
Construction of Threshold Public-Key

Encryptions
through Tag-Based Encryptions

Seiko Arita and Koji Tsurudome

Institute of Information Security,
Yokohama, Kanagawa, Japan
{arita,mgs068101}@iisec.ac.jp

Abstract. In this paper, we propose a notion of threshold tag-based
encryption schemes that simplifies the notion of threshold identity-based
encryption schemes, and we show a conversion from any stag-CCA-
secure threshold tag-based encryption schemes to CCA-secure thresh-
old public-key encryption schemes. Moreover, we give two concrete con-
structions of stag-CCA-secure threshold tag-based encryption schemes,
under the decisional bilinear Diffie-Hellman assumption and the deci-
sional linear assumption, respectively. Thus, we obtain two concrete con-
structions of threshold public-key encryption schemes, both of which are
non-interactive, robust and can be proved secure without random oracle
model. Our threshold public-key encryption schemes are conceptually
more simple and shown to be more efficient than those of Boneh, Boyen
and Halevi.
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1 Introduction

A threshold public-key encryption scheme is a public-key encryption scheme
where a private key is distributed and shared among several decryption servers
and some number of those decryption servers must cooperate to decrypt any ci-
phertext [2,4,9]. In a model of k-out-of-n threshold public-key encryption scheme,
an entity, called combiner, has a ciphertext C that it wishes to decrypt. The com-
biner sends C to the decryption servers, and receives partial decryption shares
from at least k out of the n decryption servers. It then combines these k partial
decryptions into a complete decryption of C. Ideally, it is desirable that there is
no other interaction in the system, namely the servers need not talk to each other
during decryption. Such threshold systems are called non-interactive. Often one
requires that threshold decryption be robust, namely if threshold decryption of
a valid ciphertext fails, the combiner can identify the decryption servers that
supplied invalid partial decryptions.
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In 2006, Boneh, Boyen and Halevi [2] gave a construction of CCA-secure
threshold public-key encryption scheme by converting a sID-CPA-secure thresh-
old identity-based encryption scheme into it, which in turn is constructed based
on the decisional bilinear Diffie-Hellman assumption. Their CCA-secure thresh-
old public-key encryption scheme is the first one that is non-interactive, robust
and can be proved secure without random oracle model.

On the other hand, in 2006, Kiltz [6] proposed a notion of tag-based encryp-
tion scheme through simplifying the notion of identity-based encryption schemes
[3,7], and gave a transformation from any stag-CCA-secure tag-based encryption
schemes to CCA-secure public-key encryption schemes.

In this paper, we propose a notion of threshold tag-based encryption schemes
that simplifies the notion of threshold identity-based encryption schemes in a
similar way as [6], and then we show a conversion from any stag-CCA-secure
threshold tag-based encryption schemes to CCA-secure threshold public-key en-
cryption schemes, that is an adaption of the CHK transform [5] to the setting of
threshold encryption. Moreover, we give two concrete constructions of stag-CCA-
secure threshold tag-based encryption schemes, that are non-interactive, robust
and can be proved without random oracle model, under the decisional bilinear
Diffie-Hellman assumption and the decisional linear assumption, respectively.
Thus, we obtain two concrete constructions of threshold public-key encryption
schemes, through applying the conversion to the two threshold tag-based en-
cryption schemes, both of which are non-interactive, robust and can be proved
secure without random oracle model.

In the threshold identity-based encryption scheme of [2], a decryption share
is regarded as a ciphertext of private key share corresponding to decrypter’s ID.
But in our threshold tag-based encryption scheme, a decryption share can be
regarded naturally as a partial decrypted ciphertext. As a result, our threshold
public-key encryption schemes, obtained through the conversion, are conceptu-
ally more simple and shown to be more efficient than those of [2].

2 Threshold Tag-Based Encryptions and Their
Conversion to Threshold Public-Key Encryptions

In this section, after reviewing the definition of threshold public-key encryptions
and their security following [2], we propose a notion of threshold tag-based en-
cryptions and show a conversion from any stag-CCA-secure threshold tag-based
encryption schemes to CCA-secure threshold public-key encryption schemes.

2.1 Threshold Public-Key Encryption

Scheme. A threshold public-key encryption scheme TPKE consists of five algo-
rithms:

TPKE = (Setup, Encrypt, ShareDec, ShareVf, Combine).

Setup takes as input the number of decryption servers n, a threshold k (1 ≤ k ≤
n), and a security parameter Λ. It outputs a triple (PK, V K, SK) where PK
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is a public key, V K is a verification key and SK = (SK1, · · · , SKn) is a vector
of n private key shares. Encrypt takes as input a public key PK and a message
M , and it outputs a ciphertext C. ShareDec takes as input a public key PK, a
ciphertext C, and the i-th private key share (i, SKi). It outputs a decryption
share μi of the encrypted message, or a special symbol (i,⊥). ShareVf takes as
input a public key PK, verification key V K, ciphertext C and a decryption
share μi. It outputs valid or invalid. When the output is valid, we say that μi is
a valid decryption share of C. Combine takes as input PK, V K, ciphertext C,
and k decryption shares {μ1, · · · , μk}. It outputs a message M or ⊥.

For any output (PK, V K, SK) of Setup(n, k, Λ), we require the two consis-
tency properties:

1. For any valid ciphertext C, if μi ← ShareDec(PK, i, SKi, C), then
ShareVf(PK, V K, C, μi) is valid.

2. If C is the output of Encrypt(PK, M) and S = {μ1, · · · , μk} is a set of
decryption shares μi ← ShareDec(PK, i, SKi, C) for k distinct private key
shares in SK, then Combine(PK, V K, C, S) = M .

