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Abstract

Our modern society is highly digitized. Blockchain is an underlying technology that consti-

tutes society. Privacy protection is a significant theme in society. For privacy protection,

homomorphic encryption is a promising technology capable of computing the state of en-

crypted data. In this thesis, we study privacy-preserving blockchain with homomorphic

encryption. There are two challenges in achieving privacy-preserving blockchain. One is

confidentiality in the transaction content. The other is unlinkability in the user identity

of the transaction. We have achieved both in the permissioned blockchain. Furthermore,

we realized confidentiality and unlinkability in the permissionless blockchain.

Traceability in permissioned blockchain. We have achieved privacy protection and

high transparency in a permissioned blockchain. Suppose that there is a sidechain that

connects the permissionless blockchain and the permissioned blockchain. The behavior

in the permissioned blockchain is almost a black box from the perspective of the per-

missionless blockchain. We present a novel concept of traceability consisting of three

properties. The properties are as follows. First, trade privacy says that who trades with

whom and at what asset amount. Second, preservation says that the total amount inside

the permissioned blockchain is immutable. We take inflow and outflow the permissionless

blockchain into consideration. Finally, noninvolvement says that some members in the

permissioned blockchain are not involved in some trades. One can prove that specified

members performed the transaction. Our approach is as follows. We model traceabil-

ity with the hidden Markov model. The proof of traceability requires the calculation of

more than quadratic degrees. Therefore we encrypt this model by using homomorphic

encryption. The establishment of the original model is verifiable by the zero-knowledge

proof.

v
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Confidential and auditable payments. We construct the confidential and auditable

payments scheme. This proposal eliminates concerns about money laundering caused

by excessively confidential transactions and contributes to blockchain’s sound use. Our

approach is as follows. For confidentiality, we keep the transaction confidential by writing

ciphertexts of transactions in a ledger. The soundness of the zero-knowledge proof realizes

the soundness of the scheme. For auditability, a court or an authority controls a unique

secret key of the ledger’s ciphertexts. They can enforce confidential transactions open

with the secret key according to the proper procedure.

Anonymous probabilistic payment in payment hub. Privacy protection and scal-

ability are significant problems with blockchain. We propose an anonymous probabilistic

payment under the general functionality for solving the problems. Suppose that a payer

pays a payee through a tumbler. We realize the anonymity, which says that the link, which

payer pays which payee via the tumbler within an epoch, is broken. The epoch is the

period when one completes transactions. Our proposal includes a probabilistic payment.

In the probabilistic payment, one pays an ordinary mount m with a certain probability

p, and one pays a small amount mp as an expected value. It contributes scalability since

one can reduce the 1/p times transactions. We also introduce a novel fractional oblivious

transfer for the realization of the probabilistic payment. The functionality required for

our proposal is the hashed time lock contract that various cryptocurrencies use. This

request is general, not restricted to any particular cryptocurrency.



Acknowledgments

Firstly, I much appreciate my supervisor, Professor Akira Otsuka. Fortunately, when I

started studying blockchain two years ago, he was willing to accept that he supervises

me. He led me to the frontier in the blockchain. I could enjoy days full of intellectual

excitement here. He has mentored me for these two years. I could not complete this work

without his outstanding mentorship. I appreciate him for everything he has done for me.

I am incredibly grateful to Professor Seiko Arita, Professor Hiroshi Doi, and Professor

Kazuyuki Shudo for their constructive suggestions and valuable advice. I was able to

take the first step in the lattice-based cryptography from the introductory paper in the

bulletin written by Prof. Arita. After that, he discussed the lattice-based cryptography

and gave much guidance to me. Prof. Doi discussed the zero-knowledge proof and taught

me various things. Prof. Arita and Prof. Doi gave me much advice and notices while in

school. Prof. Shudo encouraged me in Atlanta, where I visited as my first international

conference. I am delighted that he is willing to take on the review.

I am thankful to the members of Otsuka Laboratory. They have given me many

cooperations, notices, and supports through my laboratory life. In particular, they taught

us various aspects of blockchain.

I want to show my appreciation to my managers and colleagues for their understand-

ing and cooperation. I appreciate that Mitsubishi Chemical Corporation and Mitsubishi

Chemical Systems, Inc have supported this work. They gave me the precious opportunity

of my studying blockchain in the Institute of Information Security. I could not fulfill this

work without their excellent cooperation.

Finally, I kindly thank my family. They always encourage and help me. I sincerely

appreciate them for their affectionateness while studying and staying at home.

vii





List of Figures

2.1 Security challenge experiment for pseudorandomness of ciphertexts. . . . . 12

2.2 Zero-knowledge proof of knowledge of RLWE secrets s, e such that y =

as+ e (Protocol 3.2. in [BCK+14]) . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Non-interactive zero-knowledge proof of a ciphertext of zero regarding RLWE

encryption (Figure 3 in [MO20c]) . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Non-interactive zero-knowledge proof of plaintext knowledge regarding RLWE

encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Security challenge experiment for trade privacy . . . . . . . . . . . . . . . 45

3.2 Games G0
TP,A(λ) and G1

TP,A(λ) in the proof of Theorem 3.1. . . . . . . . . 45

4.1 Security challenge experiment for ledger indistinguishability . . . . . . . . 56

4.2 Security challenge experiment for non-malleability . . . . . . . . . . . . . . 57

4.3 Construction of the CAP scheme . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Security challenge experiment for plaintexts . . . . . . . . . . . . . . . . . 61

5.1 Overview of the proposed protocol . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Trapdoor by identity-based encryption [DLP14] . . . . . . . . . . . . . . . 69

5.3 Syntax of NIZK [CGL+16] . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 The properties of NIZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Syntax of the scheme and its simulator [CGL+16] . . . . . . . . . . . . . . 74

5.6 Construction of the ring fractional oblivious transfer . . . . . . . . . . . . . 77

5.7 Simulator of the ring fractional oblivious transfer . . . . . . . . . . . . . . 79

5.8 Puzzle solver protocol. We model H and Hprg as random oracles. . . . . . 84

5.9 Ideal functionality Fsolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.10 Simulator for the puzzle solver protocol in the case that Alice is corrupt . . 86

ix



x LIST OF FIGURES

5.11 Simulator for the puzzle solver protocol in the case that the tumbler is

corrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.12 Puzzle promise protocol. We model H, H ′ and Hshk as random oracles. . . 90

5.13 Ideal functionality Fpromise sign (Fig. 8 in [HAB+16]) . . . . . . . . . . . . . 91

5.14 Simulator for the puzzle promise protocol in the case that Bob is corrupt . 92

5.15 Simulator for the puzzle promise protocol in the case that the tumbler is

corrupt (Appendix F in [HAB+16]) . . . . . . . . . . . . . . . . . . . . . . 93



List of Tables

1.1 Overview of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Properties’ comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Traceability’s Properties. Zether achieves either noninvolvement or trade

privacy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Overview of parameters in the model . . . . . . . . . . . . . . . . . . . . . 36

3.3 Numbers of additions calculable with somewhat homomorphic encryption . 50

3.4 Proof size for 128-bit security . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



xii LIST OF TABLES



Contents

Publication list iii

Abstract v

Acknowledgments vii

List of Figures ix

List of Tables xi

Contents xiii

1 Introduction 1

1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Homomorphic encryption . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Zero-knowledge proof . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Traceability in permissioned blockchain . . . . . . . . . . . . . . . . 4

1.2.2 Confidential and auditable payments . . . . . . . . . . . . . . . . . 6

1.2.3 Anonymous probabilistic payment in payment hub . . . . . . . . . 7

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Building blocks 9

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Ring learning with errors encryption . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Discrete Gaussian distribution . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

xiii



xiv CONTENTS

2.2.3 RLWE encryption and its syntax . . . . . . . . . . . . . . . . . . . 11

2.3 Zero-knowledge proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Pedersen commitments . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Relation for the key generation . . . . . . . . . . . . . . . . . . . . 15

2.3.5 Relation for the ciphertext of zero . . . . . . . . . . . . . . . . . . . 16

2.3.6 Relation for valid ciphertext . . . . . . . . . . . . . . . . . . . . . . 22

3 Traceability in permissioned blockchain 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Traceability and modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Encrypted model and its security . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Encrypted traceability model . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Security of trade privacy . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Non-interactive zero-knowledge proof . . . . . . . . . . . . . . . . . 47

3.4 Encoding and its efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Ring isomorphism encoding . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Somewhat homomorphic encryption . . . . . . . . . . . . . . . . . . 48

3.4.3 Efficiency of zero-knowledge proof . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Confidential and auditable payments 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Secure CAP scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



CONTENTS xv

4.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Anonymous probabilistic payment in payment hub 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.4 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Ring fractional oblivious transfer . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Trapdoor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Non-interactive zero-knowledge proof . . . . . . . . . . . . . . . . . 69

5.2.3 Syntax and definition . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.4 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Protocol and security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Puzzle solver protocol . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Puzzle promise protocol . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion 97

Bibliography 99



xvi CONTENTS



Chapter 1

Introduction

In this chapter, we describe the introduction consisting of the backgrounds, contributions,

and organization.

1.1 Backgrounds

This section introduces three breakthroughs, blockchain, homomorphic encryption, and

zero-knowledge proof that are deeply involved in this thesis as the backgrounds.

1.1.1 Blockchain

The first breakthrough is the blockchain. Blockchain is the underlying technology of

Bitcoin. Nakamoto [Nak08] published a paper on Bitcoin in 2008. Bitcoin is a payment

system that does not require a trusted third party, such as a bank. Participants called

nodes individually manage their ledger that records transactions. Each node agrees on

the new transactions and updates its ledger according to a consensus algorithm. Bitcoin

realizes a decentralized payment system in this way.

Wüst et al. [WG18] classified blockchain into the following two types from the view-

point of participation. One is a permissioned blockchain in which only authorized mem-

bers can participate. Hyperledger Fabric [ABB+18] is an implementation of permissioned

blockchains. The other is a permissionless blockchain that does not require permission to

participate. Bitcoin, Ethereum [Woo14], and many cryptocurrencies are implementations

of permissionless blockchains.

1



2 CHAPTER 1. INTRODUCTION

1.1.2 Homomorphic encryption

The second breakthrough is the fully homomorphic encryption. Fully homomorphic en-

cryption is capable of both addition and multiplication in ciphertext state. It had been

an open problem for about 30 years since the concept appeared. Gentry [Gen09] firstly

announced fully homomorphic encryption in 2009.

After this breakthrough, various studies have sprouted. One direction of the studies is

regarding an efficient scheme. The first realization is infeasible because a ciphertext size

is too large. Regev [Reg09] defined the Learning With Errors (LWE) problem. He proved

that the LWE problem results from a worst-case lattice problem, such as the shortest

vector problem. Lyubashevsky et al. [LPR13] introduced the Ring Learning With Er-

rors (RLWE) problem, which is an algebraic variant of the LWE problem. It is more

efficient than the LWE problem, and the same level of safety is also guaranteed. Several

schemes [BV11, FV12, BGV14] based on the RLWE problem were proposed. Also, sev-

eral implementations [HS14,RR18,CLP17] based on these schemes are publicly available.

López-Alt et al. [LATV12] proposed NTRU-like fully homomorphic encryption. Acar et

al. [AAUC18] evaluated that the scheme is efficient but needs the new Decisional Small

Polynomial Ratio (DSPR) assumption. We mainly consider homomorphic encryption

based on the RLWE problem in this thesis.

Another direction is the lattice-based protocols. The RLWE scheme is the lattice-

based cryptography. It has one aspect as post-quantum cryptography. For this rea-

son, lattice-based protocols are one of the most important studies. Key exchange pro-

tocols [Pei14, BCNS15, ADPS16] and signature protocol [Lyu12] are proposed. Several

zero-knowledge proofs that can indicate the plaintext knowledge to a verifier have been

proposed [BCK+14,BDLN16,PR17].

1.1.3 Zero-knowledge proof

The third breakthrough is zero-knowledge proof. A prover having secret convinces a

verifier that the proposition on the secret is correct without any knowledge other than

being correct. Goldwasser et al. [GMR89] firstly formulated this method. The zero-

knowledge proof satisfies the following three conditions:

Completeness. A prover can convince a verifier if the prover has a true secret.
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Soundness. If a cheating prover has no true secret, then the verifier can recognize that

it is false.

Zero-knowledge. A cheating verifier attempting to steal the secret from a prover cannot

obtain any knowledge other than ”the proposition is true.”

1.2 Contributions

Concerning blockchain, Bitcoin started operation in 2009. Technology has spread in

advance, and society is following behind. There are issues to be solved before we can

widely use blockchain in the real world. Throughput and privacy protection are significant

issues.

Let us describe privacy protection. There are many studies on the privacy-preserving

blockchain. Zhang et al. [ZXL19] classify seven characteristics as the characteristics of

privacy: consistency, integrity, availability, prevention of double-spending, anonymity,

confidentiality, and unlinkability. Bitcoin has already realized the first five characteristics.

The other two are challenging. The first is the confidentiality of the transaction. That is

the privacy of the transaction content. In the distributed ledger, each participant needs to

verify the contents. Considering naive, it becomes necessary to disclose the contents of the

transaction. However, this violates privacy protection. The other is the unlinkability of

transactions. That is identity-related privacy. The transaction links the payer and payee

typically. One can know the balance and trading frequency of the trader by analyzing

the links of transactions. Breaking the transaction link is necessary to protect privacy.

In the real world, blockchain not only keeps the contents secret but also is transparent.

That is two sides of the same coin. For blockchain widely used in the real world, we

believe blockchain needs to maintain the contents verifiable while keeping them private.

We propose these blockchains in Chapters 3 and 4.

Let us state throughput. For example, payment processing is limited to once every 10

minute with Bitcoin. This throughput is much lower than the performance of credit card

payments. If an open blockchain is unnecessary, one can adapt permissioned blockchain

to get high throughput. Permissioned blockchain deals with more transactions than per-

missionless blockchain. We realize privacy-preserving permissioned blockchain in Chapter

3. For high throughput in permissionless blockchain, probabilistic payment is promis-
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ing. Probabilistic payment reduces transaction volume and realizes high throughput. We

achieve unlinkable and probabilistic payment in Chapter 5.

We show the overview of the contributions in Table 1.1. Chapter 3 achieves everything.

However, the achievement is limited to a permisssioned blockchain. Chapter 4 realizes

private and auditable permissionless blockchain. We focus on the first two in Chapter 4.

Moreover, we focus on the next two in Chapter 5. In principle, a combination of these

is a proposal that satisfies all. For blockchain widely used in the real world, we append

to factors such as public verifiability and improvement of throughput. In this thesis, we

study such privacy-preserving blockchain. We describe our contributions together with

our motivations and the related works in detail as follows.

Table 1.1: Overview of the contributions

public verifiability confidentiality unlinkability high throughput
Bitcoin yes no no no

Chapter 3 yes yes yes yes
Chapter 4 yes yes no no
Chapter 5 no no yes yes

1.2.1 Traceability in permissioned blockchain

Motivation. Processing transactions in the blockchain, we face low throughput and

the scalability problem. Since we solve the problems, there are off-chain technologies

that we can process transactions outside the blockchain (e.g., Lightning network [PD16]).

Sidechain is an off-chain technology that connects a permissioned blockchain and a per-

missionless blockchain at the same layer level. Dilly et al. [DPW+16] have proposed this

technique connecting between Bitcoin and their permissioned blockchain Liquid. Using

this technology, we can transfer assets through a permissionless blockchain while enjoying

high throughput processing in a permissioned blockchain.

A permissioned blockchain is a black box to outsiders. Corporations often use a permis-

sioned blockchain together with authorized participants. They also want to protect trade

privacy by keeping their transaction information secret in commercial activities. How-

ever, they need to disclose various types of information to fulfill their social responsibility.

Transparency is vital for corporate activities. They must balance both trade privacy and
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transparency. They need to share the contents of the permissioned blockchain with not

only participants but also outsiders.

Related work. Let us compare the contribution of our work with the concurrent works

[DPW+16, PBF+19, BAZB20] in Table 1.2. We compare from the perspective of the

following three properties:

Trade privacy. Who trades with whom and at what asset amount.

Preservation. The total amount inside the permissioned blockchain, including deposits

and withdrawals to the permissionless blockchain, is stable.

Noninvolvement. Some members in the permissioned blockchain are not involved in

some trades. One can prove that specified members performed the transaction.

The pool account to a permissionless blockchain is public in Dilly et al. [DPW+16].

There are no unauthorized deposits or withdrawals in this account. Thus, preservation

holds, although Dilly et al. do not specify this matter. Poelstra et al. [PBF+19] mention

that there is no unauthorized increase or decrease in coin history, and the number of coins

traded is concealed. However, the sender and receiver must be public. Zether [BAZB20] is

the work on remittance with anonymous accounts at Ethereum. Zether executes deposit

and withdrawal while preserving the whole balance. The balance between the sender and

the receiver and the transfer amount can be kept confidential. There is no defined way to

indicate noninvolvement later. Dummy participants must be involved in the transaction

from the beginning. It is difficult for Zether to achieve noninvolvement and trade privacy

simultaneously.

Table 1.2: Properties’ comparison

Preservation Noninvolvement Trade privacy
Dilly et al. [DPW+16] yes no no

Poelstra et al. [PBF+19] yes yes no
Zether [BAZB20] yes yes/no no/yes

Our work yes yes yes

Contribution. We have achieved privacy protection and high transparency in a per-

missioned blockchain. To improve transparency under privacy protection, we present

the traceability in the permissioned blockchain consisting of the three properties: trade
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privacy, preservation, and noninvolvement. Our approach is as follows. We model the

traceability based on the hidden Markov model. Since the calculation of more than

quadratic degrees is necessary, we encrypt this model by homomorphic encryption. We

can construct an encrypted model by employing somewhat homomorphic encryption. The

zero-knowledge proof indicates the establishment of the original model. The proof is a

non-interactive zero-knowledge proof of the knowledge that the plaintext is equal to zero.

This is an adaptation of Benhamouda et al. [BCK+14].

1.2.2 Confidential and auditable payments

Motivation. Since Bitcoin makes transaction information public, Bitcoin is transpar-

ent. However, a bank typically keeps the user’s transaction information confidential. One

hopes that blockchain also keeps transaction information concealed. There are several

works realizing anonymity and confidentiality but do not have a forcibly auditable func-

tionality. It is a problem that excessive confidentiality of transaction information may

cause money laundering.

Related work. There are several works realizing anonymity and confidentiality. Ze-

rocoin [MGGR13] and Zerocash [SCG+14] are extensions based on Bitcoin. They real-

ized strong anonymity and confidentiality by designing anonymous coins that skillfully

combined commitments. Zether [BAZB20] is an extension based on Ethereum. How-

ever, neither Zerocoin, Zerocash, nor Zether is forcibly auditable because of their strong

anonymity and confidentiality.

Contribution. We construct the confidential and auditable payments scheme. The

scheme allows a court or an authority to audit transactions while keeping the transaction

information confidential. The scheme eliminates concerns about money laundering and

contributes to the sound use of blockchain. Its characteristics are as follows.

• All the transactions are confidential by writing their ciphertexts in a ledger.

• The ownership and the transfer of it are provable by zero-knowledge proof. The

soundness of the zero-knowledge proof can realize the soundness of the scheme.

• A court or authority controls a unique secret key of the ciphertexts in the ledger.
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They can enforce confidential transactions open with the secret key according to

the appropriate procedure.

1.2.3 Anonymous probabilistic payment in payment hub

Motivation. Privacy protection and scalability are significant problems with blockchain.

However, there are a few proposals to solve these problems at the same time.

Let us describe privacy protection. Bitcoin publicly records each person’s transaction

history on its distributed ledgers. Since all transactions are open, miners can verify if the

deals on the blockchain are correct. However, privacy is not protected. Many proposals

keep transactions confidential while maintaining the verifiability.

Let us explain scalability. It is costly to write all the small transactions into the

blockchain. The payment of a small amount of money is called micropayment. For

micropayment, Wheeler [Whe97] and Rivest [Riv97] proposed a probabilistic payment

before blockchain appears. The probabilistic payment reduces costs for micropayment.

