pi(sk)s) perfectly in the interaction with a selective-tag
adversary A. Moreover, S embeds a portion of CDH problem instance
(X2) simulating a verifier (V(pk)) perfectly, and succeeds in extracting
the answer (Xa∗

1 times gx1x2).

12

5 An ID Scheme Secure against CMIM Attacks

In this section we construct an ID scheme IDcmim. We apply the CHK
transformation [9] to TagIDcmim. That is, to leave the tag framework, we
add a one-time signature OTS to TagIDcmim and replace the tag t by a
verification key vk.

5.1 IDcmim and Its Security

IDcmim consists of a triple (K, P, V). IDcmim employs a strong one-time
signature OTS = (SGK, Sign, Vrfy) such that the verification key vk is in
Zq. The definition and security of strong one-time signatures is noted in
Appendix A.

The construction is as shown in the Fig.5. On input 1k a key generator
K runs as follows. A group parameter generator Grp outputs (q, g) on
input 1k. Then K chooses x, y ∈ Zq, puts X = gx and Y = gy, and sets
pk = (q, g,X, Y) and sk = (q, g, x, y). Then K returns (pk, sk).

P and V interact as follows. In the first round, V is given pk as input.
V runs signing key generator SGK on input 1k to get (vk, sgk). V chooses
a ∈ Zq randomly and computes h = ga and d = (XvkY)a. V runs Signsgk
on message (h, d) to get a signature σ. Then V sends vk, (h, d), σ to P. In
the second round, P is given sk as input and receives vk, (h, d), σ as input
message. P verifies whether the signature σ for the message (h, d) is valid
under vk and whether (g,XvkY, h, d) is a DH-tuple. For the latter sake,
P checks whether h(vk)x+y = d holds. If at least one of them does not
hold then P puts D =⊥. Otherwise P computes D = hx. Then P sends
D to V. Receiving D as input message, V verifies whether (g,X, h,D) is
a DH-tuple. For this sake, V checks whether Xa = D holds. If so, then V

returns 1 and if not, then 0.

Theorem 3 IDcmim is secure against concurrent man-in-the-middle at-
tacks under the Gap-CDH assumption and the one-time security in the
strong sence of OTS; for any PPT concurrent man-in-the-middle adver-
sary A there exist a PPT Gap-CDH problem solver S and a PPT forger
F on OTS which satisfies the following tight reduction;

Advimp-cmim
IDcmim,A (k) 6 Advgap-cdh

Grp,S (k) +Advef-cma
OTS,F (k).

The detailed proof of Theorem 3 is provided in Appendix B.

13

Key Generation
– K: given 1k as input;

• (q, g)← Grp(1k), x, y ← Zq, X := gx, Y := gy

• pk := (q, g,X, Y), sk := (q, g, x, y), return (pk, sk)
Interaction
– V: given pk as input;

• (vk, sgk)← SGK(1k), a← Zq, h := ga, d := (XvkY)a, σ ← Signsgk((h, d))
• Send vk, (h, d), σ to P

– P: given sk as input and receiving vk, (h, d), σ as input message;
• If Vrfyvk((h, d), σ) ̸= 1 or h(vk)x+y ̸= d then D :=⊥ else D := hx

• Send D to V

– V: receiving D as input message;
• If Xa = D then return 1 else return 0

Fig. 5. An ID Scheme IDcmim

6 Conclusion

We have presented three ID schemes which are basically proofs of ability
to complete Diffie-Hellman tuples. By virtue of the tag framework, sim-
ulation went well in the security reduction for Theorem 2. At the same
time, embed-and-extract technique worked for CDH problem instance. As
a result, the second scheme got security against selective-tag concurrent
man-in-the-middle attacks based on tight reduction to the Gap-CDH As-
sumption. Applying the CHK transformation to the second scheme, We
left the tag-framework to get the third scheme.

Acknowledgement
We appreciate thoughtful comments offered by the anonymous reviewers.