Security. Security of threshold public-key encryption scheme TPKE is defined in
terms of chosen ciphertext security and decryption consistency. Chosen cipher-
text security is defined using the following game between a challenger and an
adversary. Both are given n, k, Λ as input.

1. Init. The adversary outputs a set S ⊂ {1, · · · , n} of k− 1 decryption servers
to corrupt.

2. Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK, V K, SK). It gives the adversary PK, V K, and all (j, SKj) for j ∈ S.

3. Query phase 1. The adversary adaptively issues decryption queries (C, i)
where C ∈ {0, 1}∗ and i ∈ {1, · · · , n}. The challenger responds with
ShareDec(PK, i, SKi, C).

4. Challenge. The adversary outputs two messages M0, M1 of equal length.
The challenger picks a random b ∈ {0, 1} and lets C∗ ← Encrypt(PK, Mb).
It gives C∗ to the adversary.

5. Query phase 2. The adversary issues further decryption queries (C, i), under
the constraint that C �= C∗. The challenger responds as in Query Phase 1.

6. Guess. The adversary outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define an advantage of adversary A for threshold public-key encryption
scheme TPKE with respect to chosen ciphertext security as Advcca

A,TPKE,n,k(Λ) =
|Pr[b = b′]− 1/2|.

Decryption consistency is defined using the following game. The game starts
with the Init, Setup, and Query phase 1 steps as in the game above. The ad-
versary then outputs a ciphertext C and two sets of decryption shares S =
{μ1, · · · , μk} and S′ = {μ′

1, · · · , μ′
k} each of size k. The adversary wins if:
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– The shares in S and S′ are valid decryption shares for C under V K.
– S and S′ each contain decryption shares from k distinct servers.
– Combine(PK, V K, C, S) �= Combine(PK, V K, C, S′), with either side not

equal to ⊥.

We let Advdc
A,TPKE,n,k(Λ) denote the probability that the adversary A wins this

game.

Definition 1. We say that a threshold public-key encryption scheme TPKE is
CCA-secure if for any n, k (1 ≤ k ≤ n) and any probabilistic polynomial time
algorithm A, both of the functions Advcca

A,TPKE,n,k(Λ) and Advdc
A,TPKE,n,k(Λ) are

negligible.

2.2 Threshold Tag-Based Encryption

A notion of threshold tag-based encryptions is obtained by simplifying threshold
identity-based encryption schemes in a similar way as [6] in the non-threshold
setting. Threshold tag-based encryptions simply needs a tag as input in addition
to ordinary inputs of threshold encryptions.

Scheme. A threshold tag-based encryption scheme TTBE consists of five algo-
rithms:

TTBE = (Setup, Encrypt, ShareDec, ShareVf, Combine).

Setup takes as input the number of decryption servers n, a threshold k (1 ≤
k ≤ n) and a security parameter Λ. It outputs a triple (PK, V K, SK) where
PK is a public key, V K is a verification key, and SK = (SK1, · · · , SKn) is a
vector of n private key shares. Encrypt takes as input a public key PK, a tag
t and a message M , and it outputs a ciphertext C. ShareDec takes as input a
public key PK, a ciphertext C, a tag t, and a i-th private key share (i, SKi).
It outputs a decryption share μi of the encrypted message, or a special symbol
(i,⊥). ShareVf takes as input PK, V K, a ciphertext C, a tag t and a decryption
share μi. It outputs valid or invalid. When the output is valid, we say that μi is
a valid decryption share of C. Combine takes as input PK, V K, a ciphertext C,
a tag t and k decryption shares {μ1, · · · , μk}. It outputs a message M or ⊥.

As in the threshold public-key encryption scheme, we require the following
two consistency properties. Let (PK, V K, SK) be the output of Setup(n, k, Λ).

1. For any tuple (C, t) of a valid ciphertext and a tag, if μi ← ShareDec
(PK, i, SKi, C, t), then ShareVf(PK, V K, C, t, μi) = valid.

2. If C is the output of Encrypt(PK, t, M) and S = {μ1, · · · , μk} is a set of
decryption shares μi ← ShareDec(PK, i, SKi, C, t) for k distinct private key
shares in SK, then Combine(PK, V K, C, t, S) = M .

Security. Security of threshold tag-based encryption scheme TTBE is defined in
terms of stag-chosen-ciphertext security and stag decryption consistency. Stag
chosen ciphertext security is defined using the following game between a chal-
lenger and an adversary. Both are given n, k, Λ as input.
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1. Init. The adversary outputs a target tag t∗ that it wants to attack and a set
of k − 1 decryption servers S ⊂ {1, · · · , n} that it wants to corrupt.

2. Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK, V K, SK). It gives the adversary PK, V K, and all (j, SKj) for j ∈ S.

3. Query phase 1. The adversary adaptively issues decryption share queries
((C, t), i) with i ∈ {1, · · · , n}, under the constraint that t �= t∗. The chal-
lenger responds with ShareDec(PK, i, SKi, C, t).

4. Challenge. The adversary outputs two messages M0, M1 of equal length. The
challenger picks a random b ∈ {0, 1} and lets C∗ ← Encrypt(PK, t∗, Mb). It
gives C∗ to the adversary.

5. Query phase 2. The adversary adaptively issues decryption share queries
((C, t), i) with i ∈ {1, · · · , n}, under the constraint that t �=t∗. The challenger
responds as in phase 1.

6. Guess. The adversary outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define an advantage of adversary A for threshold tag-based encryption
scheme TTBE with respect to stag-chosen-ciphertext security as Advstag−cca

A,TTBE,n,k(Λ)
= |Pr[b = b′]− 1/2|.