One pays an ordinary mount m with a certain probability p. One pays a small amount mp

as an expected value. By the probability p (e.g. p = 0.1 ∼ 0.001), one can reduce 1/p times

transactions. Micropay [Ps15], the DAM scheme [CGL+17] and Microcash [ABC20] have

proposed a new micropayment on the blockchain. Micropayment is attracting attention

as one of the leading solutions for scalability in the blockchain.

Related work. Let us confirm formerly anonymous cryptocurrencies. Zerocash [SCG+14]

is a famous anonymous cryptocurrency and is implemented as ZCash. Regarding ZCash,

their group has proposed continuous researches such as BOLT [GM17] and DAM scheme

[CGL+17]. Monero is also a famous anonymous cryptocurrency and is provided with

incredible works [Noe15, SALY17, YSL+20, MSRL+19]. Next, let us confirm studies to

realize anonymity for existing cryptocurrencies by using off-chain technology. TumbleBit

[HAB+17] is compatible with Bitcoin. Zether [BAZB20] is compatible with Ethereum.

Wheeler [Whe97] and Rivest [Riv97] proposed a probabilistic payment. Micropay

[Ps15] is compatible with Bitcoin. The DAM scheme, which is the extension of anonymous

ZCash, also realizes a probabilistic payment.

Bellare and Micali [BM90] and Bellare and Rivest [BR99] proposed the fractional

oblivious transfer based on the computational Diffie-Hellman assumption as the early
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works. The DAM scheme also proposed a novel fractional oblivious transfer based on the

decisional Diffie-Hellman assumption as fractional message transfer [CGL+17, CGL+16].

( [CGL+16] is the full version of [CGL+17].)

Brakerski and Döttling proposed an oblivious transfer based on the LWE problem

[BD18]. This work is the first oblivious transfer in the post-quantum cryptography. Liu

and Hu first proposed an efficient 1-out-of-2 oblivious transfer on the RLWE problem

and extends 1-out-of-n oblivious transfer [LH19]. To the best of our knowledge, we first

propose the fractional oblivious transfer over the ring.

Contribution. We propose an anonymous probabilistic payment. It aims to solve both

scalability and privacy protection. We realize the anonymity, which is ”k-anonymity in an

epoch.” TumbleBit [HAB+17] and their earlier work [HBG16] mentioned this definition.

Anonymity says that the link, which payer pays which payee via a tumbler within an

epoch, is broken. Even a tumbler never knows this link. The ”k” is the number of

participants trading via the tumbler. The epoch is the period during which transactions

are completed. Our proposal includes a probabilistic payment. One can reduce 1/p times

transactions, since one pays with a certain probability p (e.g. p = 0.1 ∼ 0.001). We

introduce a novel fractional oblivious transfer for a probabilistic payment. We call it

the ring fractional oblivious transfer since this is based on the RLWE encryption. The

functionality required for our proposal is the hashed time lock contract. This request is

general, not restricted to any particular cryptocurrency.

1.3 Organization

Let us present the organization in this thesis. In Chapter 2, we describe the building

blocks. We focus on RLWE encryption and zero-knowledge proof. In Chapter 3, we

describe the first work, titled ”Traceability in permissioned blockchain.” It realizes both

confidentiality and transparency in the permissioned blockchain. We call this meaning-

ful traceability. In Chapter 4, we state the second work, titled ”Confidential and au-

ditable payments.” It realizes confidential and auditable payments in the permissionless

blockchain. In Chapter 5, we mention the third work, titled ”Anonymous probabilistic

payment in payment hub.” It realizes an anonymous probabilistic payment, introducing

a novel fractional oblivious transfer. In Chapter 6, we conclude this thesis.



Chapter 2

Building blocks

This chapter focuses on the ring learning with errors (RLWE) encryption and zero-

knowledge proof.

2.1 Notation

Let N,Z,Q and R be the set of natural numbers, the set of integers, the set of rational

numbers and the set of real numbers, respectively. Let the finite field Zq = Z/qZ =

{0, 1, . . . , q − 1}, where q is a prime number. Let Z[X] be the ring of polynomials over

the integers. Let Φl ∈ Z[X] be the l-th cyclotomic polynomial. We set l to a power

of 2. We have the cyclotomic polynomial Φl = Xd + 1, where d = φ(l) and φ is the

Euler function. Let the ring of integers R = Z[X]/〈Xd + 1〉, and let Rq = Zq[X]/〈Xd +

1〉 = Z[X]/〈Xd + 1, q〉. Rq is the ring of integers R modulo q. We identify a vector

(a0, . . . , ad−1) ∈ Zd with a polynomial a0 + a1X + · · · + ad−1X
d−1 ∈ R. We denote the

norms of a = a0 + a1X + · · ·+ ad−1X
d−1 ∈ R as follows. |ai| is the absolute value of ai.

• l2-norm |a| =
√
a2

0 + a2
1 + · · ·+ a2

d−1

• l∞-norm |a|∞ = max (|a0|, |a1|, . . . , |ad−1|)

If ∀c ∈ N, ∃nc such that ∀n > nc and f(n) < 1/nc, then we denote the function f as a

negligible function negl(n). If an element a is sampled randomly from a distribution A or a

uniform distribution over the set A, then we denote a
$←− A with dollar sign. We denote the

Big O notation Õ(·), which is called Bachmann-Landau notation or asymptotic notation.

9
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We denote the ω notation ω(f(n)), which is an arbitrary function growing asymptotically

faster than f(n). We denote an oracle as O.

2.2 Ring learning with errors encryption

In this section, we introduce the definitions regarding the ring learning with errors (RLWE)

encryption.

2.2.1 Discrete Gaussian distribution

We describe the discrete Gaussian distribution.

• ρdv,σ(x) = ( 1√
2πσ

)de
−|x−v|2

2σ2 is the continuous normal distribution over Rd centered at

v with standard deviation σ. If v = 0, then we write ρdv,σ as ρdσ.

• Dd
v,σ(x) = ρdv,σ(x)/ρdσ(Zd) is the discrete normal distribution over Zd centered at

v ∈ Zd with standard deviation σ. The quantity ρdσ(Zd) = Σz∈Zdρ
d
σ(z) is just

a normalized quantity. It is necessary to express the function as a probability

distribution. We also mention that ∀v ∈ Zd, ρdv,σ(Zd) = ρdσ(Zd). The scaling factor

is the same for all v. If the dimension d is clear from the context, then we omit d

and write Dd
σ as Dσ. We also denote Dσ as χ.

We introduce the below lemma regarding the discrete Gaussian distribution.

Lemma 2.1 (Lemma 4.4 in [MR07]). Let d ∈ N. For any number σ > ω(
√

log d), we

have

Pr
x

$←−Dσ
[|x|∞ > σ

√
d] ≤ 2−d+1.

Remark 2.1. According to Lemma 2.1, |x| ≤ B with overwhelming probability if x
$←− Dσ.

B is a constant value.

2.2.2 Assumption

Let us present the problems over the ring as follows.

Definition 2.1 (Ring learning with errors (RLWEφ,q,χ) problem). Let φ(X) ∈ Z[X] be

a polynomial of degree d, let q ∈ Z be a prime integer, let χ denote a distribution over
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the ring R = Z[X]/〈φ(X)〉, and let Rq = R/qR. The ring learning with errors problem

RLWEφ,q,χ is to distinguish between the following two distributions: (a, y) ∈ R2
q such that

a
$←− Rq, s, e

$←− χ and y = as+ e, and (a, y)
$←− R2

q.

The RLWE assumption indicates that the RLWE problem is hard for any probabilistic

polynomial time (PPT) algorithm. The RLWE assumption still holds even if we choose

the secret s according to the error distribution Dσ rather than uniformly [LPR13].

Definition 2.2 (Decisional small polynomial ratio (DSPRφ,q,χ) problem (Definition 3.4

in [LATV12])). Let φ(X) ∈ Z[X] be a polynomial of degree d, let q ∈ Z be a prime in-

teger, and let χ denote a distribution over the ring R = Z[X]/〈φ(X)〉. The decisional

small polynomial ratio problem DSPRφ,q,χ is to distinguish between the following two dis-

tributions: a polynomial h = g/f , where f and g are sampled from the distribution χ

(conditioned on f being invertible over Rq = R/qR), and a polynomial h
$←− Rq.

According to [LATV12], let us explain a standard deviation of the discrete Gaussian

distribution Dσ and DSPR assumption. It is known that the DSPR problem is hard if

the standard deviation is significant. For the calculation using homomorphic encryption,

we want to take a small one. In this case, it is assumed that the DSPR problem is still

hard. This assumption is called the DSPR assumption.

2.2.3 RLWE encryption and its syntax

Now we introduce Brakerski-Vaikuntanathan (BV) scheme [BV11]. We describe plaintext

space, key generation, encryption and decryption as follows.

• The plaintext space M = Rp = Z[X]/〈Xd + 1, p〉.

• To generate key, a, s
$←− Rq, es

$←− Dσ, b = as+ es, where (a, b) is a public key and

s is a secret key.

• To encrypt a plaintext m ∈ M, choose a set of randomness v, e, f
$←− Dσ, and

compute the ciphertext c = (c1, c2) = (bv + pe+m, av + pf) ∈ C.

• To decrypt c = (c1, c2) with secret key s and obtain a plaintext m, compute m =

(c1 − s · c2 mod q) mod p.

We also introduce the syntax of the RLWE scheme as follows.
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Definition 2.3 (Syntax of the RLWE scheme (Definition 6 in [BKS19])). We describe

the RLWE scheme represented by a tuple of probabilistic polynomial time algorithms

RLWE := (RLWE.Gen,RLWE.Enc,RLWE.Dec)

with the following syntax. We denote a message space as M and a ciphertext space as C.

• RLWE.Gen(1λ) returns a key pair (pk, sk) from an input 1λ.

• RLWE.Enc(pk,m, r) returns a ciphertext c ∈ C from an input of the public key pk,

a message m ∈M and a randomness r.

• RLWE.Dec(sk, c) returns a message m ∈M or ⊥ from an input of the secret key sk

and a ciphertext c ∈ C.

Definition 2.4 (Pseudorandomness of ciphertexts (Definition 7 in [BKS19])). We say a

RLWE scheme RLWE := (RLWE.Gen,RLWE.Enc,RLWE.Dec) satisfies pseudorandomness

of ciphertexts or simply RLWE is secure, if for every PPT adversary A the advantage

Advpr
RLWE,A(λ) :=| Pr[Exppr

RLWE,A(λ) = 1]− 1/2 |

is negligible in λ, where Exppr
RLWE,A(λ) is as defined in Fig. 2.1.

Exppr
RLWE,A(λ) :

(pk, sk)← RLWE.Gen(1λ)
β ← {0, 1}
β′ ← AORLWE.Enc(·)(1λ, pk)
if β = β′ return 1
else return 0

ORLWE.Enc(m) :
if β = 0
c← RLWE.Enc(pk,m)

else
c

$←− R2
q

return c

Figure 2.1: Security challenge experiment for pseudorandomness of ciphertexts.

Remark 2.2. The randomness (that is, ”noise”) in the ciphertext increases with the

addition and multiplication. For noise growth, multiplication is more remarkable than

addition. To reduce the increasing noise, one can apply the processing called bootstrap-

ping. However, this is costly. Homomorphic encryption without the bootstrapping is called

somewhat homomorphic encryption.
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2.3 Zero-knowledge proof

In this section, we present the zero-knowledge proofs of knowledge for RLWE encryption.

2.3.1 Pedersen commitments

Let us introduce Pedersen commitments [Ped92]. Given a family of prime order groups

{G(λ)}λ∈N such that the discrete logarithm problem is hard in G(λ) with security param-

eter λ, let q̃ = q̃(λ) be the order of G = G(λ). We denote all elements with order q̃ with

a tilde in the following. We write the group G(λ) additively.

• CSetup: This algorithm chooses g̃, h̃
$←− G and outputs cpars = (g̃, h̃).

• Commit: To commit to a message m ∈ Zq̃, it first chooses r
$←− Zq̃. It then outputs

a pair (c̃mt, o) = (mg̃ + rh̃, r).

• COpen: Given a commitment c̃mt, an opening o, a public key cpars and a message

m, it outputs accept if and only if (c̃mt, o)
?
= (mg̃ + rh̃, r).

Lemma 2.2 (Theorem 2.1. in [BCK+14]). Under the discrete logarithm assumption for

G, the given commitment scheme is perfectly hiding and is computationally binding.

In this chapter’s protocols, we make use of the above scheme as an auxiliary commit-

ment scheme. We denote it as (aCSetup, aCCommit, aCOpen).

2.3.2 Rejection sampling

To realize zero-knowledge proof, the technique of rejection sampling is useful [Lyu09,

Lyu12]. The technique can conceal the information of witness. Therefore, we apply the

technique when a prover sends the response to a verifier.

Lemma 2.3 (Theorem 4.6 in [Lyu12]). Let V be a subset of Zm in which all elements have

norms less than T , σ be some element in R such that σ = ω(T
√

logm), and h : V → R

be a probability distribution. Then, there exists a constant M = Õ(1) such that the

distribution of the following algorithm A:

1. v
$←− h

2. z
$←− Dm

v,σ
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3. output (z, v) with probability min( Dmσ (z)
MDmv,σ(z)

, 1)

is within statistical distance 2−ω(logm)

M
of the distribution of the following algorithm F :

1. v
$←− h

2. z
$←− Dm

σ

3. output (z, v) with probability 1/M

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M
. More con-

cretely, if σ = αT for any positive α, then M = e12/α+1/(2α2), the output of algorithm A

is within statistical distance 2−100

M
of the output of F , and the probability that A outputs

something is at least 1−2−100

M
.

2.3.3 Definition

We describe the formal definition of the Σ′-protocol, the protocol and its theorem proving

this relationship.

Definition 2.5 (Definition 2.5. in [BCK+14] ). Let (P, V ) be a two-party protocol, where

V is a probabilistic polynomial time algorithim, and let L,L′ ⊆ {0, 1}∗ be languages with

witness relations R,R′ such that R ⊆ R′. Then, (P, V ) is called a Σ′-protocol for L,L′

with completeness error α, a challenge set C, a public input x and a private input w, if

and only if it satisfies the following conditions:

• Three-move form: The prover P , on input (x,w), computes a commitment t and

sends it to V . The verifier V , on input x, then draws a challenge c
$←− C and sends

it to P . The prover sends a response s to the verifier. Depending on the proto-

col transcript (t, c, s), the verifier finally accepts or rejects the proof. The protocol

transcript (t, c, s) is called accepting, if the verifier accepts the protocol run.

• Completeness: Whenever (x,w) ∈ R, the verifier V accepts with probability at least

1− α. α is the completeness error.

• Special soundness: There exists a PPT algorithm E (the knowledge extractor) that

takes two accepting transcripts (t, c′, s′), (t, c′′, s′′) satisfying c′ 6= c′′ as inputs, and

outputs w′ such that (x,w′) ∈ R′. The knowledge error denotes the probability that

the verifier accepts the proof even if the prover does not know a witness.
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• Special honest verifier zero-knowledge (HVZK): There exists a PPT algorithm S (the

simulator) taking x ∈ L and c ∈ C as inputs. Moreover, the simulator outputs (t, s)

so that the triple (t, c, s) is indistinguishable from an accepting protocol transcript

generated by a real protocol run.

Moreover, let us present the following useful property.

• High-entropy commitments: For all (y, w) ∈ R and for all t, the probability that an

honestly generated commitment by P takes on the value t is negligible.

2.3.4 Relation for the key generation

We want to show that we know a public key’s private key without revealing the private

key itself. We introduce the zero-knowledge proof for the purpose in this subsection. Let

us confirm Theorem 3.3. in [BCK+14].

Lemma 2.4 (Theorem 3.3. in [BCK+14]). The protocol in Fig. 2.2 is an HVZK Σ′-

protocol for the following relations:

R = {((a, y), (s, e)) : y = as+ e ∧ |s|, |e| ≤ Õ(
√
dα)}

R′ = {((a, y), (s, e)) : 2y = 2as+ 2e ∧ |2s|, |2e| ≤ Õ(d2α)}

where 2s and 2e are reduced modulo q. The protocol has a knowledge error of 1/(2d), a

completeness error of 1− 1/M , and high-entropy commitments.

We can use Lemma 2.4 for the below relation RK by replacing y → y/p, a→ a/p.

RK = {((a, y), (s, e)) | y = as+ 2e ∧ |s|, |e| ≤ Õ(
√
dα)}

Let us describe the non-interactive zero-knowledge proof for the relationRK . The pro-

tocol in Fig. 2.2 realizes the zero-knowledge proof for the relation RK . Moreover, we can

obtain the non-interactive zero-knowledge proof by using Fiat-Shamir transform [FS87]

and running the protocol in parallel. Let us confirm the simulator for the relation RK .

The technique of rejection sampling is used for zero-knowledge in the protocol. According

to Lemma 2.3, the algorithm F includes no witness and is statistically indistinguishable

from the algorithm A. We can implement the simulator forRK by replacing the algorithm

A with the algorithm F .
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Common input: the open value (a, y)

Relation: R = {((a, y), (s, e)) : y = as+ e ∧ |s|, |e| ≤ Õ(
√
dα)}

Prover Verifier

rs, re
$←− DÕ(

√
dα)

t = ars + re
(caux, daux) = aCommit(t)

caux−−→
c

$←− C = {0, . . . , 2d− 1}
c←−

ss = rs +Xcs
se = re +Xce
accept with probability

DÕ(
√
2dα)((se,ss))

MD(Xce,Xcs),Õ(
√
2dα)((se,ss))

t,daux,(ss,se)−−−−−−−→
Xcy + t

?
= ass + se

aCOpen(t, caux, daux)
?
= accept

|ss|, |se| ≤ Õ(dα)

Figure 2.2: Zero-knowledge proof of knowledge of RLWE secrets s, e such that y = as+ e
(Protocol 3.2. in [BCK+14])

2.3.5 Relation for the ciphertext of zero

We want to show that we know that a given ciphertext’s plaintext is zero without decryp-

tion or revealing randomness of the ciphertext. We introduce the zero-knowledge proof

for the purpose in this subsection. We introduce the following technical lemmas.

Lemma 2.5 (Lemma 3.1 in [BCK+14]). Let d be a power of 2 and let 0 < i, j < 2d− 1.

Then, 2(X i −Xj)
−1

mod (Xd + 1) only has coefficients in {−1, 0, 1}.

Lemma 2.6 (Lemma 2 in [ZZD+15]). For any s, t ∈ R, we have |s · t| ≤
√
d · |s| · |t| and

|s · t|∞ ≤ d · |s|∞ · |t|∞.

We show a non-interactive zero-knowledge proof for ciphertext of zero in Fig. 2.3. h

is a cryptographic hash function. We make the interactive proof non-interactive by using

the Fiat-Shamir heuristic [FS87]. This protocol satisfies Lemma 2.7. The parallel protocol

satisfies Theorem 2.1.