References

1. Arita, S., Kawashima, N.: An Identification Scheme with Tight Reduction. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, vol. E90-A, issue 9, pp. 1949-1955 (2007)

2. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: EURO-
CRYPT 2004, LNCS, vol. 3027, pp. 56-73. Springer, Heidelberg (2004)

3. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Secure
against Reset Attacks. In: EUROCRYPT 2001, LNCS, vol. 2045, pp. 495-511.
Springer, Heidelberg (2001)

4. Bleichenbacher, D., Maurer U.: On the Efficiency of One-time Digital Signatures.
In: ASIACRYPT 1996, LNCS, vol. 1163, pp. 196-209. Springer, Heidelberg (1996)

5. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In: CRYPTO 2002,
LNCS, vol. 2442, pp. 162-177. Springer, Heidelberg (2002)

14

6. Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round
Zero-Knowledge Protocols. In: CRYPTO 2004, LNCS, vol. 3152, pp. 273-289.
Springer, Heidelberg (2004)

7. Canetti, R., Dakdouk, R. R.: Extractable Perfectly One-way Functions. In: ICALP
2008, LNCS, vol. 5126, pp. 449-460. Springer, Heidelberg (2008)

8. Crame, R., Damg̊ard, I., Nielsen, J.B.: Multiparty Computation from Threshold
Homomorphic Encryption. In: EUROCRYPT 2001, LNCS, vol. 2045, pp. 280-300.
Springer, Heidelberg (2001)

9. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: EUROCRYPT 2004, LNCS, vol. 3027, pp. 207-222. Springer, Hei-
delberg (2004)

10. Dakdouk, R. R., Theory and Application of Extractable Functions. Doctor of Phi-
losophy Dissertation, Yale University, USA (2009)

11. Damg̊ard, I.: Towards Practical Public Key Systems Secure against Chosen Cipher-
text Attacks. In: CRYPTO 1991, LNCS, vol. 576, pp. 445-456. Springer, Heidelberg
(1991)

12. R. Gennaro, Multi-trapdoor Commitments and their Applications to Non-Malleable
Protocols, In: CRYPTO 2004, LNCS, vol. 3152, pp. 220-236. Springer, Heidelberg
(2004)

13. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2001)

14. Guillou, L., Quisquater, J. J.: A Paradoxical Identity-Based Signature Scheme
Resulting from Zero-Knowledge. In: CRYPTO 1988, LNCS, vol. 403, pp. 216-231.
Springer, Heidelberg (1988)

15. Katz, J.: Efficient Cryptographic Protocols Preventing “Man-in-the-Middle” At-
tacks. Doctor of Philosophy Dissertation, Columbia University, USA (2002)

16. Katz, J.: Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applica-
tions. In: EUROCRYPT 2003, LNCS, vol. 2656, pp. 211-228. Springer, Heidelberg
(2003)

17. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: TCC 2006,
LNCS, vol. 3876, pp. 581-600. Springer, Heidelberg (2006)

18. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
CRYPTO 2004, LNCS, vol. 3152, pp. 426-442. Springer, Heidelberg (2004)

19. Maurer, U., Wolf, S.: Lower Bounds on Generic Algorithms in Groups. In: EURO-
CRYPT 1998, LNCS, vol. 1403, pp. 72-84. Springer, Heidelberg (1998)

20. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the
Security of Cryptographic Schemes. In: PKC 2001, LNCS, vol. 1992, pp. 104-118.
Springer, Heidelberg (2001)

21. Schnorr, C. P.: Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology, vol. 4, Num. 3, pp. 161-174 (1991)

22. Stinson, D. R., Wu, J.: An Efficient and Secure Two-flow Zero-Knowledge Identi-
fication Protocol. Journal of Mathematical Cryptology, vol. 1, issue 3, pp. 201-220
(2007)

23. Wu, J., Stinson, D. R.: An Efficient Identification Protocol and the
Knowl-edge-of-Exponent Assumption. Cryptology ePrint Archive, 2007/479,
http://eprint.iacr.org/

24. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: CRYPTO 2009, LNCS, vol. 5677, pp. 619-636. Springer,
Heidelberg (2009)

15

A One-time Signatures

A one-time signature OTS is a triple of PPT algorithms (SGK, Sign, Vrfy).
SGK is a signing key generater which outputs a pair of a verification key
and a matching signing key (vk, sgk) on input 1k. Sign and Vrfy are a
signing algorithm and a verification algorithm, respectively. We say that
(m,σ) is valid if Vrfyvk(m,σ) outputs one. We require OTS to satisfy
the standard completeness condition. We also require OTS to be exis-
tentially unforgeable against chosen message attack (EUF-CMA) by any
PPT forger F . The following experiment is the strong one.

Experimentef-cma
OTS,F (1k)

(vk, sgk)← SGK(1k),m← F(vk), σ ← Signsgk(m), (m′, σ′)← F(vk, (m,σ))

If Vrfyvk(m
′, σ′) = 1 ∧ (m′, σ′) ̸= (m,σ) then return WIN else LOSE.

Then we define advantage of existential forgery by chosen message attack
of F over OTS as;

Advef-cma
OTS,F (k)

def
= Pr[Experimentef-cma

OTS,F (1k) returns WIN].

We say that a OTS is EUF-CMA (or, has one-time security) in the strong
sence when, for any PPT algorithm F , Advef-cma

OTS,F (k) is negligible in k
(and then we say that OTS is a strong one-time signature).

B Proof of Theorem 3

Let A be as in Theorem 3. Using A as subroutine, we construct a Gap-
CDH problem solver S. The construction is illustrated in Fig.6.
S is given q, g,X1 = gx1 , X2 = gx2 as a CDH problem instance,

where x1 and x2 are random and hidden. S initializes inner state. S
gets (vk∗, sgk∗) from SGK(1k) and chooses r ∈ Zq randomly. S puts
Y = X−vk∗

1 gr, sets pk = (q, g,X1, Y) and invokes A on input pk. Note
that S knows neither x1 nor y, where y is the discrete log of Y ;

y = logg(Y) = −vk∗x1 + r.

S replies in answer to A’s queries as follows.
In case that A queries V(pk) for the first message by ϕ, S chooses

a∗ ∈ Zq randomly and S puts h∗ = X2g
a∗ and d∗ = (h∗)r. S gets a

signature σ∗ from Signsgk∗((h
∗, d∗)). Then S sends vk∗, (h∗, d∗), σ∗ to A

(Call this case SIM-V).

16

In case that A sends vki, (hi, di), σi to the i-th prover clone Pi(sk), S
verifies whether ((hi, di), σi) is valid under vki and whether (g,Xvki

1 Y, hi, di)
is a DH-tuple. For the latter sake, S queries its DDH oracle DDH for the
answer. If at least one of them is not satisfied then S puts Di =⊥. Oth-
erwise, if vki ̸= vk∗ then S puts Di = (di/h

r
i)

1/(vki−vk∗) (Call this case
SIM-P). If vki = vk∗, S aborts (Call this case ABORT). S sends Di to A
except the case ABORT.

In case that A outputs D∗ to V(pk), S verifies whether (g,X1, h
∗, D∗)

is a DH-tuple. For the latter sake, S queries DDH. If so, then S returns
Z = D∗/Xa∗

1 and if not, S returns random element Z ∈ Gq.
In the case SIM-V, S simulates V(pk) perfectly. This is because the

distribution of (h∗, d∗) is equal to that of (h, d). To see it, note that (h∗, d∗)
corresponds to (h, d) when x2 + a∗ is substituted for a;

h∗ = gx2+a∗ , d∗ = (gx2+a∗)r = (gr)x2+a∗ = (Xvk∗
1 Y)x2+a∗ .