Stag decryption consistency is defined using the following game. The game
starts with the Init, Setup and Query phase 1 steps as in the game above. The
adversary then outputs a tag t, a ciphertext C and two sets of decryption shares
S = {μ1, · · · , μk} and S′ = {μ′

1, · · · , μ′
k} each of size k. The adversary wins if:

1. The shares in S and S′ are valid decryption shares for (C, t) under V K.
2. S and S′ each contain decryption shares from k distinct servers.
3. Combine(PK, V K, C, t, S) �= Combine(PK, V K, C, t, S′), with either side not

equal to ⊥.

We let Advstag−dc
A,TTBE,n,k(Λ) denote the probability that the adversary A wins

this game.

Definition 2. We say that a threshold tag-based encryption scheme TTBE is
stag-CCA-secure if for any n, k (1 ≤ k ≤ n) and any probabilistic polynomial
time algorithm A, both of the functions Advstag−cca

A,TTBE,n,k(Λ) and Advstag−dc
A,TTBE,n,k(Λ)

are negligible.

2.3 Conversion from Threshold Tag-Based Encryption Schemes
into Threshold Public-Key Encryption Schemes

In this section we show a conversion from any stag-CCA-secure threshold tag-
based encryption scheme to CCA-secure threshold public-key encryption scheme.
The conversion is a direct adjustment of the conversions of [5,6] into the threshold
setting.

We convert a given threshold tag-based encryption scheme

TTBE = (Setupttbe, Encryptttbe, ShareDecttbe, ShareVfttbe, Combinettbe)

into a threshold public-key encryption scheme
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TPKE = TT2TP(TTBE, S) = (Setuptpke, Encrypttpke, ShareDectpke, ShareVftpke, Combinetpke)

using a strong one-time signature S = (KG, SGN, VF) as in Figure 1.

Setuptpke(n, k, Λ) :
(PK, V K, SK)← Setupttbe(n, k, Λ), output (PK, V K, SK).

Encrypttpke(PK, M) :
(sigk, verk)← KG(Λ), Cttbe ← Encryptttbe(PK, verk,M), σ ← SGN(sigk, Cttbe);
output Ctpke = (Cttbe, verk, σ).

ShareDectpke(PK, i, SKi, Ctpke = (Cttbe, verk, σ)) :
If VF(verk, Cttbe, σ) = invalid then output μi = (i,⊥),
else output ShareDecttbe(PK, i, SKi, Cttbe, verk).

ShareVftpke(PK, V K, Ctpke = (Cttbe, verk, σ), μi) :
If VF(verk, Cttbe, σ) = invalid then output invalid,
else output ShareVfttbe(PK, V K, Cttbe, verk, μi).

Combinetpke(PK, V K, Ctpke = (Cttbe, verk, σ), {μ1, · · · , μk}) :
If ∃i, μi = (i,⊥) or ShareVftpke(PK, V K, Ctpke, μi) = invalid then output ⊥,
else output Combinettbe(PK, V K, Cttbe, verk, {μ1, · · · , μk}).

Fig. 1. TT2TP: Conversion from threshold tag-based encryption schemes to threshold
public-key encryption schemes

Theorem 1. If a threshold tag-based encryption scheme TTBE is stag-CCA-
secure and S is a strong one-time signature, then the threshold public-key en-
cryption scheme TPKE = TT2TP(TTBE, S) is CCA-secure.

More precisely, for an arbitrary efficient adversary A against chosen cipher-
text security of TPKE, there exists an efficient algorithm B against stag-chosen-
ciphertext security of the underlying TTBE and a forger F of the underlying S
that satisfy

Advcca
A,TPKE,n,k(Λ) ≤ Advstag−cca

B,TTBE,n,k(Λ) + Advot−cma
F ,S (Λ).

(Here, Advot−cma
F ,S denotes the advantage of forger F against one-time signature

S in the usual game of strong chosen-message attack with at most one signing
query.) Similarly, for an arbitrary efficient adversary A′ against decryption con-
sistency of TPKE, there exists an efficient algorithm B′ against stag decryption
consistency of the underlying TTBE and a forger F ′ of the underlying S that
satisfy

Advdc
A′,TPKE,n,k(Λ) ≤ Advstag−dc

B′,TTBE,n,k(Λ) + Advot−cma
F ′,S (Λ).

Proof. First, we consider chosen ciphertext security of TPKE. Let A be an ar-
bitrary efficient adversary against chosen ciphertext security of TPKE. Using
adversary A, we build an algorithm B that attacks stag-chosen-ciphertext secu-
rity of the underlying TTBE.
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Algorithm B proceeds as follows:

1. Initialization. Given input (n, k, Λ) algorithm B runs A on the same input to
obtain a list S (⊂ {1, · · · , n}) of the k − 1 servers that A wishes to corrupt.
Next, B runs KG on Λ to obtain a signing key sigk∗ and a verification key
verk∗. It outputs the set S and the target tag t∗ = verk∗ to the TTBE
challenger.

2. Setup. The TTBE challenger runs Setupttbe(n, k, Λ) to obtain (PK, V K, SK).
It givesB the values PK, V K, and all (j, SKj) for j ∈ S. AlgorithmB forwards
these values to A.

3. Query Phase 1. AdversaryA adaptively issues decryption queries of the form
(Ctpke, i) where Ctpke = (Cttbe, verk, σ) and i ∈ {1, · · · , n}. For each such a
query (Ctpke, i), B proceeds as follows:
(a) If VF(verk, Cttbe, σ) = invalid then B gives μi = (i,⊥) to A.
(b) Else if verk = t∗ then B outputs b

$← {0, 1} and aborts.
(c) Else B issues a decryption query ((Cttbe, verk), i) to own TTBE decryp-

tion oracle and obtains a decryption share μi in return. It gives the
decryption share μi to A.