Lemma 2.7 (Lemma 5 in [MO20c]). The protocol in Fig. 2.3 is an HVZK Σ′-protocol
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Common input: the public key (a, b), the ciphertext (c1, c2)
Relation: R0 = {((c1, c2), (v, e, f)) : (c1, c2) = (bv + pe, av + pf)

∧|v|, |e|, |f | ≤ Õ(
√
dα)}

Prover Verifier

rv, re, rf
$←− DÕ(

√
dα)

t1 = brv + re
t2 = arv + rf
(c

(1)
aux, d

(1)
aux) = aCommit(t1)

(c
(2)
aux, d

(2)
aux) = aCommit(t2)

c
(1)
aux,c

(2)
aux−−−−−→

c = h(t1, t2, c
(1)
aux, d

(1)
aux, c

(2)
aux, d

(2)
aux)

sv = rv +Xcv
se = re +Xcpe
sf = rf +Xcpf
accept with probability

DÕ(
√
3dα)((sv ,se,sf ))

MD(Xcv,Xce,Xcf),Õ(
√
3dα)((sv ,se,sf ))

t1,t2,d
(1)
aux,d

(2)
aux,(sv ,se,sf )

−−−−−−−−−−−−−−→
c = h(t1, t2, c

(1)
aux, d

(1)
aux, c

(2)
aux, d

(2)
aux)

Xcc1 + t1
?
= bsv + se

Xcc2 + t2
?
= asv + sf

aCOpen(t1, c
(1)
aux, d

(1)
aux)

?
= accept

aCOpen(t2, c
(2)
aux, d

(2)
aux)

?
= accept

|sv|, |se|, |sf | ≤ Õ(dα)

Figure 2.3: Non-interactive zero-knowledge proof of a ciphertext of zero regarding RLWE
encryption (Figure 3 in [MO20c])
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for the following relations:

R0 = {((c1, c2), (v, e, f)) : (c1, c2) = (bv + pe, av + pf) ∧ |v|, |e|, |f | ≤ Õ(
√
dα)}

R′0 = {((c1, c2), (v, e, f)) : (2c1, 2c2) = (2bv + 2pe, 2av + 2pf)

∧ |2v|, |2e|, |2f | ≤ Õ(d2α)}

where 2v, 2e and 2f are reduced modulo q. The protocol has a knowledge error of 1/(2d),

a completeness error of 1− 1/M , and high-entropy commitments.

Proof. We discuss the proof from the following points: completeness, honest verifier zero-

knowledge, special soundness, and high-entropy commitments.

Completeness. From Lemma 2.3 of the rejection sampling, a prover responds with a

probability 1/M . If the prover does not abort, then

bsv + se = b(rv +Xcv) + (re +Xcpe)

= Xc(bv + pe) + (brv + re)

= Xcc1 + t1

and

asv + sf = a(rv +Xcv) + (rf +Xcpf)

= Xc(av + pf) + (arv + rf )

= Xcc2 + t2

Regarding the norms, we obtain

|sv| ≤ |rv|+ |v| ≤ Õ(dα)

|se| ≤ |re|+ |e| ≤ Õ(dα)

|sf | ≤ |rf |+ |f | ≤ Õ(dα)

with overwhelming probability, since the standard deviations of rv, re, rf are Õ(
√
dα).

Honest verifier zero-knowledge. The challenge value c is randomly chosen from the

set C = {0, . . . , 2d − 1}. The simulator outputs the tuple (aCommit(0), c,⊥) with the
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probability 1− 1/M . With the probability 1/M , the simulator runs as follows.

rv, re, rf
$←− DÕ(

√
dα)

t1 = brv + re −Xcc1

t2 = arv + rf −Xcc2

(c(1)
aux, d

(1)
aux) = aCommit(t1)

(c(2)
aux, d

(2)
aux) = aCommit(t2)

Finally, the simulator outputs

(c(1)
aux, c

(2)
aux, c, t1, t2, d

(1)
aux, d

(2)
aux, (sv, se, sf )).

From Lemma 2.3, the outputs sv, se and sf without abort do not depend on v, e and f

as the witness. Therefore, the simulator and the actual protocol are indistinguishable. If

the protocol aborts, then it is indistinguishable because of the hiding property of aCommit

in Lemma 2.2. For any c, an abort occurs in the same way.

Special soundness. We suppose that both

(c(1)
aux, c

(2)
aux, c

′, t′1, t
′
2, d

(1)′

aux, d
(2)′

aux, (s
′
v, s
′
e, s
′
f ))

and

(c(1)
aux, c

(2)
aux, c

′′, t′′1, t
′′
2, d

(1)′′

aux , d
(2)′′

aux , (s
′′
v, s
′′
e , s
′′
f ))

pass the verification by the verifier. From the binding property of the auxiliary commit-

ment scheme in Lemma 2.2, we obtain t1 := t′1 = t′′1 and t2 := t′2 = t′′2. We can have

a similar discussion with regard to t1 and t2. Let us confirm t1. From the verification

equation, we have

Xc′c1 + t1 = bs′v + s′e

Xc′′c1 + t1 = bs′′v + s′′e .
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From the subtraction between these two equations, we obtain

(Xc′ −Xc′′)c1 = b(s′v − s′′v) + (s′e − s′′e).

Multiplying by 2(Xc′ −Xc′′)−1 to the equation,

2c1 = b
2(s′v − s′′v)
Xc′ −Xc′′

+
2(s′e − s′′e)
Xc′ −Xc′′

=: 2bv̂ + 2ê.

Therefore, we obtain

|2v̂| ≤ |s′v − s′′v| ·
√
d ·
∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣ ≤ Õ(d2α).

where we had the second inequality applying Lemma 2.5 and 2.6. A similar discussion

holds for ê. We also have

|2ê| ≤ |s′e − s′′e | ·
√
d ·
∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣ ≤ Õ(d2α).

In addition, dealing with the verification equation regarding t2 in a similar way of t1,

we obtain

2c2 = a
2(s′v − s′′v)
Xc′ −Xc′′

+
2(s′f − s′′f )
Xc′ −Xc′′

=: 2av̂ + 2f̂ .

In the same way, we obtain

|2f̂ | ≤ |s′f − s′′f | ·
√
d ·
∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣ ≤ Õ(d2α).

High-entropy commitments. This property directly follows from the security of the

auxiliary commitment scheme.

Theorem 2.1 (Theorem 6 in [MO20c]). Let us apply the protocol in Fig. 2.3 for λ times

in parallel (the parallel protocol). Let the parallel protocol be accepting if and only if at

least λ/2M out of λ proofs were valid under the condition that an honest verifier rejects

no proofs. Then, the parallel protocol has both a completeness error and knowledge error

of negl(λ) under the condition d ≥ 2M .

Proof. In the parallel protocol, λ commitments {c(1)
aux, c

(2)
aux}1,...,λ are sent to a verifier. We

confirm the probability that at least λ/2M out of λ proofs are valid. Each execution in
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the parallel protocol is independent. It is a Bernoulli trial. We introduce the lemma of

Chernoff bounds as follows.

Lemma 2.8 (Chernoff bounds (see e.g., Theorem 4.4, 4.5 in [MU17])). Let x1, . . . , xλ be

independent Bernoulli-distributed random variables with Pr[xi = 1] = p and Pr[xi = 0] =

1− p; then, for X :=
∑λ

i=1 xi and µ := λp,

Pr[X ≤ (1− δ)µ] ≤ e−δ
2µ/2, 0 < δ ≤ 1

Pr[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3, 0 < δ ≤ 1

Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3, 1 ≤ δ

hold.

First, we confirm a completeness error. From Lemma 2.7, a prover sends proof with a

probability 1/M for each time. Applying first and second inequalities of Chernoff bounds

under the condition that p = 1/M, µ = λp = λ/M and δ = 2/3,

Pr[(1− δ)µ < X < (1 + δ)µ]

= 1− Pr[X ≤ (1− δ)µ]− Pr[X ≥ (1 + δ)µ]

≥ 1− (e−δ
2µ/2 + e−δ

2µ/3)

= 1− (e−2λ/9M + e−4λ/27M)

Since λ/2M = µ/2 ∈ ((1 − δ)µ, (1 + δ)µ) = (µ/3, 5µ/3), λ/2M proofs are made and

accepted with overwhelming probability. Therefore, the completeness error is negl(λ).

Second, we confirm a knowledge error. From Lemma 2.7, a knowledge error is 1/2d for

each time. Let p = 1/2d, µ = λp = λ/2d and δ = d/M−1 ≥ 1 such that (1+δ)µ = λ/2M .

Applying the third inequalities of Chernoff bounds,

Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3

= e−λ/6M+1/3

Therefore, the knowledge error is negl(λ).
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2.3.6 Relation for valid ciphertext

We want to show that we know that a given ciphertext is valid without decryption or

revealing a ciphertext’s message and randomness. We introduce the zero-knowledge proof

for the purpose in this subsection. Let us introduce the relation RE as follows. In the

relation RE, let a message space M = R2.

RE = {((c1, c2, a, y), (m, v, e, f)) | c1 = yv + 2e+m ∧ c2 = av + 2f

∧ |m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
dα)}

We construct a non-interactive zero-knowledge proof for the RLWE ciphertext, referring

to Protocol 4.1 and Theorem 4.2 in [BCK+14]. We present the protocol in Fig. 2.4.

This protocol in Fig. 2.4 satisfies Lemma 2.9. We can make the completeness error and

knowledge error in Lemma 2.9 negligible, by the parallelization as Theorem 2.1. Let us

explain the notation a�l. One obtains a� by an anti-cyclic shift a vector a by l. That is,

a�l = aX l ∈ R. If we write the elements of the vector explicitly, we have

a�l = (a0, . . . , ad−1)�l = (−ad−l, . . . ,−ad−1, a0, . . . , ad−l−1).

Lemma 2.9. The protocol in Fig. 2.4 is an honest verifier zero-knowledge Σ′-protocol for

the following relations:

R = {((c1, c2, g̃, h̃, (c̃mti)
d−1
i=0 , p, a, b), (m, v, e, f, (ri)

d−1
i=0 )) :

(c1, c2) = (bv + pe+m, av + pf) ∧
d−1∧
i=0

c̃mti = rm,ig̃ + rr,ih̃

∧ |m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
dα)}

R′ = {((c1, c2, g̃, h̃, (c̃mti)
d−1
i=0 , p, a, b), (m, v, e, f, (ri)

d−1
i=0 )) :

(2c1, 2c2) = (2bv + 2pe+ 2m, 2av + 2pf) ∧
d−1∧
i=0

2c̃mti = (2m mod q)ig̃ + 2rr,ih̃

∧ |2m| ≤ 2d2 ∧ |2v|, |2e|, |2f | ≤ Õ(d2α)}

where 2v, 2e and 2f are reduced modulo q and (2m mod q)i is the i-coefficient of 2m ∈ Rq.

The protocol has a knowledge error of 1/(2d), a completeness error of 1− 1/M , and high-
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Common input: the ciphertext (c1, c2), the integer p, the public key (a, b),

the public key of commitment (g̃, h̃), the commitment (c̃mti)
d−1
i=0

Relation R = {((c1, c2, g̃, h̃, (c̃mti)
d−1
i=0 , p, a, b), (m, v, e, f, (ri)

d−1
i=0 )) :

(c1, c2) = (bv + pe+m, av + pf) ∧
∧d−1
i=0 c̃mti = rm,ig̃ + rr,ih̃

∧|m|∞ ≤ 1 ∧ |v|, |e|, |f | ≤ Õ(
√
dα)}

Prover Verifier

rv, re, rf
$←− DÕ(

√
dα)

rm
$←− DÕ(

√
d)

rr,i
$←− Zq̃ for i = 0, . . . , d− 1

t1 = brv + pre + rm
t2 = arv + prf
t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , d− 1
(caux, daux) = aCommit(t1, t2, (t̃i)

d−1
i=0 )

caux−−−−−−→

c = h(t1, t2, (t̃i)
d−1
i=0 , caux, daux)

sv = rv +Xcv
se = re +Xce
sf = rf +Xcf
sm = rm +Xcm
sr = rr +Xcr
accept with probability

DÕ(2
√
dα)((sv ,se,sf ,sm))

MD(Xcv,Xce,Xcf,Xcm),Õ(2
√
dα)((sv ,se,sf ,sm))

t1,t2,(t̃i)
d−1
i=0 ,daux,(sv ,se,sf ,sm,sr)−−−−−−−−−−−−−−−−−−−→

c = h(t1, t2, (t̃i)
d−1
i=0 , caux, daux)

Xcc1 + t1
?
= bsv + pse + sm

Xcc2 + t2
?
= asv + psf

(c̃mt0, . . . , c̃mtd−1)�c + (t̃0, . . . , t̃d−1)
?
= smg̃ + srh̃

aCOpen((t1, t2, (t̃i)
d−1
i=0 ), caux, daux)

?
= accept

|sv|, |se|, |sf | ≤ Õ(dα)

|sm| ≤ Õ(d)

Figure 2.4: Non-interactive zero-knowledge proof of plaintext knowledge regarding RLWE
encryption
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entropy commitments.

Proof. Let us confirm the proof from the following points: completeness, honest verifier

zero-knowledge, special soundness, and high-entropy commitments.

Completeness. From Lemma 2.3 of the rejection sampling, a prover responds with a

probability 1/M . If the prover does not abort, then

bsv + pse + sm = b(rv +Xcv) + p(re +Xce) + (rm +Xcm)

= Xc(bv + pe+m) + (brv + pre + rm)

= Xcc1 + t1

and

asv + psf = a(rv +Xcv) + p(rf +Xcf)

= Xc(av + pf) + (arv + prf )

= Xcc2 + t2.

Let us confirm the equation of the commitment

(c̃mt0, . . . , c̃mtd−1)�c + (t̃0, . . . , t̃d−1)
?
= smg̃ + srh̃.

Let us expand the first term of the left hand side.

(c̃mt0, . . . , c̃mtd−1)�c = (m0g̃ + r0h̃, . . . ,md−1g̃ + rd−1h̃)�c

= (m0, . . . ,md−1)�cg̃ + (r0, . . . , rd−1)�ch̃

= Xcmg̃ +Xcrh̃

We also expand the second term of the left hand side.

(t̃0, . . . , t̃d−1) = (rm,0g̃ + rr,0h̃, . . . , rm,d−1g̃ + rr,d−1h̃)

= (rm,0, . . . , rm,d−1)g̃ + (rr,0, . . . , rr,d−1)h̃

= rmg̃ + rrh̃
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Therefore we have

(c̃mt0, . . . , c̃mtd−1)�c + (t̃0, . . . , t̃d−1) = (Xcmg̃ +Xcrh̃) + (rmg̃ + rrh̃)

= (rm +Xcm)g̃ + (rr +Xcr)h̃

= smg̃ + srh̃.

Let us confirm the norms of sv, se, sf and sm. The standard deviations of rv, re, rf are

Õ(
√
dα). Also, the standard deviations of rm is Õ(

√
d). We have

|sv| ≤ |rv|+ |v| ≤ Õ(dα)

|se| ≤ |re|+ |e| ≤ Õ(dα)

|sf | ≤ |rf |+ |f | ≤ Õ(dα)

|sm| ≤ |rm|+ |m| ≤ Õ(d)

with the overwhelming probability.

Honest verifier zero-knowledge. A challenge value c is randomly chosen from the set

C = {0, . . . , 2d−1}. A simulator outputs the tuple (aCommit(0), c,⊥) with the probability

1− 1/M . With the probability 1/M , the simulator runs as follows.

rv, re, rf
$←− DÕ(

√
dα)

rm
$←− DÕ(

√
d)

t1 = brv + pre + rm −Xcc1

t2 = arv + prf −Xcc2

t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , d− 1

(caux, daux) = aCommit(t1, t2, (t̃i)
d−1
i=0 )

Finally, the simulator outputs

(caux, daux, c, t1, t2, (t̃i)
d−1
i=0 , (sv, se, sf , sm)).

From Lemma 2.3, the outputs sv, se, sf and sm without abort do not depend on v, e, f and

m as the witness. Therefore, the simulator and the actual protocol are indistinguishable. If
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the protocol aborts, then it is indistinguishable because of the hiding property of aCommit.

For any c, the abort occurs in the same way.

Special soundness. Let us consider knowledge extractor and suppose that both

(caux, d
′
aux, c

′, t′1, t
′
2, (t̃

′
i)
d−1
i=0 , (s

′
v, s
′
e, s
′
f , s
′
m, s

′
r))

and

(caux, d
′′
aux, c

′′, t′′1, t
′′
2, (t̃

′′
i )
d−1
i=0 , (s

′′
v, s
′′
e , s
′′
f , s
′′
m, s

′′
r))

pass the verification by the verifier. From the binding property of aCommit, we have

t1 := t′1 = t′′1, t2 := t′2 = t′′2, (t̃i)
d−1
i=0 := (t̃′i)

d−1
i=0 = (t̃′′i )

d−1
i=0 .

Let us confirm (t̃i)
d−1
i=0 . From the verification, we have

(c̃mt0, . . . , c̃mtd−1)�c′ + (t̃0, . . . , t̃d−1) = s′mg̃ + s′rh̃

(c̃mt0, . . . , c̃mtd−1)�c′′ + (t̃0, . . . , t̃d−1) = s′′mg̃ + s′′r h̃.

From the subtraction between these two equations, we have

(c̃mt0, . . . , c̃mtd−1)(Xc′ −Xc′′) = (s′m − s′′m)g̃ + (s′r − s′′r)h̃.

Multiplying by 2(Xc′ −Xc′′)−1 to this equation, we have

(c̃mt0, . . . , c̃mtd−1) =
2(s′m − s′′m)

Xc′ −Xc′′
g̃ +

2(s′r − s′′r)
Xc′ −Xc′′

h̃ =: 2m̂g̃ + 2r̂h̃.

Then, let us confirm the upper bound of the norm |2m̂|. By adopting Lemma 2.5 and 2.6,

and the triangle inequality |a± b| ≤ |a|+ |b|, we have

|2m̂| ≤
√
d · |s′m − s′′m| ·

∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣
≤
√
d · |s′m − s′′m| ·

√
d

≤ d(|s′m|+ |s′′m|) = 2d2.

We can have a similar discussion with regard to t1 and t2. Let us confirm t1. From
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the verification equation, we have

Xc′c1 + t1 = bs′v + ps′e +m′

Xc′′c1 + t1 = bs′′v + ps′′e +m′′.

From the subtraction between these two equations, we obtain

(Xc′ −Xc′′)c1 = b(s′v − s′′v) + p(s′e − s′′e) + (m′ −m′′).

Multiplying by 2(Xc′ −Xc′′)−1 to the equation,

2c1 = b
2(s′v − s′′v)
Xc′ −Xc′′

+ p
2(s′e − s′′e)
Xc′ −Xc′′

+
2(s′m − s′′m)

Xc′ −Xc′′
=: 2bv̂ + 2pê+ 2m̂.

From the similar discussion in the upper bound of |2m̂|, we obtain

|2v̂| ≤
√
d · |s′v − s′′v| ·

∣∣∣∣ 2

Xc′ −Xc′′

∣∣∣∣
≤ d(|s′v|+ |s′′v|)

≤ Õ(d2α).

Since a similar discussion also holds for ê, we have |2ê| ≤ Õ(d2α).

In addition, dealing with the verification equation regarding t2 in a similar way of t1,

we obtain

2c2 = a
2(s′v − s′′v)
Xc′ −Xc′′

+ p
2(s′f − s′′f )
Xc′ −Xc′′

=: 2av̂ + 2pf̂ .

In the same way, we obtain |2f̂ | ≤ Õ(d2α).

High-entropy commitments. This property directly follows from the security of the

auxiliary commitment scheme.
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Chapter 3

Traceability in permissioned

blockchain

This chapter is based on the below works with Akira Otsuka.

[MO19] T. Mitani and A. Otsuka, ”Traceability in Permissioned Blockchain,” in 2019

IEEE International Conference on Blockchain, Atlanta, GA, USA, 2019, pp. 286-

293.

[MO20c] T. Mitani and A. Otsuka, ”Traceability in Permissioned Blockchain,” in IEEE

Access, vol. 8, pp. 21573-21588, 2020. (the extended version of [MO19])

3.1 Introduction

Blockchain attracts attention in commercial activities. It is useful in various situations

such as trade finance, fund procurement, contract management and execution, and supply

chain management. In commercial activities, corporations want to protect trade privacy

by keeping it secret. Therefore, they often use permissioned blockchain with authorized

participants. On the other hand, they disclose various types of information in order to

fulfill their social responsibilities. For example, transparency of accounting is necessary

for proper tax payment and information provision to investors. Tracking objects in supply

chain management is also essential. Transparency is vital for corporate activities.

In this way, using blockchain in corporate activities, it is crucial to balance trade

privacy and transparency. We request the traceability to balance these two properties.

29



30 CHAPTER 3. TRACEABILITY IN PERMISSIONED BLOCKCHAIN

First, we pay attention to trade privacy. The transaction information, including price

and volume, is closely related to corporate activities. A bank generally handles account

balances and transaction information as a secret since these are client privacy information.

It is natural for the permissioned blockchain to handle the transaction information as a

secret to an external party. Then, under the protection of the trade privacy, we consider

two properties that consist of transparency. We note that the transparency holds obviously

if all transactions are public.