In the case SIM-P, S simulates concurrent Pi(sk)s perfectly. This is
because Di is equal to hx1

i by the following equalities;

di/h
r
i = hvkix1+y−r

i = h
(vki−vk∗)x1+(vk∗x1+y−r)
i = h

(vki−vk∗)x1

i .

As a whole S simulates both V(pk) and Pi(sk)s perfectly except the
case ABORT. Now we evaluate Gap-CDH advantage of S. When A wins
(g,X1, h

∗, D∗) is a DH-tuple and the followings hold;

D∗ = (gx1)x2+a∗ = gx1x2Xa∗
1 .

So S wins because its output Z is gx1x2 . Therefore the probability that
S wins is lower bounded by the probability that A wins and the case
ABORT does not happen;

Pr[S wins] > Pr[A wins ∧ ¬ABORT]

> Pr[A wins]− Pr[ABORT].

That is; Advgap-cdh
Grp,S (k) > Advimp-cmim

IDcmim,A (k)− Pr[ABORT].

Claim The probability that the case ABORT occurs is negligible in k.

Proof of the Claim Using A as subroutine, we construct a signature
forger F on OTS as follows. Given vk∗ as input, F initializes inner state,
chooses x1, x2 ∈ Zq randomly and puts X1 = gx1 , X2 = gx2 . Similarly to
S, F generates r, Y, pk and invokes A on pk.

17

In case thatA queries V(pk) for the first message, F generates a∗, h∗, d∗

and sends vk∗, (h∗, d∗), σ∗ to A in a similar way to S except querying its
signing oracle SIGN sgk∗ for a signature σ∗ on (h∗, d∗).

In case that A sends vki, (hi, di), σi to the i-th prover clone Pi(sk), F
verifies whether the signature is valid and whether (g,Xvki

1 Y, hi, di) is a
DH-tuple. For the latter sake, F checks whether the following holds;

h
(vki−vk∗)x1+r
i = di.

Then, if vki ̸= vk∗ then F sendsDi toA in a similar way to S. If vki = vk∗

then S returns ((hi, di), σi) and stops (Call this case FORGE).
Note that the view of A in F is the same as the view of A in S. So;

Pr[FORGE] = Pr[ABORT].

Now in the case FORGE the followings hold;

vki = vk∗, ((hi, di), σi) ̸= ((h∗, d∗), σ∗).

This is because if ((hi, di), σi) were equal to ((h∗, d∗), σ∗) then the tran-
script of a whole interaction would be relayed by A. This is ruled out.

So in the case FORGE, F succeeds in making up an existential forgery
and we haveAdvef-cma

OTS,F (k) = Pr[FORGE](= Pr[ABORT]). But the advan-
tage is negligible in k by the assumption in Theorem 3. (Q.E.D.)

Given (q, g,X1, X2) as input;
Initial Setting
– Initialize inner state, (vk∗, sgk∗)← SGK(1k)

– r ← Zq, Y := X−vk∗

1 gr, pk := (q, g,X1, Y), invoke A on pk

Answering A’s Queries
– In case that A queries V(pk) for the first message (the case SIM-V);

• a∗ ← Zq, h
∗ := X2g

a∗
, d∗ := (h∗)r, σ∗ ← Signsgk∗((h

∗, d∗))
• Send vk∗, (h∗, d∗), σ∗ to A

– In case that A sends vki, (hi, di), σi to Pi(sk);
• If Vrfyvki((hi, di), σi) ̸= 1 or DDH(g,Xvki

1 Y, hi, di) ̸= 1 then Di :=⊥
• else

If vki ̸= vk∗ then Di := (di/h
r
i)

1/(vki−vk∗) (the case SIM-P)
else abort (the case ABORT)

• Send Di to A
– In case that A sends D∗ to V(pk);

• If DDH(g,X1, h
∗, D∗) = 1 then return Z := D∗/Xa∗

1

• else return random element Z ∈ Gq

Fig. 6. A Gap-CDH Problem Solver S for the Proof of Theorem 3

18