4. Challenge. Adversary A outputs two equal-length messages M0 and M1. B
forwards these M0 and M1 to its own TTBE challenger. The TTBE chal-
lenger responds with the encryption C∗

ttbe of Mb under t∗ for some b ∈ {0, 1}.
B then runs SGN on (sigk∗, C∗

ttbe) to obtain a signature σ∗, and it gives
C∗

tpke = (C∗
ttbe, t

∗, σ∗) to A as challenge ciphertext.
5. Query Phase 2. A continues to issue decryption queries (Ctpke (�= C∗

tpke), i).
B responds as in Query Phase 1.

6. Guess. Eventually, A outputs its guess b′ ∈ {0, 1} for b. B forwards b′ to the
TTBE challenger and wins the game if b = b′.

This completes the description of algorithm B.
Let Abort be the event that B aborts in Query Phase 1 or 2 during the simu-

lation. As easily seen, as long as Abort does not happen, B’s simulation of TPKE
challenger is perfect. Therefore, we have |Advstag−cca

B,TTBE,n,k(Λ)−Advcca
A,TPKE,n,k(Λ)| <

Pr[Abort]. By definition, Abort means A’s forgery of valid signature σ under
verification key verk∗, and it leads to a forger F of S satisfying Pr[Abort] ≤
Advot−cma

F ,S . Thus, Advcca
A,TPKE,n,k(Λ) ≤ Advstag−cca

B,TTBE,n,k(Λ) + Advot−cma
F ,S (Λ).

Second, we see decryption consistency of TPKE. Let A′ be an arbitrary effi-
cient adversary against decryption consistency of TPKE. Using adversary A′, we
build an algorithm B′ that attacks stag decryption consistency of the underlying
TTBE.

Algorithm B′ proceeds exactly as algorithm B, until A′ outputs the challenge
( ˆCtpke = ( ˆCttbe, ˆverk, σ̂), S, S′), and then B′ outputs ( ˆverk, ˆCttbe, S, S′) after
verifying validity of σ̂ under ˆverk.

Just as in the case of chosen ciphertext security, let Abort be the event that B′

aborts in Query Phase 1 during the simulation. Then, as above, |Advstag−dc
B′,TPKE,n,k(Λ)

− Advdc
A′,TTBE,n,k(Λ)| < Pr[Abort]. Again, Abort leads to a forger F ′ of S, and we

have Advdc
A′,TPKE,n,k(Λ) ≤ Advstag−dc

B′,TTBE,n,k(Λ) + Advot−cma
F ′,S (Λ). �
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3 Construction of Threshold Tag-Based Encryption
Schemes

In this section, we construct two concrete stag-CCA-secure threshold tag-based
encryption schemes based on the decisional bilinear Diffie-Hellman assumption
and on the decisional linear assumption, respectively.

3.1 Preliminaries

We recall necessary primitives around bilinear maps.

Bilinear Maps. Let G be a group of prime order p with generator g. Let G1 be
another group of prime order p. A bilinear map e : G × G → G1 is a map with
the properties:

1. For all u, v ∈ G and a, b ∈ Zp, it holds e(ua, vb) = e(u, v)ab.
2. e(g, g) �= 1.
3. For all u, v, e(u, v) is efficiently computable.

Decisional Bilinear Diffie-Hellman Assumption. If a bilinear Diffie-Hellman tuple
(g, ga, gb, gc, e(g, g)abc) is indistinguishable from a bilinear random tuple
(g, ga, gb, gc, e(g, g)d), we say the decisional bilinear Diffie-Hellman assumption
holds. More formally, as for algorithm GDBDH that takes a security parameter Λ
and outputs order p, generator g, and descriptions of groups G and G1 with bilinear
map e : G×G→ G1, the following two experiments are defined. Expbdh-1

GDBDH ,A on
input Λ generates param = (p, g, G, G1, e) by GDBDH(Λ) and chooses three ran-
dom elements a, b, c from Zp. Then it invokesA on (param, g, ga, gb, gc, e(g, g)abc)
and returns its output. On a while, Expbdh-2

GDBDH ,A chooses four random elements
a, b, c, d from Zp and returns A(param, g, ga, gb, gc, e(g, g)d).

We say that the decisional bilinearDiffie-Hellman (DBDH)assumptionholds for

GDBDH if for any probabilistic polynomial time algorithmA, Advdbdh
A,GDBDH

(Λ)
def
=

∣
∣Pr[Expbdh-1

GDBDH ,A(Λ) = 1] − Pr[Expbdh-2
GDBDH ,A(Λ) = 1]

∣
∣ is a negligible function

of Λ.

Decisional Linear Assumption. If a linear tuple (g1, g2, z, gr1
1 , gr2

2 , zr1+r2) is in-
distinguishable from a random tuple (g1, g2, z, gr1

1 , gr2
2 , zs), we say the decisional

linear assumption holds. More formally, as for algorithm GDLIN that takes
a security parameter Λ and outputs order p, generator g, and descriptions of
groups G and G1 with bilinear map e : G × G → G1, the following two exper-
iments are defined. Explin-1

GDLIN ,A on input Λ generates param = (p, g, G, G1, e)
by GDLIN (Λ) and chooses four random elements u, v, r1, r2 from Zp. Then it
invokes A on (param, g, gu, gv, gr1, gur2 , gv(r1+r2)) and returns its output. On
a while, Explin-2

GDLIN ,A chooses five random elements u, v, r1, r2, s from Zp and
returns A(param, g, gu, gv, gr1 , gur2 , gvs).
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We say that the decisional linear (DLIN) assumption holds for GDLIN if for

any probabilistic polynomial time algorithm A, Advdlin
A,GDLIN

(Λ)
def
=

∣
∣Pr[Explin-1

GDLIN ,A(Λ) = 1] − Pr[Explin-2
GDLIN ,A(Λ) = 1]

∣
∣ is a negligible function

of Λ.