Preservation. An outsider can verify that there is no dishonest increase and decrease

inside the permissioned blockchain.

Noninvolvement. If there is a defect in the traded goods, the permissioned blockchain

can disclose the participants who participated in the trade as needed later.

How can we balance trade privacy and transparency for any outsiders other than

participants? We model traceability based on the hidden Markov model. We encrypt

this model by homomorphic encryption. The proof of traceability requires the calculation

of more than quadratic degrees. The establishment of the original model is verifiable by

applying the non-interactive zero-knowledge proof of the knowledge that the plaintext is

equal to zero.

Our result

This work provides the basic technology to achieve meaningful traceability in the blockchain

that balances transactions’ privacy and transparency. Let us describe the overview, threat

model, and scenario regarding our result.

Overview

In our solution, we model the trading dynamics in the permissioned blockchain. We

realize trade privacy by encrypting this model with fully homomorphic encryption. We

also realize the transparency by proving the encrypted model equations with the zero-

knowledge proof of plaintext knowledge. The calculations for traceability require more

than quadratic degrees. Since it is not 2-DNF, we cannot use the traditional method

[BGN05]. Therefore, we use fully homomorphic encryption. Furthermore, we adapt the

work of Benhamouda et al. in Asiacrypt 2014 [BCK+14]. We prove the encrypted model’s
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establishment by the zero-knowledge proof of knowledge in which plaintext is zero. We

introduce the three properties of traceability concretely as follows.

Trade privacy Trade privacy is privacy regarding who trades with whom and at what

asset amount in the permissioned blockchain. We denote ~x(t), ~u(t) and ~y(t) as a

vector of the participants’ states in the permissioned blockchain, a vector of inputs

and outputs in the permissioned blockchain, respectively. Let A(t), B(t) and C(t) be

matrices of the ”distribution ratios”. ~x(t), A(t), B(t) and C(t) indicate who trades

with whom and at what asset amount. These are private information. ~u(t) and

~y(t) are public information. We express the following equations as a hidden Markov

model.

~x(t+ 1) = ~x(t)A(t) + ~u(t)B(t)

~y(t+ 1) = ~x(t)C(t)

Moreover, we mention the security of trade privacy. To protect the trade privacy,

the private information A(t), B(t), C(t) and ~x must be in hiding. Secure trade

privacy means that no probabilistic polynomial time algorithm can distinguish if

the distribution ratios A(t), B(t), C(t) and the internal state ~x(t) were encrypted

with honest plaintexts or just zeros (false plaintexts). As the A(t), B(t), C(t) and

~x(t) must be private information, this definition makes sense.

Transparency Transparency consists of preservation and noninvolvement.

Preservation the total amount of assets in the blockchain, including input and

output, is immutable. That is,

mp∑
i=1

xi(t+ 1) +

np∑
i=1

yi(t+ 1) =

mp∑
i=1

xi(t) +

lp∑
i=1

ui(t)

under the condition that

mp∑
j=1

aij +

np∑
j=1

cij = 1, for i = {1, 2, . . . ,mp}

mp∑
j=1

bij = 1, for i = {1, 2, . . . , lp}
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Noninvolvement One can reveal that some blockchain participants were not in-

volved in a series of transactions. For some participant i,

aij = cij = 0, for all j 6= i,

aji = cji = 0, for all j 6= i,

bji = 0, for all j.

We encrypt all the above equations with the RLWE encryption. The fact that f(x) = y

holds in plaintext means that the ciphertext of f(x) − y is a ciphertext of zero. We

suppose that a prover is a permissioned blockchain, and a verifier is a permissionless

blockchain. The permissioned blockchain shows that the model is correct to the permis-

sionless blockchain while concealing the plaintexts.

Threat model

We assume an adversary outside the blockchain as a threat. Our solution protects the

privacy of the blockchain inside information from an actively external adversary. They

can intervene in transactions between the permissioned blockchain and the permissionless

blockchain. Their ability is computationally limited. Their goal is to break the trade

privacy and create fake transactions and proofs. We also suppose the universal compos-

able security [Can01]. On the other hand, we assume that the permissioned blockchain

participants are reliable as honest insiders, and the adversary cannot corrupt them. It

is why the distributed ledger of the permissioned blockchain contains the content that

participants want to keep secret from outside third parties. Participants trust each other

and share the secret in the permissioned blockchain.

Scenario

People trade agricultural and fishery products worldwide. To prevent the falsification of

transaction tracking, the use of blockchain is expanding in corporate activities. There are

various cases: pork and mango [Kam18], palm oil [Hir18], coffee [TMSB18] and so on.

For our solution example, we prove the traceability every 10 minutes for 100 vegetables

in the permissioned blockchain consisting of 20,000 participants. The necessary traffic is
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approximately 1 Mbps. We describe the details in Section 3.4. This work contributes to

the realization of meaningful traceability that balances the privacy and transparency of

transactions. It is different from the trivial traceability of only transaction tracking.

We describe how participants issue and verify the proof. Participants in the permis-

sioned blockchain initially share the state information. Therefore, it is allowable that

they share the randomness in encrypting it. They can attach a threshold signature to the

proof of the ciphertext of zero as follows.

1. A participant chooses randomness and creates a ciphertext and proof.

2. The randomness, ciphertext, and proof are broadcast to the other participants

within the permissioned blockchain and shared.

3. They verify them by recreating their ciphertext and proof from the received ran-

domness and plaintext.

4. They attach a ring signature to the verified proof similar to the withdrawal of Dilly

et al. [DPW+16].

Furthermore, participants make the proofs public in internet storage. For example,

Amazon Web Service S3 would be good. Miners in the permissionless blockchain verify

the proofs.

3.1.1 Related work

There is considerable interest in protecting privacy in blockchain. One of the approaches

is mixing transactions, exemplified in some works [Max13a,Max13b,RMSK14,BNM+14].

The other is the use of highly cryptographic methods. Zerocoin [MGGR13], which is an

extension of Bitcoin, is one of the initial proposals that provided unlinkability between

individual Bitcoin transactions without introducing a trusted third party. Pinocchio coin

[DFKP13] proposes to incorporate the zero-knowledge succinct non-interactive argument

of knowledge (zk-SNARK) [GGPR13] into Zerocoin. Zerocash [SCG+14], which is the

successor to Zerocoin, uses zk-SNARK as a zero-knowledge proof of arithmetic circuit

satisfiability. Recently, zero-knowledge scalable transparent argument of knowledge (zk-

STARK) [BSBHR18] and Bulletproofs [BBB+18] have been proposed as similar zero-
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knowledge proofs. Both works mention an application to the blockchain. Thus, the

zero-knowledge proof is a crucial tool for privacy protection in the blockchain.

Let us refer to some other approaches. The schemes blinding all unspent transac-

tion output (UTXO) while maintaining the public verifiability that no trade produces

or destroys coins have been proposed [Max15, PBF+19]. As an application of Hyper-

ledger Fabric, there is a method of protecting the privacy within each channel by setting

confidentiality boundaries [ACDCKK18].

The Markov chain often describes the dynamics of the blockchain. There are several

kinds of studies on selfish mining about Bitcoin [NKMS16,GKKT16,Wüs16].

Regarding homomorphic encryption, there are some works for encoding integers into

plaintext space. Regarding the NTRU encryption scheme [HPS98], Hoffstein and Silver-

man announced the new technique [HS01]. Regarding the RLWE encryption, Geihs et

al. [GC15] applied the technique to the Brakerski-Vaikuntanathan (BV) scheme [BV11]

and Chen et al. [CLPX18] used the technique to the Fan-Vercauteren (FV) scheme [FV12].

Concurrent work

Let us confirm the concurrent works from the viewpoint of traceability in Table 3.1.

Dilly et al. have proposed the sidechain scheme between Bitcoin and the permissioned

blockchain Liquid [DPW+16]. In this scheme, the permissioned blockchain’s participants

determine the transfer of assets between Bitcoin and the permissioned blockchain through

their consensus. A fast and deterministic agreement in the permissioned blockchain real-

izes the high throughput of transactions. In Dilly et al. [DPW+16], the pool account to a

permissionless blockchain is public. There are no unauthorized deposits or withdrawals in

this account. Thus, preservation holds, although Dilly et al. do not specify this matter.

Poelstra et al. [PBF+19] mention that there is no unauthorized increase or decrease

in coin history, and the number of coins traded is concealed. However, the sender and

receiver must be public.

Zether [BAZB20] realized a payment with anonymous accounts at Ethereum. The

balance between the sender and the receiver and the transfer amount can be kept confi-

dential. There is no defined way to indicate noninvolvement later. Dummy participants,

except the sender and receiver, must be involved in the transaction from the beginning.

It is difficult for Zether to achieve noninvolvement and trade privacy simultaneously.
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Compared with these works, this work is the first proposal that satisfies the three

properties of traceability. It achieves both trade privacy and transparency simultaneously.

Table 3.1: Traceability’s Properties. Zether achieves either noninvolvement or trade pri-
vacy.

Preservation Noninvolvement Trade privacy
Dilly et al. [DPW+16] yes no no

Poelstra et al. [PBF+19] yes yes no
Zether [BAZB20] yes yes/no no/yes

This work yes yes yes

3.1.2 Chapter organization

We organize the rest of this chapter as follows. Section 3.2 defines traceability and de-

scribes its three properties. Section 3.3 encrypts the model defined in Section 3.2 and

confirms the security. Section 3.4 introduces the ring isomorphism encoding, uses this

encoding to the traceability model, and confirms the efficiency. Finally, Section 3.5 con-

cludes this work.

3.2 Traceability and modeling

We introduce traceability. We confirm its three properties: trade privacy, preservation,

and noninvolvement.

3.2.1 Traceability

According to the review paper [BG13], various researchers define traceability in various

ways, none of which are perfect. Some researchers define the flow of products from

suppliers to users and vice versa. Many works seem to define traceability by focusing on

the ”objects” moving between players. In contrast, we focus on how the ”state” of each

player’s asset amount changes from time to next time.

Let us consider the mathematical definition based on this idea. The state means that

the amount of an asset of the participant. We represent the state of participants in the

permissioned blockchain as the vector ~x(t). That is,

~x(t) = (x1, x2, . . . , xmp) ∈ Pmp .
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Let us explain each item in this equation. t indicates that the state is at time t. mp is

the number of participants. xi is the state of the participant i. The field P ⊂ Q.

Similarly, we represent the state from the permissionless blockchain to the permis-

sioned blockchain as the vector ~u. We also express the state from the permissioned

blockchain to the permissionless blockchain as the vector ~y. That is,

~u = (u1, u2, . . . , ulp) ∈ Plp

~y = (y1, y2, . . . , ynp) ∈ Pnp .

lp and np are the numbers of the accounts.

We formally describe that the state transition is deterministic as follows.

Definition 3.1. Let ~x(t), ~x(t+ 1) be the amount of assets in the permissioned blockchain

at each time t, t + 1, respectively. Let ~y(t + 1) be the amount of assets moving from the

permissioned blockchain to the permissionless blockchain at time t + 1. Let ~u(t) be the

amount of assets moving from the permissionless blockchain to the permissioned blockchain

at time t. If x(0) and u(0) are determined at the initial time t = 0, then for every time

t ≥ 0, there exists some deterministic polynomial time algorithm A such that

(~x(t+ 1), ~y(t+ 1)) = A(~x(t), ~u(t)).

3.2.2 Modeling

We discuss the deterministic polynomial time algorithm specifically. We list the model

parameters in Table 3.2.

Table 3.2: Overview of parameters in the model
Parameter Explanation

~x account balance of each member in permissioned blockchain
quantity of each member in permissioned blockchain

~u, ~y pool account balance in permissionless blockchain
aij remittance between members in permissioned blockchain
bij deposits and products for permissioned blockchain
cij withdrawal and consumption from permissioned blockchain

~x is information in the permissioned blockchain. A participant in the permissioned

blockchain can observe ~x. However, any participant in the permissionless blockchain

cannot. ~u and ~y are information in the permissionless blockchain. Everyone can observe
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them. We call it a hidden Markov model as ~x is a latent variable for an outsider.

We confirm the state transition. We suppose that the total volume moving from xi(t)

to xj(t+ 1) is v. That is,

xi(t+ 1) = xi(t)− v

xj(t+ 1) = xj(t) + v

Let us define the distribution rate aij = v/xi(t). In particular, aii is the ”staying”

rate (xi(t) → xi(t + 1)). In same way, we define the distribution rate cij = v/xi(t).

The amount xi(t) is distributed to x1(t + 1), . . . , xi(t + 1), . . . , xmp(t + 1) at the ratio of

ai1, . . . , aii, . . . , aimp and distributed to y1(t+ 1), . . . , ynp(t+ 1) at the ratio of ci1, . . . , cinp .

The sum of all the ratios must be equal to 1. That is,

mp∑
j=1

aij +

np∑
j=1

cij = 1.

We also define the distribution rate bij = v/ui(t) moving from ui(t) to xj(t+ 1). ui is

distributed to x1(t + 1), . . . , xmp(t + 1). The sum of all these ratios must be equal to 1.

That is,
mp∑
j=1

bij = 1.

From the above discussion, we can obtain the definitions of trade privacy and preservation.

Definition 3.2 (Trade privacy). Let A = (aij) ∈ Pmp×mp , B = (bij) ∈ Plp×mp and C =

(cij) ∈ Pmp×np, respectively. The relation of trade privacy is expressed as

~x(t+ 1) = ~x(t)A(t) + ~u(t)B(t)

~y(t+ 1) = ~x(t)C(t)

Definition 3.3 (Preservation). Let aij, bij and cij be a element of the matrices A,B and
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C, respectively. Preservation holds if the following equations hold.

mp∑
j=1

aij +

np∑
j=1

cij = 1, for i = {1, 2, . . . ,mp}

mp∑
j=1

bij = 1, for i = {1, 2, . . . , lp}

We confirm the following lemma with regard to Definition 3.2, 3.3.

Lemma 3.1 (Overall preservation). If Definition 3.2 and 3.3 are satisfied, then the equa-

tion

mp∑
i=1

xi(t+ 1) +

np∑
i=1

yi(t+ 1) =

mp∑
i=1

xi(t) +

lp∑
i=1

ui(t)

holds.

Proof. First, we expand the equations of Definition 3.2. For our convenience, we omit

”(t)” such as ~x(t) or A(t) in this proof. The same abbreviation applies to elements of

vectors and matrices. Applying
∑mp

j=1 bij = 1, we obtain

mp∑
j=1

xj(t+ 1) =

mp∑
j=1

(

mp∑
i=1

xiaij) +

mp∑
j=1

(

lp∑
i=1

uibij)

=

mp∑
i=1

xi(

mp∑
j=1

aij) +

lp∑
i=1

ui(

mp∑
j=1

bij)

=

mp∑
i=1

xi(

mp∑
j=1

aij) +

lp∑
i=1

ui

We also obtain
np∑
j=1

yj(t+ 1) =

np∑
j=1

(

mp∑
i=1

xicij) =

mp∑
i=1

xi(

np∑
j=1

cij)
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Applying
∑mp

j=1 aij +
∑np

j=1 cij = 1, we finally obtain

mp∑
j=1

xj(t+ 1) +

np∑
j=1

yj(t+ 1)

= (

mp∑
i=1

xi(

mp∑
j=1

aij) +

lp∑
i=1

ui) +

mp∑
i=1

xi(

np∑
j=1

cij)

=

mp∑
i=1

xi(

mp∑
j=1

aij +

np∑
j=1

cij) +

lp∑
i=1

ui

=

mp∑
i=1

xi +

lp∑
i=1

ui

The equation in the lemma holds.

Plain example. We describe the simple example. We suppose that Alice, Bob, and

Carol are participants in the permissioned blockchain. They have $2, $3, and $4 in each

account, respectively. We formulate this situation as follows.

~x(t) = (x1(t), x2(t), x3(t)) = (2, 3, 4)

We suppose that they execute the following three transactions during [t, t+ 1].

• Alice gives Bob $1.

• Bob gives Carol $2.

• Carol gives Alice $3.

We assume that there is neither deposit nor withdrawal between the permissioned blockchain

and permissionless blockchain. We consider only internal transactions within the permis-

sioned blockchain. Their accounts are represented by the following state.

~x(t+ 1) = (x1(t+ 1), x2(t+ 1), x3(t+ 1)) = (4, 2, 3)

We represent the increase or decrease in the asset quantity by each transaction as the
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ratio,

x1(t+ 1) = x1(t)− 1

2
x1(t) +

3

4
x3(t) =

1

2
x1(t) +

3

4
x3(t)

x2(t+ 1) = x2(t) +
1

2
x1(t)− 2

3
x2(t) =

1

2
x1(t) +

1

3
x2(t)

x3(t+ 1) = x3(t)− 3

4
x3(t) +

2

3
x2(t) =

2

3
x2(t) +

1

4
x3(t)

We obtain ~x(t+ 1) = ~x(t)A(t), where

A(t) =


1/2 1/2 0

0 1/3 2/3

3/4 0 1/4


Then,

∑
j aij = 1 holds.

We define noninvolvement and describe local preservation.

Definition 3.4 (Noninvolvement). Regarding Definition 3.2, noninvolvement of a partic-

ipant i holds at [t, t+ 1], if and only if

aij = cij = 0, for all j 6= i,

aji = cji = 0, for all j 6= i,

bji = 0, for all j.

Definition 3.5 (Subset of involvement). Sr is a subset of involvement such that the subset

excludes noninvolvement participants from the set of blockchain participants {1, . . . ,mp}.

Lemma 3.2 (Local preservation). If Definition 3.2 and 3.3 are satisfied and Sr is a subset

of involvement, then the equation

∑
i∈Sr

xi(t+ 1) +

np∑
i=1

yi(t+ 1) =
∑
i∈Sr

xi(t) +

lp∑
i=1

ui(t)

holds.
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Proof. From Lemma 3.1,

mp∑
i=1

xi(t+ 1) +

np∑
i=1

yi(t+ 1) =

mp∑
i=1

xi(t) +

lp∑
i=1

ui(t)

holds. Since every participant belongs to Sr or not,

mp∑
i=1

xi(t+ 1) =
∑
i∈Sr

xi(t+ 1) +
∑
i 6∈Sr

xi(t+ 1)

mp∑
i=1

xi(t) =
∑
i∈Sr

xi(t) +
∑
i 6∈Sr

xi(t)

As any participant i 6∈ Sr is represented by noninvolvement, xi is invariant. That is,

∑
i 6∈Sr

xi(t+ 1) =
∑
i 6∈Sr

xi(t).

Therefore, we obtain

∑
i∈Sr

xi(t+ 1) +

np∑
i=1

yi(t+ 1) =
∑
i∈Sr

xi(t) +

lp∑
i=1

ui(t)

We denote the three properties Definition 3.2, 3.3, and 3.4 as the ”traceability model”

as follows.

Definition 3.6 (Traceability model).

Trade privacy

x(t)A(t) + u(t)B(t)− x(t+ 1) = 0

x(t)C(t)− y(t+ 1) = 0
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Preservation

mp∑
j=1

aij +

np∑
j=1

cij − 1 = 0, for i = {1, 2, . . . ,mp}

mp∑
j=1

bij − 1 = 0, for i = {1, 2, . . . , lp}

Noninvolvement For some i,

aij = cij = 0, for all j 6= i,

aji = cji = 0, for all j 6= i,

bji = 0, for all j.

Remark 3.1. One hidden Markov model corresponds to one kind of object (apple, banana,

coin, and so on). If we deal with multiple objects, we can evaluate each model for each

object. We also make its creation and consumption correspond to the input and the output

to the permissioned blockchain.

3.3 Encrypted model and its security

To conceal the state in the permissioned blockchain, we intend to encrypt the traceability

model of Definition 3.6 with the RLWE encryption. In this section, we introduce the

encrypted traceability model and describe its security.

3.3.1 Encrypted traceability model

We confirm that the traceability model of Definition 3.6 corresponds to the ciphertext of

zero. We define the set C0 as a set of ciphertext obtained by encrypting plaintext m = 0

as follows.

Definition 3.7 (Ciphertext of zero).

C0 ={(c1, c2) | c1, c2 ∈ Rq ∧ ((c1 − s · c2 mod q) mod p) = 0}.
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s is a secret key.

We change the traceability model of Definition 3.6 into implicit functions f .

Trade privacy

f1 : ~x(t)A(t) + ~u(t)B(t)− ~x(t+ 1)

f2 : ~x(t)C(t)− ~y(t+ 1)

Preservation

f i3 :

mp∑
j=1

aij +

np∑
j=1

cij − 1, for i = {1, 2, . . . ,mp},

f i4 :

mp∑
j=1

bij − 1, for i = {1, 2, . . . , lp}

Noninvolvement aij, bij and cij themselves correspond to f directly.

P includes all the elements of the traceability model of Definition 3.6. The above

functions f1, f2, f
i
3 and f i4 are also closed by P. An element in P corresponds to Rp by

the ring isomorphic encoding. We will introduce the ring isomorphic encoding and its

efficiency in Section 3.4. Rp corresponds to R2
q with RLWE encryption. We denote the

ciphertext a ∈ R2
q corresponding to a ∈ P. In this section, let us write the cipher-

text in bold to distinguish it from plaintext. We represent the vectors and matrices

obtained by encrypting each element in the same way. We denote encrypted vectors as

~u = (u1,u2, . . . ,ul), ~x = (x1,x2, . . . ,xm), and ~y = (y1,y2, . . . ,yn). We denote encrypted

matrices as A = (aij),B = (bij) and C = (cij). Therefore, we denote the function f

for ciphertexts in R2
q corresponding to the function f for plaintexts in P. f1, f2 corre-

spond to Definition 3.2 and f i3, f
i
4 correspond to Definition 3.3. For some i, aij,bij and cij

themselves correspond to Definition 3.4. We obtain encrypted functions as follows.

Definition 3.8 (Encrypted traceability model).
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Trade privacy

f1(~x(t),A(t), ~u,B(t), ~x(t+ 1)) ∈ C
mp
0

f2(~x(t),C(t), ~y(t+ 1)) ∈ C
np
0

Preservation

f i3(aij, cij) ∈ C0 for i = {1, 2, . . . ,mp}

f i4(bij) ∈ C0 for i = {1, 2, . . . , lp}

Noninvolvement For some i,

aij, cij ∈ C0 for all j 6= i,

aji, cji ∈ C0 for all j 6= i,

bji ∈ C0 for all j.

Remark 3.2. We write a ciphertext and its function in bold. It is why to distinguish

from plaintext and its function as the above description.

3.3.2 Security of trade privacy

We confirm the security of the trade-privacy equations f1, f2. We intend to hide the private

information A(t), B(t), C(t) and x(t) in these equations. We consider the trade-privacy

equations calculated by ciphertexts of honest plaintexts and fake plaintexts (all zeros). We

say that trade privacy is secure if and only if both are indistinguishable for an adversary.

Since the trade-privacy equations f1, f2 consist of inner products, we propose the security

challenge experiment in Fig. 3.1.

Theorem 3.1 (Security of trade privacy). For any λ ∈ N and any probabilistic polynomial

time algorithm A, the advantage

Advtp−ind
TP,A (λ) :=| Pr[Exptp−ind

TP,A (λ) = 1]− 1/2 |

is negligible in λ, where Exptp−ind
TP,A (λ) is as defined in Fig. 3.1.
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Exptp−ind
TP,A (λ) :

(pk, sk)← RLWE.Gen(1λ)
β ← {0, 1}
β′ ← AOTP(·,·)(1λ, pk)
if β = β′ return 1
else return 0

OTP(ci, xi) :
if β = 0

ci ← RLWE.Enc(pk, ci)
xi ← RLWE.Enc(pk, xi)

else
ci ← RLWE.Enc(pk, 0)
xi ← RLWE.Enc(pk, 0)

y :=
∑

i ci · xi
return y

Figure 3.1: Security challenge experiment for trade privacy

Proof. To prove the security of trade privacy, we consider the games shown in Fig. 3.2.

We denote events as follows:

G0
TP,A(λ) :

(pk, sk)← RLWE.Gen(1λ)
β ← {0, 1}
β′ ← AO0

TP(·,·)(1λ, pk)
if β = β′ return 1
else return 0

G1
TP,A(λ) :

(pk, sk)← RLWE.Gen(1λ)
β ← {0, 1}
β′ ← AO1

TP(·,·)(1λ, pk)
if β = β′ return 1
else return 0

O0
TP(ci, xi) :

if β = 0
ci ← RLWE.Enc(pk, ci)
xi ← RLWE.Enc(pk, xi)

else
ci ← RLWE.Enc(pk, 0)
xi ← RLWE.Enc(pk, 0)

y :=
∑

i ci · xi
return y

O1
TP(ci, xi) :

if β = 0

ci,xi
$←− R2

q

else
ci,xi

$←− R2
q

y :=
∑

i ci · xi
return y

Figure 3.2: Games G0
TP,A(λ) and G1

TP,A(λ) in the proof of Theorem 3.1.

• E0 : G0
TP,A(λ) = 1

• E1 : G1
TP,A(λ) = 1

• B0 : β = 0

• B1 : β = 1
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We have

Pr[E0] = Pr[E0 ∩B0] + Pr[E0 ∩B1]

= Pr[E0|B0] · Pr[B0] + Pr[E0|B1] · Pr[B1].

In the same way, we obtain

Pr[E1] = Pr[E1|B0] · Pr[B0] + Pr[E1|B1] · Pr[B1].

From the these equations, we construct an adversary B from an adversary A who can

distinguish G0
TP,A(λ) and G1

TP,A(λ). That is,

| Pr[G0
TP,A(λ) = 1]− Pr[G1

TP,A(λ) = 1] |

=| Pr[E0]− Pr[E1] |

=| Pr[B0] · (Pr[E0|B0]− Pr[E1|B0]) + Pr[B1] · (Pr[E0|B1]− Pr[E1|B1]) |

≤ Pr[B0]· | Pr[E0|B0]− Pr[E1|B0] | + Pr[B1]· | Pr[E0|B1]− Pr[E1|B1] |

= (Pr[B0] + Pr[B1]) · Advpr
RLWE,B(λ)

= Advpr
RLWE,B(λ)

where we applied Pr[B0] + Pr[B1] = 1 in the last equation.

In game G1
TP,A(λ) the view of A is independent of β, as the ci,xi and y are chosen

uniformly at random over R2
q. We have thus

Pr[G1
TP,A(λ) = 1] = 1/2.

Moreover, G0
TP,A(λ) is Exptp−ind

TP,A (λ) itself. Because of Definition 2.4, we finally obtain

that

Advtp−ind
TP,A (λ) ≤ Advpr

RLWE,B(λ) < negl(λ).
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3.3.3 Non-interactive zero-knowledge proof

The permissioned and permissionless blockchains do not move synchronously. The non-

interactive zero-knowledge proof between blockchains is desirable. By using Theorem 2.1,

we can prove with zero-knowledge that the encrypted model of Definition 3.8 corresponds

to the model of Definition 3.6.

3.4 Encoding and its efficiency

We need to associate the rational number field P of the traceability model with the plain-

text space M of the RLWE encryption. For the purpose, we adopt the ring isomorphism

encoding. In this section, we introduce the ring isomorphism encoding. Furthermore, we

confirm the efficiency of applying it to the encrypted traceability model and the zero-

knowledge proof.

3.4.1 Ring isomorphism encoding

We discuss the correspondence between P and the plaintext space M = Rp = Z[X]/〈Xd+

1, p〉. We consider that the rational numbers in P are fixed-point numbers. A fixed-point

number is a number with a fixed number of digits. For example, we can handle 8.22 or

82.2 as the integer 822. We can map fixed-point numbers to integers. We define P as

follows.

P ={(n, d) | n = {−(2n1−1 − 1), . . . , 2n1−1 − 1} ⊂ Z, d = 2n2}, for ∃n1, n2 ∈ N.

We introduce the efficient encoding and decoding, the ring isomorphism encoding

[GC15].

Definition 3.9 (Ring isomorphism encoding ( Section 3.2 in [GC15] ) ).

• The encoding of an integer z ∈ Z with |z| ≤ 2n−1 to a polynomial m ∈ Rp is

m =
n−1∑
i=0

zi · xi.
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• The decoding of a polynomial m ∈ Rp to an integer z ∈ Z is

z =

z
′ − (2n + 1) if z′ ≥ 2n−1 ,

z′ otherwise,

where

z′ =
n−1∑
i=0

mi · 2i mod (2n + 1).

Theorem 3.2 (Theorem 1 in [GC15]). For a ∈ Z, the map φ : Z/〈xn + 1, x − a〉 →

Z/〈an + 1〉 given by

f(x) + 〈xn + 1, x− a〉 7→ f(a) + 〈an + 1〉

is an isomorphism.

Letting a = 2 in Theorem 3.2, we obtain Rx−2
∼= Z2n+1. Letting n = n1, we choose

the input integer space as Z/〈2n1 − 1〉. That is, the input integers exist in {−(2n1−1 −

1), . . . , 2n1−1−1}. As |z| ≤ 2n1−1, the decoding becomes simpler from Definition 3.9, that

is, z = z′.

3.4.2 Somewhat homomorphic encryption

We show that somewhat homomorphic encryption is feasible for the traceability model

of Definition 3.6. We define the benchmark function f as follows, considering the inner

product in the traceability model of Definition 3.6.

f(z) =

ladd∑
j=1

lmul∏
i=1

zij for zij ∈ Z.

zij corresponds to an element of the matrices and vectors of the traceability model. We

confirm the range of integers. Since |zij| ≤ 2n1−1,

2d−1 ≥

∣∣∣∣∣
ladd∑
j=1

lmul∏
i=1

zij

∣∣∣∣∣ ≥ ladd · 2lmul(n1−1).

We obtain

d > log2 ladd + lmul(n1 − 1). (3.1)
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Let us confirm the decryptable noise magnitude. We confirm noise growth. Let c =

(c1, c2) ∈ R2
q and c1 − s · c2 = m + p · e. s is a secret key, m is a plaintext and e is a

noise. We denote the norm as DN(c) = |m + p · e|∞. From the condition that we can

decrypt c ∈ R2
q correctly, we have DN(c) < q/2. The relationship between the operations

of ciphertexts and the noise growth are as follows.

• Let c1, c2 ∈ R2
q, c = c1 + c2. Then, we have DN(c) = DN(c1) + DN(c2).

• Let c1, c2 ∈ R2
q, c = c1 · c2. Then, we have DN(c) ≤ d ·DN(c1) ·DN(c2).

We used |s · t|∞ ≤ d · |s|∞ · |t|∞ from Lemma 2.6.

The size of the noise is small. Let |s|∞, |v|∞, |e|∞, |f |∞ ≤ Bχ.

According to [GC15], let Bfresh be the size of noise in no operation of ciphertexts. We

have

Bfresh = 1 + 3 · (2dB2
χ +Bχ).

From the above equations, we can transform the condition DN(c) < q/2 into

q/2 > laddB
lmul
freshd

lmul−1.

We obtain

log2 q > log2 ladd + lmul log2(Bfreshd)− log2 d+ 1. (3.2)

We confirm the parameters in the RLWE encryption. Following Table 1 in [NLV11],

we choose the concrete parameters: d = 2048, log2 q = 64 and σ = 8. σ is the standard

deviation of the discrete Gaussian distribution for the randomness. As our intention

toward the traceability model of Definition 3.6, we choose n1 = 65 which is a 64-bit

integer and lmul = 2. Let Bχ = σ
√
d ≈ 362 from Lemma 2.1.

We confirm the upper limit of the number of additions ladd in the traceability model

of Definition 3.6 satisfying the inequalities 3.1 and 3.2. We show the upper limits of the

number of additions ladd corresponding to d and q in Table 3.3.

We can calculate the traceability model of Definition 3.6 with sufficiently numerous

additions ladd under the practical parameters. That is, we can realize it as somewhat

homomorphic encryption.
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Table 3.3: Numbers of additions calculable with somewhat homomorphic encryption

d dlog2 qe blog2 laddc
2048 89 15.8
4096 94 15.8
4096 120 41.8
8192 264 180.8
16384 423 334.8

3.4.3 Efficiency of zero-knowledge proof

The computation of the encrypted traceability model is limited to low degrees. We can

achieve it with somewhat homomorphic encryption. In other words, bootstrapping is

unnecessary. Therefore, the method is effectively practical for computation in the real

world.

We confirm the proof size issued by the prover with the non-interactive zero-knowledge

proof. There are multiple ciphertexts for which we want to prove that the plaintext is zero.

There is an excellent way to reduce the traffic per ciphertext. We pack these ciphertexts

into elements of one vector. The inner product of the vector is also one ciphertext. We

apply the protocol in Fig. 2.3 to the ciphertext. We can reduce the proof size per

ciphertext. An additional inner product calculation increases the degree by one. The

addition increases by kadd times the number of equations we want to prove. Compared

to the case where there is no inner product calculation, we need to enlarge the lattice

dimension and the ciphertext space. In the same way, we can express the inequalities as

follows.

d > log2 kadd + 2(log2 ladd + lmul(n1 − 1))

log2 q − 1 > 2 log2 ladd + 2lmul log2Bfresh + (2lmul − 1) log2 d+ log2 kadd

In same way as shown in Table 3.3, we can also estimate the proof size in Table 3.4. We

set the zero-knowledge proof count to λ = 128 for 128-bit security and kadd = ladd. The

proof size is at most 627.7 kB.

We naively evaluate the traffic regarding the example of vegetables distributed in

Japan. We state elements as follows.
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Table 3.4: Proof size for 128-bit security
lmul = 1

d dlog2 qe blog2 laddc proof size (kB)
2048 89 5.2 103.7
4096 94 5.2 119.5
4096 120 13.9 152.6
8192 264 60.2 363.7
16384 423 111.6 627.7

lmul = 2

d dlog2 qe blog2 laddc proof size (kB)
8192 264 28.5 363.7
16384 423 77.8 627.7

• There are approximately 90 items whose production volume is determined by statis-

tics, according to the Ministry of Agriculture, Forestry, and Fisheries, Japan1. The

traffic is proportional to the number of items since one item corresponds to one

encrypted model.

• SEVEN-ELEVEN JAPAN CO., LTD. has opened approximately 21,009 stores in

Japan as of October 31, 20192. The number of participants corresponds to the

number of stores. The number of participants is approximately 21,000. It does not

affect the traffic because it is much smaller than the upper limit 228.5 in Table 3.4.

• Frequency of proof is once every 10 minutes, as in Bitcoin. We assume that the

permissioned blockchain proves the traceability once every 10 minutes.

• Properties of traceability amount to three. In Table 3.4, we apply lmul = 2 regarding

trade privacy and lmul = 1 regarding preservation and noninvolvement. This fact

triples the traffic.

• The proof size is 363.7 kB according to Table 3.4.

Therefore, the traffic is equal to

363.7 kB× 3 property× 90 item/600 sec = 1.3 Mbps.

1http://www.maff.go.jp/j/seisan/ryutu/yasai/yasai jousei 0111.pdf (Website in Japanese)
2https://www.sej.co.jp/company/en/n stores.html
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The global averages on fixed broadband are 70.68 Mbps (download) and 38.23 Mbps

(upload) as of October 2019, according to Speedtest by Ookla3. The traffic is sufficiently

smaller than the averages. It is feasible.

3.5 Conclusion

We have achieved privacy protection and high transparency in a permissioned blockchain.

Meaningful traceability consists of three properties. That is trade privacy, preservation,

and noninvolvement. This work is the first proposal wherein both preservation and nonin-

volvement hold while protecting trade privacy. We have constructed a traceability model

based on the three properties and encrypted it with the RLWE encryption. Moreover,

we have encrypted the model with somewhat homomorphic encryption by using the ring

isomorphism encoding. We have confirmed that the encrypted model is feasible. Finally,

we have confirmed that one can prove with zero-knowledge that the encrypted traceability

model is proper.

Limitation. In this work, we have expressed the traceability model of Definition 3.6

with a fixed-point number. As this extension, we can take an arbitrary denominator.

Then, the number of multiplications is approximately the same as the number of par-

ticipants since a reduction to a common denominator is necessary. Because of many

numbers of multiplication, we can extend this work theoretically by fully homomorphic

encryption.

3https://www.speedtest.net/global-index



Chapter 4

Confidential and auditable payments

This chapter is based on the below work with Akira Otsuka.

[MO20b] T. Mitani and A. Otsuka, ”Confidential and Auditable Payments,” in Financial

Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science,

vol 12063, pp 466-480. Springer, Cham.

4.1 Introduction

Bitcoin is transparent because all the transactions are public. However, a bank typically

keeps the customer’s transaction information confidential. One hopes that blockchain

also keeps their transaction information concealed. Many works realize anonymity and

confidentiality in the blockchain. However, these works have rarely a forcibly auditable

function. It is a problem that excessive confidentiality of transaction information may

cause money laundering.

In this work, we construct the Confidential and Auditable Payments (CAP) scheme.

The scheme allows a court or an authority to audit transactions while keeping the transac-

tion information confidential. Every participant writes their transactions as a ciphertext

of homomorphic encryption in a ledger with a unique public key. The court or author-

ity controls its secret key. They can forcefully decrypt the ciphertexts and confirm the

information. The CAP scheme eliminates concerns about money laundering caused by

confidentiality and contributes to blockchain’s sound use.

53
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4.1.1 Our approach

The proposed scheme is not only confidential but also auditable. We describe auditability

at first. A pair of a public key pk0 and a secret key sk0 of homomorphic encryption is

issued. A court or an authority controls the secret key sk0. They can decrypts ciphertexts

according to the appropriate procedure when requested. In this sense, the CAP scheme

is auditable.

Let us state confidentiality. Suppose that a column vector of each participant’s account

balance ~x is updated to the next time state ~x′ by the transition matrix A. For example, let

us present a state transition for three participants. Let ~x = (x1, x2, x3), ~x′ = (x′1, x
′
2, x
′
3)

and A = (aij). A is a matrix of size 3 × 3. The equation ~x′ = ~xA holds. The transition

matrix A corresponds to the remittance by each participant. Participants use the public

key pk0 in common. Participants fill their balance in their ledger as ciphertext ~x. As

for the transition matrix, each participant writes each element in the ledger as ciphertext

A. Then, participants write their balance of the next time, reflecting the remittance in

the ledger as a ciphertext ~x′. All the ciphertexts in the ledger are the ciphertexts of

homomorphic encryption. ~x′ − ~xA is the ciphertext of zero if and only if ~x′ = ~xA.

Let us confirm the remittance procedure when a sender i transfers to a recipient j. We

name the sender Alice and the recipient Bob. The element aij of the transition matrix A

corresponds to this remittance. We use the zero-knowledge proof of plaintext knowledge to

show that the remittance is legitimate. Alice writes the proof regarding aij in the ledger.

This proof shows that she has not sent more than her account balance. The knowledge

corresponds to the randomness in creating the ciphertext of homomorphic encryption.

At the time of remittance, she encrypts the randomness with Bob’s public key pkj. She

sends it to him. He decrypts it with his secret key skj and obtains the randomness of the

remittance. From the knowledge of the randomness collected, he proves that his updated

account balance x′j is correct by the operation ~x′ = ~xA.

4.1.2 Related work

In Bitcoin, transaction information is open. For this reason, there are some works for con-

cealing transaction information. Zerocoin [MGGR13] and Zerocash [SCG+14] are exten-

sions based on Bitcoin. They realized strong anonymity and confidentiality by designing

anonymous coins that skillfully combined commitments. Zerocash uses the zero-knowledge
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succinct non-interactive argument of knowledge (zk-SNARK) [GGPR13] to show others

that there is no fraud such as double-spending. Zether [BAZB20] is also a cryptocurrency

that can conceal transaction information. It has been proposed as an extension based

on Ethereum. Zether has also used the zero-knowledge proof Bulletproofs [BBB+18] pro-

posed by their group. Neither Zerocoin, Zerocash, nor Zether is forcibly auditable because

of their strong anonymity and confidentiality.