3.2 A Construction TTBE1 of Threshold Tag-Based Encryption
Scheme Based on the DBDH Assumption

Our first construction TTBE1 of threshold tag-based encryption scheme is ob-
tained through a simplification and “thresholding” of the identity-based encryp-
tion scheme of Boneh and Boyen [1].

As easily seen, the identity-based encryption scheme of [1] can be simplified into
a following tag-based encryption scheme. A public-key is randomly selected ele-
ments g1(= gx), g2, h1 on a bilinear group G (with generator g). The correspond-
ing secret key is x. A message M is encrypted with respect to tag t as (C, D, E) =
(gr, (gt

1h1)r, M · e(g1, g2)r). Ciphertext (C, D, E) is decrypted with respect to tag
t as M = E/e(C, g2)x if it holds e(C, gt

1h1) = e(D, g), otherwise M = ⊥.
In the threshold identity-based encryption scheme of [2], which is also based on

the identity-based scheme of [1], a decryption share is regarded as a ciphertext
of private key share corresponding to decrypter’s ID. On a while, in order to
convert the above tag-based encryption scheme into a threshold version, thanks
to the simple setting of tag-based encryption scheme, we can naturally distribute
the secret key x into shares {f(i)}i using Shamir’s secret sharing scheme [8] and
make the i-th decryption share to be (Cf(i), E) as the usual threshold version
of ElGamal encryption. More precisely TTBE1 is described in Figure 2.

Setup(n, k, Λ):
(p, g,G, G1, e)← GDBDH(Λ);

x
$← Zp, f

$← Zp[X] satisfying deg(f) = k − 1 and f(0) = x;

y, z
$← Zp, g1 ← gx, g2 ← gy, h1 ← gz;

PK = (p,G, G1, e, g, g1, g2, h1), SK = (f(1), · · · , f(n)), V K = (gf(1), · · · , gf(n));
return (PK, V K, SK).

Encrypt(PK, t,M):

r
$← Zp, C ← gr, D ← (g1

th1)
r, E ←M · e(g1, g2)

r, return Ctbe = (C, D, E).

ShareDec(PK, i, SKi = f(i), Ctbe = (C, D, ·), t):
If e(C, g1

th1) �= e(D, g) then return μi = (i,⊥) else return μi = (i, Cf(i)).

ShareVf(PK, V K = (gf(i)), Ctbe = (C, ·, ·), t, μi = (i, Ci)):

If e(Ci, g) �= e(C, gf(i)) then return invalid else return valid.

Combine(PK,V K, Ctbe = (·, ·, E), t, {μ1 = (1, C1), · · · , μk = (k, Ck)}):
If ∃i, ShareVf(PK, V Ki, Ctbe, t, μi) = invalid then return ⊥,

else return E/e(
∏k

i=1 Cλi
i , g2) using Lagrange coefficients λ1, · · · , λk

satisfying f(0) =
∑k

i=1 λif(i).

Fig. 2. Threshold Tag-Based Encryption Scheme TTBE1
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Theorem 2. Under the DBDH assumption for GDBDH , the threshold tag-based
encryption scheme TTBE1 is stag-CCA-secure.

More precisely, for an arbitrary adversary A against stag-chosen-ciphertext
security of TTBE1 that runs in time at most τ and makes at most Q decryption
queries, there exists an algorithm B for the DBDH problem on GDBDH that runs
in time at most τ plus the time to perform O(Q + n) exponentiations and O(Q)
pairing computations, and satisfies

Advstag−cca
A,TTBE1,n,k(Λ) = Advdbdh

B,GDBDH
(Λ).

For an arbitrary adversary A′ against stag decryption consistency of TTBE1, it
holds that

Advstag−dc
A′,TTBE1,n,k(Λ) = 0.

Proof. First, we consider stag-chosen-ciphertext security of TTBE1. Let A be an
arbitrary adversary that runs in time at most τ , makes at most Q decryption
queries, and has advantage Advstag−cca

A,TTBE1,n,k(Λ) in attacking TTBE1 in the game
of stag-chosen-ciphertext security. Using the adversary A, we build an algorithm
B that solves the DBDH problem on GDBDH(Λ).

Given (Λ, p, G, G1, e, g, ga, gb, gc, W ) as input, algorithm B proceeds as follows.
(The aim of B is to distinguish two cases between W = e(g, g)abc or random.)

1. Initialization. Algorithm B invokes adversaryA on input (n, k, Λ). Adversary
A outputs a target tag t∗ and a list S = {s1, · · · , sk−1}(⊂ {1, · · · , n}) of the
k − 1 servers that it wishes to corrupt.

2. Setup. Then, B does the following:
(a) B sets g1 = ga, g2 = gb and computes h1 = g−t∗

1 gγ with a random γ

( $← Zp). (This defines implicitly as x = a, y = b, z = −t∗x + γ.) B sets
PK = (p, G, G1, e, g, g1, g2, h1).

(b) Next, B picks k − 1 random integers α1, · · · , αk−1
$← Zp. (We let f ∈

Zp[X ] be a polynomial of degree k−1 defined by f(0) = x and f(si) = αi

for i = 1, · · · , k− 1. B does not know f .) B sets SK|S = (α1, · · · , αk−1).
(c) For i ∈ S, B lets ui = gαi . For i /∈ S, it computes ui = gλ0

1 (gα1)λ1 · · ·
(gαk−1)λk−1 , where λ0, · · · , λk−1(∈ Zp) are the Lagrange coefficients sat-
isfying f(i) = λ0f(0) +

∑k−1
j=1 λjf(sj). (Note ui satisfies ui = gf(i).) B

sets V K = (u1, · · · , un).
(d) B gives PK, V K and SK|S to A.