Mitani and Otsuka expressed the state transition of a permissioned blockchain by using

homomorphic encryption [MO19, MO20c]. In their scheme, the zero-knowledge proof of

plaintext knowledge shows that the encrypted model’s equation is established to outsiders

of the blockchain. The validity of the state transition is certifiable. So their scheme is

auditable concerning the permissioned blockchain.

4.1.3 Chapter organization

We organize the rest of this chapter as follows. Section 4.2 describes the definitions for a

secure CAP scheme. Section 4.3 describes the construction of the CAP scheme, including

data structures, algorithms, and security proofs. Section 4.4 states the conclusion.

4.2 Secure CAP scheme

In this section, we define the security of a CAP scheme. Regarding security, we follow

Zerocash [SCG+14]. Zerocash defines and satisfies the three properties: ledger indistin-

guishability, transaction non-malleability, and balance. In this sense, Zerocash is secure.

We adjust the three properties for a CAP scheme. We modify ledger indistinguishability.

Balance corresponds to the proof regarding the transition matrix. We combine transac-

tion non-malleability and balance into non-malleability. In this sense, a CAP scheme is

secure. Let us confirm the below definitions.

Definition 4.1 (Ledger indistinguishability). A CAP scheme

Π := (Setup,CreateAccount,Transition, Send,Receive)

satisfies ledger indistinguishability, if for any λ ∈ N and any probabilistic polynomial time
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algorithm A, the advantage

AdvL−IND
Π,A (λ) :=| Pr[ExpL−IND

Π,A (λ) = 1]− 1/2 |

is negligible in λ, where ExpL−IND
Π,A (λ) is defined in Fig. 4.1. In Fig. 4.1, a pair of the

queries (Q,Q′) must be the same type: CreateAccount or Transition. If the query type is

Transition, then Q = (Transition, A) and Q′ = (Transition, A′). A and A′ must be the same

size. Each element is generally different. That is, A 6= A′. ~Q and ~Q′ are the lists of all

the queries that A sent to the oracles. Append is the function to append the latest query

to the lists.

ExpL−IND
Π,A (λ):

pp, cp← Setup(1λ)
L0 ← OΠ

0 (pp); L1 ← OΠ
1 (pp)

b
$←− {0, 1}

while:
(Q,Q′)← A(pp, ~Q, ~Q′, Lb, L1−b)

Lb ← AO
Π
b (·)(pp, Q, Lb); L1−b ← AO

Π
1−b(·)(pp, Q′, L1−b)

~Q← Append( ~Q,Q); ~Q′ ← Append( ~Q′, Q′)

c← A(pp, ~Q, ~Q′, Lb, L1−b)
if c = 1 break
else continue

b′ ← A(pp, ~Q, ~Q′, Lb, L1−b)
if b = b′ return 1
else return 0

Figure 4.1: Security challenge experiment for ledger indistinguishability

Definition 4.2 (Non-malleability). A CAP scheme

Π := (Setup,CreateAccount,Transition, Send,Receive)

satisfies non-malleability, if for any λ ∈ N and any probabilistic polynomial time algorithm

A, the advantage

AdvNM
Π,A(λ) := Pr[ExpNM

Π,A(λ) = 1]

is negligible in λ, where ExpNM
Π,A(λ) is defined in Fig. 4.2. Besides, OΠ and Append are

the same as Definition 4.1.
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ExpNM
Π,A(λ):

pp, cp← Setup(1λ)
L← OΠ(pp)
while:
Q← A(pp, ~Q, L)
L← AOΠ(·)(pp, Q, L)
~Q← Append( ~Q,Q)

c← A(pp, ~Q, L)
if c = 1 break
else continue

A∗ ← A(pp, ~Q, L)
L′ ← AOΠ(·)(pp, (Transition, A∗), L)
if (Verify(πa) or Verify(~πb) or Verify(Πc) or Verify(~π′))

and (
∑

i(x
′
i − xi) 6∈ C0) in L′

return 1
else return 0

Figure 4.2: Security challenge experiment for non-malleability

Definition 4.3 (Security). A CAP scheme

Π := (Setup,CreateAccount,Transition, Send,Receive)

is secure if it satisfies ledger indistinguishability of Definition 4.1 and non-malleability of

Definition 4.2.

4.3 Construction

In this section, we describe notation, data structures, algorithms, and security analysis.

4.3.1 Notation

We introduce the zero-knowledge proof in Fig. 2.3 and execute this protocol in parallel

according to Theorem 2.1. This chapter denotes the zero-knowledge proof of plaintext

m = 0 knowledge in the RLWE encryption and its verification as below syntax. We

represent the ciphertext in bold to distinguish from its plaintext.

• Prove(x; r) inputs the ciphertext x and its randomness r and outputs the proof π

for the knowledge of RLWE.Dec(sk,x) = 0. We denotes Prove(x; r1, . . . , rn) if there

are several randomnesses r1, . . . , rn.



58 CHAPTER 4. CONFIDENTIAL AND AUDITABLE PAYMENTS

• Verify(π) inputs the proof π and outputs 1 if it is valid, otherwise 0.

4.3.2 Data structures

Let us describe the data structures of the CAP scheme. We consider that the state of the

assets held by each participant will transition to the next state as Chapter 3.

• Let ~x = (x1, x2, . . . , xn) ∈ Qn. ~x is the amount of assets in the blockchain at time

t. n is the number of the participants in a blockchain.

• Let ~x′ = (x′1, x
′
2, . . . , x

′
n) ∈ Qn. ~x′ is the amount of assets in the blockchain at time

t+ 1.

• Let A = (aij) be a transition matrix such that ~x′ = ~xA. Its size is n× n. Let v be

the volume moving from xi to x′j. That is, x′i = xi − v and x′j = xj + v. We define

the distribution rate aij := v/xi. aii is the staying rate (xi → x′i). In the transition,

the amount xi is distributed to x′1, . . . , x
′
i, . . . , x

′
n at the ratio of ai1, . . . , aii, . . . , ain.

The sum of all the ratios must be equal to 1 because the total amount is constant.

That is,
∑n

j=1 aij = 1. Let us confirm the following lemma, which is the variant of

Lemma 3.1.

Lemma 4.1. If ~x′ = ~xA and
∑n

j=1 aij = 1, then the equation

n∑
i=1

x′i =
n∑
i=1

xi

holds.

• Let Ledger L be a distributed ledger that each participant in the blockchain holds

and updates. L contains the ciphertexts ~x, ~x′,A and their related proofs.

Remark 4.1. It is impractical to force all participants to join the transition matrix A

every time. We assume a transition matrix A′ that pertains only to participants trading

at a particular time t. That is, A′ is the submatrix of the transition matrix A for all par-

ticipants. Since there is virtually no difference, we will discuss A and A′ indiscriminately.
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4.3.3 Algorithms

We describe the CAP scheme as follows.

Definition 4.4 (The CAP scheme). Tha CAP scheme

Π := (Setup,CreateAccount,Transition, Send,Receive)

is in Fig. 4.3.

We can verify the completeness of the CAP scheme Π by confirming the construction.

4.3.4 Security analysis

We describe the below lemmas for the security of the CAP scheme Π in Definition 4.4.

Lemma 4.2 (Ledger indistinguishability). The CAP scheme Π in Definition 4.4 satisfies

ledger indistinguishability in Definition 4.1.

Proof. We consider the games in Fig. 4.4. We denote events as follows.

• E0 : G0
CPA,A(λ) = 1

• E1 : G1
CPA,A(λ) = 1

• B0 : β = 0

• B1 : β = 1

Since B0 and B1 are disjoint events, we have

Pr[Ei] = Pr[Ei ∩B0] + Pr[Ei ∩B1] = Pr[Ei|B0] · Pr[B0] + Pr[Ei|B1] · Pr[B1].

Then, i = {0, 1}. We construct an adversary B from an adversary A who can distinguish
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Setup

• Inputs: security parameter λ
• Outputs: public parameters pp and court pa-

rameters cp

1. Compute (pk0, sk0) := RLWE.Gen(1λ).
2. Set pp := pk0.
3. Set cp := sk0.
4. Output pp and cp.

CreateAccount

• Inputs: public parameters pp and security pa-
rameter λ

• Outputs: account ciphertext x, proof πa in L
and key pair (pk, sk)

1. Choose randomly rx.
2. Compute x := RLWE.Enc(pk0, 0, rx).
3. Compute πa := Prove(x; rx).
4. Compute (pk, sk) := RLWE.Gen(1λ).
5. Output x, π and (pk, sk).

Send

• Inputs:

– public parameters pp
– account ciphertext x in Ledger L
– randomness rx
– plaintext x
– sending volume v
– public key pkj

• Outputs:

– copy proof πc

– copy account xc

– distribution ratio aij
– volume v
– randomness rv

1. Choose randomly rxc , where rxc 6= rx.
2. Compute xc := RLWE.Enc(pk0, x, rxc).
3. Compute πc := Prove(xc − x; rxc − rx).
4. Compute a := v/x.
5. Choose randomly raij .
6. Compute aij := RLWE.Enc(pk0, a, raij ).
7. Compute rv from rxc and raij .
8. Compute v := RLWE.Enc(pkj , v, rv).
9. Compute rv := RLWE.Enc(pkj , rv, rrv).

10. Output πc,xc,aij ,v, rv.

Transition

• Inputs:

– public parameters pp
– old accounts state ~x = (x1, . . . ,xn) in L
– accounts randomness rx1

, . . . , rxn

• Outputs in L:

– new accounts state ~x′ = (x′1, . . . ,x
′
n)

– new transition matrix A = (aij)
– balance proofs ~πb = (πb1, . . . , π

b
n)

– accounts copy proofs Πc = (πcij)
– transition proofs ~π′ = (π′1, . . . , π

′
n)

1. For i ∈ {1, . . . , n} (i sends v to j.)

(a) For j ∈ {1, . . . , n}
i. Send(pp,xi, rxi , xi, v, pkj).
ii. Write πcij ,x

c
ij ,aij in L.

(b) Compute πbi :=
Prove(

∑
j aij − 1; rai1 , . . . , rain).

(c) Write πbi in L.

2. Verify(Πc)
3. Verify(~πb)
4. For j ∈ {1, . . . , n} (j receives v from i.)

(a) For i ∈ {1, . . . , n}
Receive(pp, skj ,x

c
i ,aij ,v, rv, π

c
ij).

(b) Compute x′j :=
∑
i vij .

(c) Choose rx′j randomly.

(d) Compute x′j := RLWE.Enc(pk0, x
′
j , rx′j ).

(e) Compute π′j := Prove(x′j −
∑
i aij · xci ;

rx′j , rv1j
, . . . , rvnj ).

(f) Write x′j , π
′
j in L.

5. Verify(~π′)

Receive

• Inputs:

– public parameters pp
– secret key skj
– ciphertexts xc,aij ,v, rv
– proof πc in L

• Outputs:

– volume v
– randomness rv

1. Compute v := RLWE.Dec(skj ,v).
2. Compute rv := RLWE.Dec(skj , rv).
3. If aij · xc = RLWE.Enc(pk0, v, rv) and |rv| is

small: Output v, rv.
4. Else: Output ⊥.

Figure 4.3: Construction of the CAP scheme
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G0
CPA,A(λ):

(pk, sk)← RLWE.Gen(1λ)
β ← {0, 1}
β′ ← AOCPA

0 (·,·)(1λ, pk)
if β = β′ return 1
else return 0

G1
CPA,A(λ):

(pk, sk)← RLWE.Gen(1λ)
β ← {0, 1}
β′ ← AOCPA

1 (·,·)(1λ, pk)
if β = β′ return 1
else return 0

OCPA
0 (m0,m1):

if β = 0
Choose r randomly.
c← RLWE.Enc(pk,m0, r)

else
Choose r randomly.
c← RLWE.Enc(pk,m1, r)

return c

OCPA
1 (m0,m1):

c
$←− R2

q

return c

Figure 4.4: Security challenge experiment for plaintexts

G0
CPA,A(λ) and G1

CPA,A(λ). That is,

| Pr[G0
CPA,A(λ) = 1]− Pr[G1

CPA,A(λ) = 1] |

=| Pr[E0]− Pr[E1] |

=| (Pr[E0|B0] · Pr[B0] + Pr[E0|B1] · Pr[B1])

− (Pr[E1|B0] · Pr[B0] + Pr[E1|B1] · Pr[B1]) |

=| Pr[B0] · (Pr[E0|B0]− Pr[E1|B0]) + Pr[B1] · (Pr[E0|B1]− Pr[E1|B1]) |

≤ Pr[B0]· | Pr[E0|B0]− Pr[E1|B0] | + Pr[B1]· | Pr[E0|B1]− Pr[E1|B1] |

= (Pr[B0] + Pr[B1]) · Advpr
RLWE,B(λ)

= Advpr
RLWE,B(λ)

where we applied Pr[B0] + Pr[B1] = 1 in the last equation. Since the game G1
CPA,A(λ) is

independent of β, we have thus Pr[G1
CPA,A(λ) = 1] = 1/2. Moreover, ExpL−IND

Π,A (λ) consists

of the game G0
CPA,A(λ). Because of Definition 2.4, we obtain

AdvL−IND
Π,A (λ) ≤| Pr[G0

CPA,A(λ) = 1]− 1/2 |≤ Advpr
RLWE,B(λ) < negl(λ).

Lemma 4.3 (Non-malleability). The CAP scheme Π in Definition 4.4 satisfies non-

malleability in Definition 4.2.

Proof. Let us consider the below violations of verification in the cases A wins without the
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knowledge of randomness.

• A wins but violates Verify(πa) in CreateAccount.

• A wins but violates Verify(~πb) in Transition.

• A wins but violates Verify(Πc) in Transition.

• A wins but violates Verify(~π′) in Transition.

Any violations result from the violation of the zero-knowledge proof. This is the

knowledge error of zero-knowledge proof. From Theorem 2.1, the knowledge error of

zero-knowledge proof is negligible.

Finally, we can lead the below theorem from Lemma 4.2 and Lemma 4.3.

Theorem 4.1 (The secure CAP scheme). The CAP scheme Π in Definition 4.4 is secure

in the sense of Definition 4.3.

4.4 Conclusion

We have constructed the Confidential and Auditable Payments(CAP) scheme. The CAP

scheme allows a court or an authority to audit transactions while keeping the transaction

information confidential. Every participant writes the ciphertexts of transaction informa-

tion in a ledger. We have confirmed the concealment of the transaction information and

the soundness of the CAP scheme. The CAP scheme is secure in this sense. A court or

an authority can forcibly reveal transaction information with a unique secret key. In this

sense, we realized auditability in the CAP scheme.

Limitation. In the CAP scheme, the secret key can decrypt all transaction information.

Therefore, we expect the court or authority to disclose minimum requisite information.



Chapter 5

Anonymous probabilistic payment in

payment hub

This chapter is based on the below preprint with Akira Otsuka.

[MO20a] T. Mitani and A. Otsuka, ”Anonymous probabilistic payment in payment hub,”

Cryptology ePrint Archive, Report 2020/748, 2020. https://eprint.iacr.org/

2020/748

5.1 Introduction

There are many problems that blockchain needs to be solved. Scalability and privacy

protection are significant problems in blockchain. However, there are a few proposals to

solve these problems at the same time.

Let us state privacy protection. The transaction links a payer and a payee publicly

in Bitcoin. One can know their balance and trading frequency by analyzing the links

of transactions. Privacy is not protected. Breaking the transaction link is necessary to

protect privacy.

Let us describe scalability. It is costly to write all the small transactions into the

blockchain. The payment of a small amount of money is called micropayment. For such

micropayments, Wheeler [Whe97] and Rivest [Riv97] proposed a probabilistic payment

before blockchain appears. It reduces costs for micropayment. In probabilistic payment,

we pay an ordinary mount m with a certain probability p. We pay a small amount mp

as an expected value. By the probability p (e.g. p ≈ 0.1 ∼ 0.001), we can reduce 1/p

63

https://eprint.iacr.org/2020/748
https://eprint.iacr.org/2020/748


64 CHAPTER 5. ANONYMOUS PROBABILISTIC PAYMENT IN PAYMENT HUB

times transactions than a naively deterministic payment. Micropay [Ps15], the DAM

scheme [CGL+17] and Microcash [ABC20] have proposed a new micropayment on the

blockchain. It is attracting attention as one of the leading solutions for scalability in the

blockchain.

5.1.1 Our contribution

We propose an anonymous probabilistic payment. It aims to solve both scalability and

privacy protection. In this work, we realize a kind of unlinkability: ”k-anonymity in

an epoch.” TumbleBit [HAB+17] and their earlier work [HBG16] mentioned this defini-

tion. The link means that which payer pays which payee via a tumbler within an epoch.

Anonymity means the link is broken. Even a tumbler never knows the link. The ”k” is

the number of participants trading via the tumbler. The epoch is the period during which

transactions are completed.

Our proposal includes a probabilistic payment. In the probabilistic payment, we pay

an ordinary mount m with a certain probability p (e.g. p ≈ 0.1 ∼ 0.001) and we pay

a small amount mp as an expected value. We can reduce 1/p times transactions than a

deterministic payment. We introduce a novel fractional oblivious transfer for adopting

the probabilistic payment. We apply this ingredient to a probabilistic payment from the

payer to the tumbler. We call it the ring fractional oblivious transfer since this is based

on the ring learning with errors (RLWE) encryption. The functionality required for our

proposal is hashed time lock contract (HTLC). Various cryptocurrencies adapt HTLC.

This request is general, not restricted to any particular cryptocurrency.

5.1.2 Related work

In this subsection, we describe the related work regarding anonymity in blockchain, prob-

abilistic payment, fractional oblivious transfer, and the comparison with a concurrent

work.

Anonymity in blockchain

There are researches on a new anonymous cryptocurrency. Zerocash [SCG+14] is a fa-

mous anonymous cryptocurrency and is implemented as ZCash. They also have pro-

posed continuous researches such as BOLT [GM17] and DAM scheme [CGL+17]. Mon-
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ero is also a famous anonymous cryptocurrency and is provided with incredible works

[Noe15,SALY17,YSL+20,MSRL+19]. There are studies to realize anonymity for existing

cryptocurrencies by using off-chain technology. TumbleBit [HAB+17] is compatible with

Bitcoin. Zether [BAZB20] is compatible with Ethereum.

Probabilistic payments

Wheeler [Whe97] and Rivest [Riv97] proposed a probabilistic payment. Micropay [Ps15]

is compatible with Bitcoin. Microcash [ABC20] can be implemented as a smart contract.

The DAM scheme, which is the extension of anonymous ZCash, also realizes a probabilistic

payment.

Fractional oblivious transfer over the ring

Bellare and Micali [BM90] and Bellare and Rivest [BR99] proposed the fractional oblivious

transfer based on the computational Diffie-Hellman assumption as the early works. The

DAM scheme [CGL+17,CGL+16] also proposed a novel fractional oblivious transfer based

on the decisional Diffie-Hellman assumption as fractional message transfer. Note that

[CGL+16] is the full version of [CGL+17].

Brakerski and Döttling proposed an oblivious transfer based on the learning with

errors [BD18]. This work is the first oblivious transfer in the post-quantum cryptography.

Liu and Hu first proposed an efficient 1-out-of-2 oblivious transfer (OT) on the RLWE

assumption and extends 1-out-of-n OT [LH19]. To the best of our knowledge, we first

propose the fractional oblivious transfer over the ring.

Comparison with a concurrent work

The DAM scheme [CGL+17, CGL+16] is an anonymous probabilistic payment, which

passes ZCash transaction by a fractional oblivious transfer. Since the scheme includes a

ZCash transaction in the message, it is a ZCash specific implementation. Regarding our

proposal, the required functionality is the hashed time lock contract (HTLC). Various

cryptocurrencies such as Bitcoin, implement HTLC. Therefore our proposal is not limited

to a specific cryptocurrency.
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5.1.3 Our approach

We present the anonymous probabilistic payment approach and the ring fractional obliv-

ious transfer, which is a vital ingredient in our proposal.

Anonymous probabilistic payment

We propose an anonymous probabilistic payment that a payer pays a payee via a tumbler.

We name the payer Alice and the payee Bob. Suppose that she wants to send one coin

to him through the tumbler with a certain probability p. We show the overview of the

protocol in Fig. 5.1. Our protocol mostly follows TumbleBit [HAB+17]. The difference is

the use of RLWE encryption and RFOT.

Let us explain each phase in the protocol: setup, puzzle promise, and puzzle solver

as follows. In the setup phase, the tumbler generates a one-time key pair consisting of

a public key and a private key. The tumbler also attaches proof of the zero-knowledge

proof. The tumbler publishes this proof and the public key.

In the promise phase, the tumbler and Bob interact. The tumbler prepares an escrow

transaction that pays one coin to him from the tumbler. Both the signatures of the

tumbler and he can execute this escrow transaction. The tumbler does not present its

signature to him in this phase. Instead, the tumbler creates puzzles and promises from

its signature and presents them to him. If he shows this puzzle answer, then he obtains

the tumbler signature from the promise and puzzle.

To gain the answer, Bob will ask Alice to solve the puzzle. Then, he masks the puzzle

to delete his link and sends it to her. She also masks the received puzzle from him to

delete her link. She will pay and get the answer to the puzzle with a probability p in the

next phase.

In the solver phase, Alice interacts with the tumbler to get the puzzle answer. She

makes a probabilistic payment to the tumbler, paying one coin with probability p. Then,

she sends the double-masked puzzle to the tumbler. She issues a transaction to the

tumbler and asks the tumbler to post the puzzle answer. She asks the tumbler to decrypt

in exchange for the commitment to the transaction. The tumbler posts the answer and

executes the transaction. Alice demasks the double-masked answer and sends the single

masked answer to Bob.

In the cash-out phase, Bob receives the single masked answer from Alice. He demasks
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it and obtains the answer. As the tumbler and he promised in the promise phase, he gets

the tumbler signature from the answer. Finally, he executes the escrow transaction and

gains one coin.

Alice A Tumbler T Bob B
Puzzle promise protocol

Obtain puzzle z from T
y = mask(z)
Send y to A

Puzzle solver protocol
β = mask(y)
Send β to T
Learn s from T
m′ = demask(s)
Send m′ to B

m = demask(m′)
Obtain T ’s singnature from m and post it

Figure 5.1: Overview of the proposed protocol

Ring fractional oblivious transfer

For the probabilistic payment in the solver phase, we introduce a novel ingredient. It is a

fractional oblivious transfer based on the RLWE encryption. We call it the ring fractional

oblivious transfer (RFOT). Let us describe RFOT.

Basic idea. In the RLWE encryption, it is essential to operate on the ring Rq =

Zq[X]/〈Xd + 1〉. An element is a polynomial of n − 1 degree. That is, a = a0 + a1X +

· · · + ad−1X
d−1. Let us compare an element a ∈ Rq with aXk multiplied by a monomial

Xk with an integer k. One can choose k randomly from the set {1, . . . , n}, where n < d.

Because Xd = −1, the original coefficient of the element a is cyclically shifted regardless

of the sign. One sample coefficients of the element a randomly from the uniform distribu-

tion in key generation or encryption. The distribution is positive and negative symmetric.

The element a chosen from the distributions and the shifted aXk are indistinguishable.

Looking at the aXk, one cannot identify how much the shift is.

Procedure. Suppose that a sender sends a message m to a receiver. We name the

sender Alice and the receiver Bob. First, he creates a one-time key pair, a public key,
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and private key. He randomly chooses an integer k ∈ {1, . . . , n}, cyclically shifts the

public key by multiplying a monomial X−k. Furthermore, Bob issues this shifted public

key to her. She creates the ciphertext by the shifted public key. She does not know the

shift amount of k. She also randomly chooses an integer l ∈ {1, . . . , n}, and shifts the

ciphertext by multiplying a monomial X l. He receives the shifted ciphertext and decrypts

it by the secret key. If both shifted amounts l and k match, he can obtain a message m in

the specified format. If they do not match, he has a broken message ∅. The probability

that both l and k match is 1/n.

Security. We prove that the RFOT satisfies the fractional hiding and fractional binding.

The DAM scheme [CGL+17,CGL+16] introduced the two properties. Fractional hiding is

the property that a ciphertext created by an honest encryptor can be decrypted exactly

with probability p. Fractional binding is the property that a malicious encryptor cannot

create valid ciphertext that can be decrypted with probability p′ 6= p. We prove the

fractional hiding and fractional binding security with the simulation-based security like

[CGL+17,CGL+16].

Let us explain the trapdoor for the simulated RFOT. We use the scheme for the

trapdoor proposed in the identity-based encryption over NTRU lattice [DLP14]. We

regard the one-time public key and private key as a user key and the simulated trapdoor

as a master key. It can directly produce the small elements of the RLWE encryption.

One can simulate a shifted secret key or plaintext and randomness from the randomly

sampled elements s1, s2 such that y = as1 + 2s2 for the given y and the trapped a. The

trapdoor requires the decisional small polynomial ratio (DSPR) assumption.

A trapdoor using a gadget matrix is known. Micciancio and Peikert proposed a gadget

matrix based trapdoor [MP12]. Following this work, Genise and Micciancio proposed

an efficient Gaussian sampler for the trapdoor [GM18]. Cousins et al. proposed the

implementation of the RLWE encryption [CDG+18]. However, this method does not

output the small elements required for RLWE encryption.

5.1.4 Chapter organization

We describe the organization of this work. In Section 5.2, we introduce the ring fractional

oblivious transfer. In Section 5.3, we introduce the puzzle solver protocol and the puzzle
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promise protocol and discuss the security of the protocols. In Section 5.4, we conclude

this work.

5.2 Ring fractional oblivious transfer

In this section, we introduce a fractional oblivious transfer over the ring. First, we describe

the trapdoor and the zero-knowledge proof. Next, we introduce the syntax and the

definition of the scheme and its simulator, and its properties, referring to [CGL+16].

Finally, we present the construction of the ring fractional oblivious transfer and discuss

the security.

5.2.1 Trapdoor

We introduce the trapdoor based on DSPR assumption according to [DLP14]. We use

IBE.MasterKeygen(d, q) and IBE.Extract(B, t) of [DLP14]. We show the functions in Fig.

5.2. We state the difference between our functions and [DLP14]. [DLP14] calculates the

hash value of the second argument in the function IBE.Extract. However, we use the target

value t as it is.

• Master key generation: IBE.MasterKeygen(d, q)→ (a,B, ga, fa)

On input a dimension d of the ring R and a modulo q of the ring Rq = R/qR,
IBE.MasterKeygen outputs a master public key a, a master secret key B, and small
polynomials ga, fa such that a = ga · f−1

a .

• Extractor: IBE.Extract(B, t)→ (s1, s2)

On input a master secret key B and a target value t, IBE.Extract outputs a pair of
small polynomials (s1, s2) such that t = as1 + 2s2, where a is the master public key.

Figure 5.2: Trapdoor by identity-based encryption [DLP14]

5.2.2 Non-interactive zero-knowledge proof

Let us state the non-interactive zero-knowledge proof (NIZK). We show the syntax of

NIZK in Fig. 5.3, referring to [CGL+16]. In this work, we represent NIZK according to

the syntax. R is a relation regarding an instance x and a witness w. If x and w satisfy

the relation R, then we denote (x,w) ∈ R. The non-interactive zero-knowledge proof for

the relation R is a protocol that satisfies the properties in Fig. 5.4.
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• Setup: NIZK.Setup(1λ,R)→ crs

On input a security parameter λ and a relation R, NIZK.Setup outputs a common
reference strings crs.

• Prove: NIZK.Prove(crs, x, w)→ π

On input a common reference strings crs, an instance x, and a witness w, NIZK.Prove
outputs a proof π.

• Verify: NIZK.Verify(crs, x, π)→ 1 or 0

On input a common reference strings crs, an instance x, and a proof π, NIZK.Verify
outputs 1 if π is valid, otherwise 0.

• Simulated setup: NIZK.SimSetup(1λ,R)→ (crs, td)

On input a security parameter λ and a relationR, NIZK.SimSetup outputs a common
reference strings crs and a trapdoor td.

• Knowledge extractor: NIZK.Extract(crs, td, x, π)→ w

On input a common reference strings crs, a trapdoor td, an instance x, and a proof
π, NIZK.Extract outputs a witness w.

• Simulator: NIZK.Simulate(crs, td, x)→ π

On input a common reference strings crs, a trapdoor td, and an instance x,
NIZK.Simulate outputs a proof π.

• Knowledge extracting simulator: NIZK.ExtSimulate(crs, td, x)→ π

On input a common reference strings crs, a trapdoor td, and an instance x,
NIZK.ExtSimulate outputs a proof π.

Figure 5.3: Syntax of NIZK [CGL+16]



5.2. RING FRACTIONAL OBLIVIOUS TRANSFER 71

1. Completeness For any (x,w) ∈ R, the conditional probability

Pr[NIZK.Verify(crs, x, π) = 1 ∧ (x,w) ∈ R |
crs← NIZK.Setup(1λ,R), π ← NIZK.Prove(crs, x, w)] ≥ 1− negl(λ).

2. Soundness

Let a knowledge extractor NIZK.Extract for any adversary A exist. For all (x,w) 6∈
R, the conditional probability

Pr[NIZK.Verify(crs, x, π′) = 1 ∧ (x,w′) 6∈ R |
(crs, td)← NIZK.SimSetup(1λ,R), π ← NIZK.Prove(crs, x, w),

w′ ← NIZK.Extract(crs, td, x, π), π′ ← A(crs, x, w′)] ≤ negl(λ).

3. Zero-knowledge

For any adversary, the below two distribution ensembles E real
Z , E ideal

Z are computa-
tionally indistinguishable.

E real
Z = {(R, crs, x, π) | crs← NIZK.Setup(1λ,R), π ← NIZK.Prove(crs, x, w)}
E ideal
Z = {(R, crs, x, π) | (crs, td)← NIZK.SimSetup(1λ,R),

π ← NIZK.Simulate(crs, td, x)}

Figure 5.4: The properties of NIZK
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Let us explain NIZK.ExtSimulate regarding the relation RE for a randomly sampled

pair (c1, c2) as follows. We adopt the special trapdoor tdI since a pair (c1, c2) is randomly

sampled.

Definition 5.1 (Extract Simulate with trapdoor). NIZK.ExtSimulate regarding the rela-

tion RE for a given pair (c1, c2)
$←− C is stated as follows.

• NIZK.ExtSimulate(crsE, tdI , x)→ π

1. Parse x as (c1, c2, a, y).

2. Parse tdI as (B, ga, fa).

3. Compute (v′, f ′) = IBE.Extract(B, c2).

4. Compute (s1, s2) = IBE.Extract(B, (c1 − yv′)f−1
a ).

5. Compute m′, e′ from (c1 − yv′)f−1
a = as1 + 2s2.

6. Compute π = NIZK.Prove(crsE, x, (m
′, v′, e′, f ′)).

7. Output π.

Remark 5.1. Let us confirm how to obtain m′ and e′ from (c1 − yv′)f−1
a = as1 + 2s2.

Note that a = gaf
−1
a , where fa and ga are small polynomials.

(c1 − yv′)f−1
a = as1 + 2s2

(c1 − yv′)f−1
a = s1gaf

−1
a + 2s2

c1 − yv′ = s1ga + 2s2fa

c1 = yv′ + s1ga + 2s2fa

Let m′ = s1ga mod 2 and e′ = s2fa + s1ga −m′. We obtain c1 = yv′ + 2e′ +m′.

Lemma 5.1. Let NIZK.ExtSimulate be defined as Definition 5.1. The below two distribu-

tion ensembles E real
Z′ and E ideal

Z′ are computationally indistinguishable.

E real
Z′ = {(RE, crs, x, π) | crs← NIZK.Setup(1λ,RE), π ← NIZK.Prove(crs, x, w)}

E ideal
Z′ = {(RE, crs, x, π) | (crs, td)← NIZK.SimSetup(1λ,RE),

π ← NIZK.ExtSimulate(crs, td, x)}
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Proof. Let us confirm Definition 5.1 of NIZK.ExtSimulate. A simulated witness w′ =

(m′, v′, e′, f ′) is generated from the trapdoor tdI . Then the faithful witness w is en-

tirely unnecessary. We can choose a small witness w′ that fits the norm constraint by

IBE.Extract. Besides, we can call the actual proving function NIZK.Prove inline. The

simulated proof by NIZK.ExtSimulate is computationally indistinguishable from the proof

by NIZK.Prove. We conclude that the two distribution ensembles E real
Z′ and E ideal

Z′ are com-

putationally indistinguishable.

5.2.3 Syntax and definition

We introduce the scheme’s definitions, the correctness, the simulator, fractional hiding,

and fractional binding. These definitions appear initially as fractional message transfer

in [CGL+16]. We follow the syntax and the definition in [CGL+16].

Syntax and definition of scheme and simulator

We state the syntax and the definition regarding the scheme and its simulator. We show

the syntax and definition of the scheme in Fig. 5.5.

Definition 5.2 (Correctness [CGL+16]). A scheme is correct if for every security param-

eter λ, public parameters pp ∈ RFOT.Setup(1λ), probability p ∈ [0, 1], key pair (pk, sk) ∈

RFOT.Keygen(pp, p), and message m ∈M,

RFOT.Decrypt(pp, sk,RFOT.Encrypt(pp, pk,m)) =

m with probability p

∅ with probability 1− p

Remark 5.2. The types of a decrypted message m′ are as follows. Let us name a

valid/invalid message hit/miss since we illustrate a probabilistic payment as a lottery

ticket.

• m : well-formatted valid message. We also call it ”hit.”

• ∅ : broken formatted invalid message. We also call it ”miss.”

• ⊥ : error message reporting error occurrence
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The syntax of the scheme

• Setup: RFOT.Setup(1λ)→ pp

On input a security parameter λ, RFOT.Setup outputs a public parameter pp.

• Key generation: RFOT.Keygen(pp, p)→ (pk, sk)

On input a public parameter pp and a probability p ∈ [0, 1], RFOT.Keygen outputs
a public key pk and a secret key sk.

• Encryption: RFOT.Encrypt(pp, pk,m)→ c

On input a public parameter pp, a public key pk, and a message m, RFOT.Encrypt
outputs a ciphertext c.

• Decryption: RFOT.Decrypt(pp, sk, c)→ m′

On input a public parameter pp, a secret key sk, and a ciphertext c, RFOT.Decrypt
outputs a message m′.

The simulator regarding the security for the scheme

• Simulated setup: RFOT.SimSetup(1λ)→ (pp, td)

On input a security parameter λ, RFOT.SimSetup outputs a public parameter pp
and a trapdoor td.

• Simulated key generation: RFOT.SimKeygen(pp, td, p)→ (pk, sk)

On input a public parameter pp, a trapdoor td, and a probability p ∈ [0, 1],
RFOT.SimKeygen outputs a public key pk and a secret key sk.

• Simulated encryption: RFOT.SimEncrypt(pp, td, pk, b,m′)→ c

On input a public parameter pp, a trapdoor td, a public key pk, a bit b, and a
message m′, RFOT.SimEncrypt outputs a ciphertext c.

• Extracting decryption: RFOT.ExtDecrypt(pp, td, sk, c)→ m

On input a public parameter pp, a trapdoor td, a secret key sk, and a ciphertext c,
RFOT.ExtDecrypt outputs a message m.

• Simulated decryption: RFOT.SimDecrypt(pp, td, sk, b)→ sk′

On input a public parameter pp, a trapdoor td, a secret key sk, and a bit b,
RFOT.SimDecrypt outputs a simulated secret key sk′.

Figure 5.5: Syntax of the scheme and its simulator [CGL+16]
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Fractional hiding and binding

Let us introduce the definitions of fractional hiding and binding, according to [CGL+16].

Definition 5.3 (Fractional hiding (Claim A.7 in [CGL+16])). The hiding property holds

when the following distribution ensembles E real
H and E ideal

H are computationally indistin-

guishable for any adversary AH , where

E real
H = {out | RFOT.Setup(1λ)→ pp,AH(pp)→ (pk,m),

RFOT.Encrypt(pp, pk,m)→ c,AH(c)→ out}

and

E ideal
H = {out | RFOT.SimSetup(1λ)→ (pp, td),AH(pp)→ (pk,m),

”1 with probability p and 0 otherwise”→ b,

if b = 1, set m′ = m; else set m′ = ∅,

RFOT.SimEncrypt(pp, td, pk, b,m′)→ c,AH(c)→ out}.

Definition 5.4 (Fractional binding (Claim A.8 in [CGL+16])). The binding property

holds when the following distribution ensembles E real
B and E ideal

B are computationally indis-

tinguishable for any adversary AB, where

E real
B = {(pp, pk, sk, c,m) | RFOT.Setup(1λ)→ pp,RFOT.Keygen(pp, p)→ (pk, sk),

AB(pp, pk)→ c,RFOT.Decrypt(pp, sk, c)→ m}

and

E ideal
B = {(pp, pk, sk′, c,m′) | ”1 with probability p and 0 otherwise”→ b,

RFOT.SimSetup(1λ)→ (pp, td),

RFOT.SimKeygen(pp, td, p)→ (pk, sk),

AB(pp, pk)→ c,RFOT.ExtDecrypt(pp, td, sk, c)→ m,

RFOT.SimDecrypt(pp, td, sk, b)→ sk′,

if b = 1, set m′ = m; else set m′ = ∅}.
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5.2.4 Construction

We describe our proposed scheme, its correctness, and its simulation-based security.

Scheme

Let us introduce the formal definition of our scheme.

Definition 5.5 (Ring fractional oblivious transfer). The ring fractional oblivious transfer

(RFOT)

RFOT = (RFOT.Setup,RFOT.Keygen,RFOT.Encrypt,RFOT.Decrypt)

is defined in Fig. 5.6.

Remark 5.3. We denote the encryption as c = RFOT.Encrypt(pk,m; v, e, f) if an en-

cryptor specifies the randomness v, e, f .

Correctness

Let us confirm the correctness of decryption in our scheme. If l = k, then

(c1 − c2s)X
−k = ((yX−kv + 2e+m)X l − (av + 2f)s)X−k

= ((yX l−k − as)v + 2(eX l − fs))X−k +mX l−k

= ((y − as)v + 2(eX l − fs))X−k +m

= 2(esv + eX l − fs)X−k +m

(esv + eX l − fs)X−k is small. We have m′ = (c1 − c2s)X
−k mod 2 = m.

Security

Let us state the simulation-based security.
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• RFOT.Setup(1λ)→ pp

1. Compute crsK ← NIZK.Setup(1λ,RK).

2. Compute crsE ← NIZK.Setup(1λ,RE).

3. Set a
$←− Rq.

4. Output pp = (crsK , crsE, a).

• RFOT.Keygen(pp, 1/n)→ (pk, sk)

1. Parse pp as (crsK , crsE, a).

2. Set s, es
$←− χ.

3. Compute y = as+ 2es.

4. Set k
$←− {1, . . . , n}.

5. Compute y0 = yX−k.

6. Compute πK = NIZK.Prove(crsK , (a, y0), (sX−k, esX
−k)).

7. Set pk = (1/n, a, y0, πK).

8. Set sk = (1/n, s, es, k, πK).

9. Output key pair (pk, sk).

• RFOT.Encrypt(pp, pk,m)→ c

1. Parse pp as (crsK , crsE, a).

2. Parse pk as (1/n, a, y0, πK).

3. Set l
$←− {1, . . . , n}.

4. Compute c′1 = y0v + 2e+m, c2 = av + 2f .

5. Compute c1 = c′1X
l = (y0v + 2e+m)X l.

6. Compute πE = NIZK.Prove(crsE, (c1, c2, a, y0), (m, v, e, f)).

7. Output c = (l, c1, c2, πE).

• RFOT.Decrypt(pp, sk, c)→ m′

1. Parse pp as (crsK , crsE, a).

2. Parse sk as (1/n, s, es, k, πK).

3. Parse c as (l, c1, c2, πE).

4. If l 6∈ {1, . . . , n}, then output ⊥.

5. If NIZK.Verify(crsE, (c1, c2, a, y0), πE) = 0, then output ⊥.

6. If l 6= k, then output m′ = ∅.
7. If l = k, then output m′ = (c1 − c2s)X

−k mod 2.