3. Phase 1. A issues decryption share queries ((Ctbe, t), i) under the constraint
that t �= t∗ and i �∈ S. First, B validates e(C, gt

1h1)
?= e(D, g) to clarify the

validity of ciphertext Ctbe = (C, D, E). If validity test fails, B gives to A
(i,⊥). Otherwise, B computes the Lagrange coefficients λ1, · · · , λk−1, λi ∈
Zp satisfying f(0) = λif(i) +

∑k−1
j=1 λjf(sj) and sets

Ci =
{

( D
Cγ )

1
t−t∗

C
∑ k−1

j=1 λjαj

}
1

λi
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and then gives to A (i, Ci) as decryption share. (If the ciphertext is valid, it
must be the case that Ctx+z = D. Then, we have D = Ctx+z = Ctx+(−t∗x+γ)

= (Cx)t−t∗Cγ . Since t �= t∗, we get Cx = (D/Cγ)
1

t−t∗ . Then, substituting
f(0) =

∑k−1
j=1 λjf(sj) + λif(i) for x, and noting Ci = Cf(i) we obtain the

above expression of Ci.)
4. Challenge. A outputs two same-length messages M0 and M1. B flips a

fair coin b ∈ {0, 1}, and responds with the challenge ciphertext C∗
tbe =

(gc, (gc)γ , MbW ). (As B sets h1 = g−t∗
1 gγ , it holds that (gc)γ = (h1g

t∗
1 )c.

Moreover, if W = e(g, g)abc, then we have Mb ·W = Mb · e(g1, g2)c and C∗
tbe

is a valid ciphertext of Mb under PK with tag t∗.)
5. Phase 2. A issues additional queries as in Phase 1, to which B responds as

before.
6. Guess. Eventually, A outputs a guess b′. B outputs 1 if b = b′, or outputs 0

otherwise.

This completes the description of algorithm B, that runs in time at most τ
plus the time to perform O(Q + n) exponentiations and O(Q) pairing compu-
tations. By the comments in the description, it is immediate that B perfectly
simulates a stag-CCA game for A if W = e(g, g)abc. When W is a random el-
ement, the view of B is independent of the choice of b. So, Advdbdh

B,GDBDH
(Λ) =

|Pr[b = b′]− 1/2| = |(1/2 + Advstag−cca
A,TTBE1,n,k(Λ))− 1/2| = Advstag−cca

A,TTBE1,n,k(Λ).

Second, we consider stag decryption consistency of TTBE1. Let A′ be an ar-
bitrary adversary with advantage Advstag−dc

A′,TTBE1,n,k(Λ) in attacking TTBE1 in the
game of stag decryption consistency. Suppose adversary A′ outputs t, Ctbe, S =
(μ1 = (1, C1), · · · , μk = (1, Ck)), S′ = (μ′

1 = (1, C′
1), · · · , μ′

k = (k, C′
k)). If those

shares μi in S are valid, they must satisfy e(Ci, g) = e(C, gf(i)), so Ci = Cf(i).
Then, it holds that

∏k
i=1 Cλi

i = C
∑ k

i=1 λif(i) = Cx. Similarly, if the shares μ′
i in

S′ are valid, we have
∏k

i=1 C′λi

i = Cx. This means Combine(PK, V K, Ctbe, t, S)
= Combine(PK, V K, Ctbe, t, S

′). Thus, Advstag−dc
A′,TTBE1,n,k(Λ) = 0. �

3.3 A Construction TTBE2 of Threshold Tag-Based Encryption
Scheme Based on the DLIN Assumption

Our second construction TTBE2 of threshold tag-based encryption scheme nat-
urally expands the Kiltz’s tag-based encryption scheme [6] to the threshold set-
ting. A secret key x1, x2 of the Kiltz’s scheme is distributed among n secret
key shares (f1(1), f2(1)), · · · , (f1(n), f2(n)) with polynomials f1, f2 satisfying
x1 = f1(0), x2 = f2(0). Decryption shares are of the form (Cf1(i)

1 , C
f2(i)
2 ).

More precisely TTBE2 is described in Figure 3.

Theorem 3. Under the DLIN assumption for GDLIN , the threshold tag-based
encryption scheme TTBE2 is stag-CCA-secure.

More precisely, for an arbitrary adversary A against stag-chosen-ciphertext
security of TTBE2 that runs in time at most τ and makes at most Q decryption
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Setup(n, k, Λ):

(p, g, G, G1, e) ← GDLIN (Λ); x1, x2
$← Zp;

f1, f2
$← Zp[X] satisfying deg(f1) = deg(f2) = k − 1 and f1(0) = x1, f2(0) = x2;

z ← gx1
1 , g2 ← z

1
x2 , y1, y2

$← Zp, u1 ← gy1
1 , u2 ← gy2

2 ;
PK = (p, G, G1, e, g1, g2, z, u1, u2), SK = ((f1(1), f2(1)), · · · , (f1(n), f2(n)));

V K = ((v11 = g
f1(1)
1 , v12 = g

f2(1)
2 ), · · · , (vn1 = g

f1(n)
1 , vn2 = g

f2(n)
2 ));

return (PK, V K, SK).

Encrypt(PK, t, M):

r1, r2
$← Zp, C1 ← gr1

1 , C2 ← gr2
2 , D1 ← (ztu1)

r1 , D2 ← (ztu2)
r2 , E ← Mzr1+r2 ;

return Ctbe = (C1, C2, D1, D2, E).

ShareDec(PK, i, SKi = (f1(i), f2(i)), Ctbe = (C1, C2, D1, D2, ·), t):
If e(C1, z

tu1) �= e(D1, g1) or e(C2, z
tu2) �= e(D2, g2) then return μi = (i,⊥),

else return μi = (i, (C
f1(i)
1 , C

f2(i)
2 )).

ShareVf(PK, V K = ((vi1, vi2)), Ctbe = (C1, C2, ·, ·, ·), t, μi = (i, (Ci1, Ci2))) :
If e(Ci1, g1) �= e(C1, vi1) or e(Ci2, g2) �= e(C2, vi2) then return invalid, else return valid.

Combine(PK, V K, Ctbe = (·, ·, ·, ·, E), t, {μ1 = (1, (C11, C12)), · · · , μk = (k, (Ck1, Ck2))}):
If ∃i, ShareVf(PK, V K, Ctbe, t, μi) = invalid then return ⊥,

else return E/
Qk

i=1(Ci1Ci2)
λi using Lagrange coefficients λ1, · · · , λk

satisfying f1(0) =
Pk

i=1 λif1(i).

Fig. 3. Threshold Tag-Based Encryption Scheme TTBE2

queries, there exists an algorithm B for the DLIN problem on GDLIN that runs
in time at most τ plus the time to perform O(Q + n) exponentiations and O(Q)
pairing computations and satisfies

Advstag−cca
A,TTBE2,n,k(Λ) = Advdbdh

B,GDLIN
(Λ).

For an arbitrary adversary A′ against stag decryption consistency of TTBE2, it
holds that

Advstag−dc
A′,TTBE2,n,k(Λ) = 0.

Proof. First, we consider stag chosen ciphertext security of TTBE2. Let A be an
arbitrary adversary that runs in time at most τ , makes at most Q decryption
queries, and has advantage Advstag−cca

A,TTBE2,n,k(Λ) in attacking TTBE2 in the game
of stag-chosen-ciphertext security. Using the adversary A, we build an algorithm
B that solves the DLIN problem of GDLIN (Λ).

Given (Λ, p, G, G1, e, g1, g2, z, gr1
1 , gr2

2 , W ) as input, algorithm B proceeds as
follows. (The aim of B is to distinguish two cases between W = zr1+r2 or ran-
dom.)

1. Initialization. Algorithm B invokes adversaryA on input (n, k, Λ). Adversary
A outputs a target tag t∗ and a list S = {s1, · · · , sk−1}(⊂ {1, · · · , n}) of the
k − 1 servers that it wishes to corrupt.

2. Setup. Then, B does the following:
(a) B picks random integers c1, c2

$← Zp and computes u1 = z−t∗gc1
1 , u2 =

z−t∗gc2
2 . (This defines implicitly as y1 = −t∗x1 + c1, y2 = −t∗x2 + c2.)

B sets PK = (p, G, G1, e, g1, g2, z, u1, u2).
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(b) Next, B picks 2k − 2 random integers α1, · · · , αk−1, β1, · · · , βk−1
$← Zp.

(We let f1, f2 ∈ Zp[X ] be two polynomials of degree k − 1 defined by
f1(0) = x1, f1(si) = αi (i = 1, · · · , k − 1) and f2(0) = x2, f2(si) =
βi (i = 1, · · · , k − 1). B does not know f1, f2.) B sets SK|S = (SKs1 =
(α1, β1), · · · , SKsk−1 = (αk−1, βk−1)).

(c) For i ∈ S, B lets V Ki = (vi1, vi2) = (gαi
1 , gβi

2 ). For i /∈ S, it computes
vi1 = zλ0(gα1

1 )λ1 · · · (gαk−1
1 )λk−1 and vi2 = zλ0(gβ1

2 )λ1 · · · (gβk−1
2 )λk−1 ,

where λ0, · · · , λk−1(∈ Zp) are the Lagrange coefficients satisfying f(i) =
λ0f(0) +

∑k−1
j=1 λjf(sj) for degree k polynomials f . (As easily seen,

(vi1, vi2) satisfies vi1 = g
f1(i)
1 , vi2 = g

f2(i)
2 .) B sets V K = (V K1 =

(v11, v12), · · · , V Kn = (vn1, vn2)).
(d) B gives PK, V K and SK|S to A.

3. Phase 1. A issues decryption share queries ((Ctbe, t), i) under the constraint
that t �= t∗ and i �∈ S. First,B validates e(C1, z

tu1)
?=e(D1, g1) and e(C2, z

tu2)
?= e(D2, g2) to clarify validity of the ciphertext Ctbe = (C1, C2, D1, D2, E). If
validity test fails, B gives to A (i,⊥). Otherwise, B computes the Lagrange
coefficients λ1, · · · , λk−1, λi ∈ Zp satisfying f(0) = λif(i) +

∑k−1
j=1 λjf(sj)

for degree k polynomials f and sets

Ci1 =
{ ( D1

C
c1
1

)
1

t−t∗

C
∑ k−1

j=1 λjαj

1

}
1

λi

, Ci2 =
{ ( D2

C
c2
2

)
1

t−t∗

C
∑ k−1

j=1 λjβj

2

}
1

λi

and then gives to A (i, (Ci1, Ci2)) as decryption share. (If the ciphertext
is valid, it must be the case that D1 = C

(t−t∗)x1+c1
1 = (Cx1

1 )t−t∗Cc1
1 . Then,

since t �= t∗, we get Cx1
1 = (D1/Cc1

1 )
1

t−t∗ . Substituting f1(0)=
∑k−1

j=1 λjf1(sj)

+ λif1(i) for x1, and noting C1i = C
f1(i)
1 , we obtain the above expression of

Ci1. Similar for Ci2.)
4. Challenge. A outputs two same-length messages M0 and M1. B flips a

fair coin b ∈ {0, 1}, and responds with the challenge ciphertext C∗
tbe =

(gr1
1 , gr2

2 , (gr1
1 )c1 , (gr2

2 )c2 , MbW ). (As B sets u1 = z−t∗gc1
1 and u2 = z−t∗gc2

2 , it
holds that (gr1

1 )c1 = (u1z
t∗)r1 , (gr2

2 )c2 = (u2z
t∗)r2 . Moreover, if W = zr1+r2 ,

then we have MbW = Mbz
r1+r2 and C∗

tbe is a valid ciphertext of Mb under
PK with tag t∗.)

5. Phase 2. A issues additional queries as in Phase 1, to which B responds as
before.

6. Guess. Eventually, A outputs a guess b′. B outputs 1 if b = b′, or outputs 0
otherwise.

This completes the description of algorithm B, that runs in time at most τ plus
the time to perform O(Q + n) exponentiations and O(Q) pairing computations.
By the comments in the description, it is immediate that B perfectly simulates
a stag-CCA game for A if W = zr1+r2 . When W is a random element, the view
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of B is independent of the choice b. So, Advdlin
B,GDLIN

(Λ) = |Pr[b = b′] − 1/2| =
|(1/2 + Advstag−cca

A,TTBE2,n,k(Λ))− 1/2| = Advstag−cca
A,TTBE2,n,k(Λ).

Second, we consider stag decryption consistency of TTBE2. Let A′ be an ar-
bitrary adversary with advantage Advstag−dc

A′,TTBE2,n,k(Λ) in attacking TTBE2 in the
game of stag decryption consistency. Suppose adversary A′ outputs t, Ctbe, S =
(μ1 = (1, (C11, C12)), · · · , μk = (k, (Ck1, Ck2))), S′ = (μ′

1 = (1, (C′
11, C

′
12)), · · · ,

μ′
k =(k, (C′

k1, C
′
k2))). If those sharesμi in S are valid, they must satisfy e(Ci1, g1)=

e(C1, g
f1(i)
1 ), e(Ci2, g2) = e(C2, g

f2(i)
2 ), so Ci1 = C

f1(i)
1 , Ci2 = C

f2(i)
2 . Then, it

holds that
∏k

i=1 Cλi

i1 = C
∑ k

i=1 λif1(i)
1 = Cx1

1 and
∏k

i=1 Cλi

i2 = C
∑ k

i=1 λif2(i)
2 =

Cx2
2 . Similarly, if the shares μ′

i in S′ are valid, we have
∏k

i=1 C′λi

i1 = Cx1
1 and

∏k
i=1 C′λi

i2 = Cx2
2 . This means Combine(PK, V K, Ctbe, t, S) = Combine

(PK, V K, Ctbe, t, S
′). Thus, Advstag−dc

A′,TTBE2,n,k(Λ) = 0. �

4 Construction of Threshold Public Key Encryption
Schemes

By applying the conversion TT2TP in Section 2 to the two threshold tag-based
encryption schemes TTBE1, TTBE2 in Section 3, we obtain two threshold public
key encryption schemes TPKE1, TPKE2 that are both CCA-secure by Theorem
1, Theorem 2 and Theorem 3:

Theorem 4. Let S be a strong one-time signature.

– Under the DBDH assumption, TPKE1 = TT 2TP (TTBE1, S) is a CCA-
secure threshold public key encryption scheme.

– Under the DLIN assumption, TPKE2 = TT 2TP (TTBE2, S) is a CCA-secure
threshold public key encryption scheme.

Our threshold public key encryption schemes TPKE1 and TPKE2 are more simple
than the construction BBH given by Boneh, Boyen and Halevi [2]. It is because
our constructions are based on the tag-based schemes which is more simple than
the ID-scheme used by BBH.

Instantly, Table 1 shows a comparison of efficiency among TPKE1, TPKE2
and BBH. The table shows the number of pairings, multi-exponentiations and
regular-exponentiations required in operations of those schemes. (The entries of

Table 1. Efficiency Comparison among TPKE1, TPKE2 and BBH

Scheme Assumption Encrypt ShareDec ShareVf Combine reduction
�pairings + [�multi−exp., �reg−exp.]

BBH DBDH 1 + [1, 3] 2 + [1, 2] 2 + [0, 1] 2 + [2, 0] tight
TPKE1 DBDH 1 + [1, 3] 2 + [0, 2] 2 + [0, 0] 1 + [1, 0] tight
TPKE2 DLIN 0 + [2, 3] 4 + [0, 3] 4 + [0, 0] 0 + [1, 0] tight
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Combine do not include costs for ShareVf.) As shown, TPKE1 is more efficient
than BBH. TPKE1 requires less number of exponentiation both in ShareDec,
ShareVf and Combine than BBH. On the other hand, TPKE2 has an advantage
that it is most efficient both in Encrypt and Combine because it requires no
computation of bilinear map in those operations.

5 Conclusion

In this paper, we proposed a notion of threshold tag-based encryption schemes
and showed a conversion from any stag-CCA-secure threshold tag-based encryp-
tion schemes to CCA-secure threshold public-key encryption schemes. We gave
two constructions of threshold tag-based encryption schemes and obtained two
constructions of threshold public-key encryption schemes, using that conversion.
Those schemes are non-interactive, robust, proved secure without random oracle
model and are more efficient than the construction by Boneh, Boyen and Halevi [2].
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