Figure 5.6: Construction of the ring fractional oblivious transfer
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Definition 5.6 (Simulated ring fractional oblivious transfer). The simulated ring frac-

tional oblivious transfer

RFOTsim = (RFOT.SimSetup,RFOT.SimKeygen,RFOT.SimEncrypt,

RFOT.ExtDecrypt,RFOT.SimDecrypt)

is defined in Fig. 5.7.

Remark 5.4. Let us confirm that one can extract the plaintext with RFOT.ExtDecrypt,

even if l 6= k.

c1X
−l − c2sX

−k = (y0v + 2e+m)− (av + 2f)sX−k

= (yX−kv + 2e+m)− (av + 2f)sX−k

= (y − as)vX−k + 2(e− fsX−k) +m

= 2(esv + e− fs)X−k +m

(esv + e− fs)X−k is small. We obtain (c1X
−l − c2sX

−k) mod 2 = m.

Lemma 5.2. The below two distribution ensembles are computationally indistinguishable:

{pp | RFOT.Setup(1λ)→ pp} and {pp | RFOT.SimSetup(1λ)→ (pp, td)}.

Proof. We suppose that an adversary distinguishes the two pp. Let us confirm the vari-

able a ∈ pp. The one is randomly sampled from Rq, and the other is equal to ga · f−1
a .

If the adversary distinguishes the two a, then the adversary could break the DSPR as-

sumption regarding Definition 2.2. It is a contradiction. We conclude that RFOT.Setup

and RFOT.SimSetup are computationally indistinguishable.

Lemma 5.3. The below two distribution ensembles are computationally indistinguishable:

{(pp, pk) | RFOT.Setup(1λ)→ pp, RFOT.Keygen(pp, p)→ (pk, sk)} and

{(pp, pk) | RFOT.SimSetup(1λ)→ (pp, td), RFOT.SimKeygen(pp, td, p)→ (pk, sk)}.

Proof. The difference between RFOT.Keygen and RFOT.SimKeygen is each function that

outputs each proof. One is NIZK.Prove. The other is NIZK.Simulate. The proofs by
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• RFOT.SimSetup(1λ)→ (pp, td)

1. Compute
(crsK , tdK)← NIZK.SimSetup(1λ,RK).

2. Compute
(crsE , tdE)← NIZK.SimSetup(1λ,RE).

3. Compute
(a,B, ga, fa) = IBE.MasterKeygen(d, q).

4. Set tdI = (B, ga, fa).

5. Set pp = (crsK , crsE , a).

6. Set td = (tdK , tdE , tdI).

7. Output (pp, td).

• RFOT.SimKeygen(pp, td, 1/n)→ (pk, sk)

1. Parse pp as (crsK , crsE , a).

2. Parse td as (tdK , tdE , tdI).

3. Set s, es
$←− χ.

4. Compute y = as+ 2es.

5. Set k
$←− {1, . . . , n}.

6. Compute y0 = yX−k.

7. Compute
πK = NIZK.Simulate(crsK , tdK , (a, y0)).

8. Set pk = (1/n, a, y0, πK).

9. Set sk = (1/n, s, es, k, πK).

10. Output key pair (pk, sk).

• RFOT.ExtDecrypt(pp, td, sk, c)→ m

1. Parse sk as (1/n, s, es, k, πK).

2. Parse c as (l, c1, c2, πE).

3. Output
m = (c1X

−l − c2sX−k) mod 2.

• RFOT.SimDecrypt(pp, td, sk, b)→ sk′

1. Parse pp as (crsK , crsE , a).

2. Parse td as (tdK , tdE , tdI).

3. Parse tdI as (B, ga, fa).

4. Parse sk as (1/n, s, es, k, πK).

5. If b = 0,

– Compute
(s′, e′s) = IBE.Extract(B, y0)

– Set sk′ = (1/n, s′, e′s, k, πK).

6. If b = 1, then output sk.

• RFOT.SimEncrypt(pp, td, pk, b,m′)→ c

1. Parse pp as (crsK , crsE , a).

2. Parse td as (tdK , tdE , tdI).

3. Parse pk as (1/n, a, y0, πK).

4. Set l
$←− {1, . . . , n}.

5. If b = 0, then

– Set (c1, c2)
$←− C.

– Compute πE = NIZK.ExtSimulate(crsE , tdI , (c1, c2, a, y0)).

6. If b = 1, then

– Compute c′1 = y0v + 2e+m′, c2 = av + 2f, c1 = c′1X
l.

– Compute πE = NIZK.Prove(crsE , (c1, c2, a, y0), (m′, v, e, f)).

7. Output c = (l, c1, c2, πE).

Figure 5.7: Simulator of the ring fractional oblivious transfer
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NIZK.Prove and NIZK.Simulate are computationally indistinguishable because NIZK scheme

satisfies zero-knowledge. We conclude that the lemma holds.

Lemma 5.4 (Fractional hiding). The scheme of Definition 5.5 holds the fractional hiding

of Definition 5.3.

Proof. Let us compare E real
H with E ideal

H . There are two differences between the two en-

sembles. The one is NIZK.Prove or NIZK.ExtSimulate. These proofs are indistinguishable

from Lemma 5.1.

The other difference is the encryption or random sampling. c′1 = y0v + 2e + m′, c1 =

c′1X
l, c2 = av+ 2f in E real

H or (c1, c2)
$←− C in E ideal

H . If an adversary A can distinguish E real
H

and E ideal
H , then A could distinguish the true ciphertext (c1, c2) from the randomly sam-

pled element (c1, c2)
$←− C. This situation goes against the RLWE assumption regarding

Definition 2.1. We conclude that E real
H and E ideal

H are indistinguishable. The scheme holds

the fractional hiding.

Lemma 5.5 (Fractional binding). The scheme of Definition 5.5 holds the fractional hiding

of Definition 5.4.

Proof. Let us compare E real
B with E ideal

B . RFOT.Keygen and RFOT.SimKeygen are compu-

tationally indistinguishable because of Lemma 5.3. RFOT.ExtDecrypt outputs a unique

plaintext m for a valid ciphertext even if l 6= k. The simulated secret key sk′ is dis-

tributed independently of the actual secret key sk. When b = 1, output the actual secret

key itself. When b = 0, a different secret key (s′, e′s) is output, satisfying the relationship

y0 = as′ + 2e′s with the fixed public key (a, y0) with IBE.Extract. We conclude that the

scheme holds the fractional binding.

5.3 Protocol and security

This section presents the protocols, the ideal functionalities, the theorems that each pro-

tocol realizes each ideal functionality, and the proofs regarding the puzzle solver and

puzzle promise. We present a simulation-based proof of the real/ideal world paradigm.

We build simulators in the cases of each corrupt participant. We discuss the indistin-

guishability of the game sequence by using a hybrid argument. The discussion is based on
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TumbleBit [HAB+17, HAB+16]. We also combine the DAM scheme [CGL+17, CGL+16]

regarding the puzzle solver protocol related to RFOT.

5.3.1 Puzzle solver protocol

We present the puzzle solver protocol, the ideal functionality, the theorem, and the proof.

We show the puzzle solver protocol in Fig. 5.8 and the ideal functionality in Fig. 5.9.

We also show the simulators in Fig. 5.10 and Fig. 5.11. The simulator in Fig. 5.10

corresponds to the corrupt Alice. The simulator in Fig. 5.11 corresponds to the corrupt

the tumbler. Let us present the quick look at the protocol, the overview of the ideal

functionality, and proof sketch as the below paragraphs.

Quick look at the protocol. We change the procedure by the RSA encryption in

TumbleBit [HAB+17,HAB+16], into the one by the RLWE encryption. Also, we combine

RFOT with the procedure. The tumbler and Alice interact at the protocol. We use a

cut-and-choose technique. Alice creates real puzzles and fake puzzles, respectively.

At Step 1, She further masks the masked puzzle (ciphertext) she receives for the real

puzzles. She creates ciphertext by randomly choosing a plaintext by herself. She adds

this to the puzzle. At Step 2, she creates a ciphertext from randomly chosen plaintext

for the fake puzzles. She does not include the received puzzle in the fake puzzles. At

Step 3, she mixes these puzzles and executes the RFOT encryption. She permutes and

mixes real puzzles and fake puzzles. These puzzles are just the RLWE ciphertexts. She

chooses the integer l randomly and shifts all puzzles by the single amount l. In this way,

she produces the RFOT ciphertext from the RLWE ciphertexts. She passes the puzzles

to the tumbler. At Step 4, the tumbler decrypts all the puzzles it receives. If the puzzles

are miss/error, then the tumbler cannot obtain the correct message. In this case, the

tumbler aborts. (Even if the tumbler chooses s randomly, she will notice that it does

not match her plaintext at Step 7. Moreover, the tumbler does not know which puzzle

is in the fake set at this stage.) The tumbler creates a ciphertext c for the decrypted

message by using the symmetric key encryption. The tumbler also selects the hash value

h of k randomly. The tumbler sends these (c, h) to her for commitment. At Step 5, upon

receiving the commitment (c, h), she informs the tumbler of which puzzle belongs to the

fake set. She sends a message and randomness to the tumbler for opening. At Step 6,
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the tumbler verifies the received message and randomness, by matching the ciphertext

received earlier. If all can be verified correctly, the tumbler sends k belonging to the fake

set to her. At Step 7, she obtains s by the decryption process from the received k and

the ciphertext c of the symmetric key encryption. If s matches the original plaintext, she

continues. Otherwise, she aborts. At Step 8, she fills in the transaction on the blockchain.

Both the preimages of h and the tumbler’s signature can fulfill this transaction. She sends

the received puzzle to the tumbler and the message and the randomness in the real set.

At Step 9, the tumbler verifies the ciphertext from the received message, randomness, and

puzzle. If it is OK, the tumbler fills k in the transaction offered at Step 10. At Step 11,

she gets k from the transaction, executes the symmetric key encryption, and gets s. She

removes her message by the XOR operation and gets the message of the received puzzle

y.

Overview of the ideal functionality. We combine the functionality of TumbleBit

and the functionality of fractional message transfer (FMT) in the DAM scheme for the

ideal functionality. First, we incorporate mutual fairness into functionalities, following

TumbleBit. Fairness for Alice means that the tumbler earns one coin if and only if

she gets the correct answer. Fairness for the tumbler means that the protocol executes

decrypting the puzzle selected by her. Upon setup, the functionality receives the key from

the tumbler and verifies if it is valid. If the verification is successful, the functionality

sends the key to her and the simulator. The functionality receives the request containing

the ciphertext from her and sends it to the tumbler at the evaluation. The functionality

receives the plaintext result from the tumbler, sends it to Alice, and pays to the tumbler.

Next, we append a probabilistic payment to the functionality, following the DAM

scheme. The functionality conveys a valid message with the probability p. Alice sends

to the functionality at the request, including the bit b and the probability pA. The

functionality confirms the bit b to determine whether there is an error. The tumbler

sends the key to the functionality together with the probability pT . The functionality

judges that a lottery is an error in the case that b = 0 or the probabilities do not match.

If b = 1 and the probabilities are equal, the functionality runs that the ciphertext is a

hit with the probability p and is a failure with the probability 1 − p. The functionality

stores the judged value in Q as a pair (sid,mid). Let us confirm the behavior after the

functionality receives the evaluation result from the tumbler. The functionality searches
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Q for mid paired with sid. If mid is a hit and the message x from the tumbler is valid, the

functionality sends her x and pays the tumbler. Otherwise, the tumbler refunds to her as

a missing lottery or an error.

Proof sketch. In the case of corrupt Alice, she cannot learn more than the decrypted

message. Let us confirm the case of corrupt the tumbler. The protocol adopts a cut-and-

choose technique like TumbleBit. Therefore, the tumbler must present invalid ciphertexts

to the real set while correctly responding to the fake set. The tumbler cannot obtain the

information regarding the fake set and the real set before her opening. The probability

of corrupt tumbler’s success is negligible.

Theorem 5.1. Let λ be a security parameter. Let d ≥ 2λ. Assume that H and Hprg

are independent random oracles, and the RLWE and DSPR problems are hard. Then,

the protocol in Fig. 5.8 securely realizes the functionality Fsolver in Fig. 5.9 with the

following security guarantees. The security for T is 1− negl(λ) and the security for A is

1− 1/
(
µ+η
η

)
− negl(λ).

Proof. We divide the proof into two cases. One is the case of the corrupt Alice. The other

is the case of the corrupt the tumbler. The simulator S in Fig. 5.10 corresponds to the

corrupt Alice A∗. The simulator S in Fig. 5.11 corresponds to the corrupt the tumbler

T ∗.

Case that Alice is corrupt. We adopt a hybrid argument and confirm the indistin-

guishability between the real world and the ideal world. The simulator S in Fig. 5.10

plays a role of the corrupt Alice A∗.

a0: This is the real game.

a1: The difference between a0 and a1 is how the key ki is computed. If x′ =

RFOT.Decrypt(sk, βi) 6= ∅ with salt, the simulator in this hybrid a1 sends k′i = Equivocate(ci, x, hi),

instead of ki. If x′ = ∅, then both games receive refund and halt. From the assumption

regarding the random oracle, ci and hi statistically hide the encrypted message and the

preimage. The probability of the event Collision is negligible. So the view in a1 is indis-

tinguishable from the view in a0.

a2: The difference between a1 and a2 is what one inputs Equivocate. The simulator

in this hybrid a2 computes Equivocate(ci, ρi, hi) instead of Equivocate(ci, x+ ri, hi). Then
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Public input: pk. πK in pk proves validity of pk in a one time setup phase.
Alice A. Input: puzzle y the tumbler T . Secret input: sk
1. Prepare real puzzles R

salt
$←− {0, 1}λ

For j = 1, . . . , µ:

rj
$←− {0, 1}λ, vj , ej , fj

$←− χ
dj = RLWE.Enc(pk, salt||rj ; vj , ej , fj) + y

2. Prepare fake values F
For i = 1, . . . , η:

ρi
$←− {0, 1}λ, vi, ei, fi

$←− χ
δi = RLWE.Enc(pk, salt||ρi; vi, ei, fi)

3. Mix sets and RFOT
Permute {d1, . . . , dµ, δ1, . . . , δη} randomly
and obtain {β′1, . . . , β′µ+η}
l

$←− {1, . . . , n}
For i = 1, . . . , µ+ η:

Parse β′i as (c′1, c2) and set c1 = c′1X
l

Set βi = (c′1, c2)
salt,l,β1,...,βµ+η−−−−−−−−−−→

Let R be the indices of the di
Let F be the indices of the δi

4. Evaluation.
For i = 1, . . . , µ+ η:

Evaluate βi: si = RFOT.Decrypt(sk, βi)
Check if si = ∅ with salt. If not, abort.
Encrypt the result si:

ki
$←− {0, 1}λ1

ci = Hprg(ki)⊕ si
(c1,h1),...,(cµ+η,hµ+η)←−−−−−−−−−−−−−− Commit to the keys: hi = H(ki)

5. Identify fake set.
F,ρi,vi,eifi ∀i∈F−−−−−−−−−−−→

6. Check fake set.
For all i ∈ F : Verify βi =

RFOT.Encrypt(pk, salt||ρi; vi, ei, fi, l)
ki ∀i∈F←−−−−− If yes, reveal ki ∀i ∈ F . Else abort.

7. Check fake set.
For all i ∈ F :

Verify hi = H(ki)
Decrypt si = Hprg(ki)⊕ ci
Verify si = ρi

Abort if any check fails
8. Post transaction Tpuzzle

Tpuzzle offers one coin within timewindow tw1

under condition ”the fulfilling transaction is signed

by T and has preimages of hj ∀j ∈ R”.
y,rj ,vj ,ej ,fj ∀j∈R−−−−−−−−−−−−→

9. Check βi unblind to y ∀j ∈ R
For all j ∈ R: Verify βi =
RFOT.Encrypt(pk, salt||rj ; vj , ej , fj , l) + y

If not, abort.
10. Post transaction Tpuzzle

Tpuzzle contains kj ∀j ∈ R
11. Obtain puzzle solution.
For j ∈ R:

Learn kj from Tpuzzle

Decrypt sj = Hprg(kj)⊕ cj
Verify βj = RFOT.Encrypt(pk, salt||sj ; vj , ej , fj , l) + y
Obtain solution sj + rj mod 2

Figure 5.8: Puzzle solver protocol. We model H and Hprg as random oracles.
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Parties.

• A, T and adversary S.

Setup.

• Receive (Setup, pk, sk, pT ) from T .

• If pk or sk are invalid, then

– do nothing.

• Else,

– Send (Setup, pk) to A and S.

Evaluation.

• On input (request, sid, y, 1coin, pA, b) from A:

– If b = 1 and pA = pT ,

∗ Set mid = hit with probability pA or mid = miss with probability 1− pA.

– Else if b = 0 or pA 6= pT , set mid = error.

– Send (request, sid,A, y) to T .

– Append (sid,mid) to Qid.

– Start counter twsid = 0.

• On input (evaluate, sid,A, x) from T :

– Obtain mid corresponding sid from Qid.

– If mid = hit and x 6= ∅, then

∗ Send (sid, x) to A.

∗ Send (payment, sid, 1coin) to T .

– Else, send (refund, sid, 1coin) to A.

• If twsid = tw, send (refund, sid, 1coin) to A.

Figure 5.9: Ideal functionality Fsolver
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1. Receive salt, l, β1, . . . , βµ+η from Adv. Choose ci
$←− {0, 1}λ and hi ∈ {0, 1}λ2 for

i ∈ [µ+ η]. Send them to Adv.

2. Receive F, ρi, vi, ei, fi for i ∈ F . For all i ∈ F , check if βi =
RFOT.Encrypt(pk, salt||ρi; vi, ei, fi, l). If check fails, output whatever Adv out-
puts, send (request, sid, y, 1coin, pA, b = 0) to Fsolver and halt. Else, run k′i =
Equivocate(ci, ρi, hi). Send k′i for i ∈ F to Adv.

3. Receive y, ri, vi, ei, fi for i ∈ R. Check if βi = RFOT.Encrypt(pk, salt||ri; vi, ei, fi, l)+
y for all i ∈ R. If the check succeeds, transaction Tpuzzle is correctly formed, execute
as follows.

• Send (request, sid, y, 1coin, pA, b = 1) to Fsolver and obtain x or refund.

• If obtain x,

– Run k′i = Equivocate(ci, x+ ri, hi) with i ∈ R.

– Send transaction Tsolve with values k′i.

• Else if obtain refund, halt.

Else, checks have failed so output whatever Adv outputs, send
(request, sid, y, 1coin, pA, b = 0) to Fsolver and halt.

Procedure random oracle simulation for QH ,QHprg is as follows:
Receive query q for H(resp., Hprg):

1. If query q ∈ QH(resp., Hprg), retrieve entry (q, a) from the set and output a.

2. Else a
$←− {0, 1}λ2(resp., λ1), and (q, a) to QH(resp., Hprg) and output a.

Procedure Equivocate(ci,mi, hi) is stated as below:

1. k′i
$←− {0, 1}λ1 . If k′i ∈ QH or QHprg , output Collision and abort.

2. Compute ai = ci ⊕mi, then append (k′i, ai) to QHprg .

3. Append (k′i, hi) to QH .

4. Output k′i.

Figure 5.10: Simulator for the puzzle solver protocol in the case that Alice is corrupt
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1. If pk and sk are valid, S receives (request, sid,A, y) from Fsolver.

2. Compute x′ = RFOT.ExtDecrypt(pp, td, sk, y) and extract x from x′ = salt||x.

3. Receiving {ki} for all i ∈ F from Adv, S checks if all {ci}i∈F are correct. If yes, S
sends message (evaluate, sid,A, x) to Fsolver. Then, Fsolver sends the puzzle solution
x or refund to A. Meanwhile, S sends Tpuzzle to Adv.

4. S receives Tsolve from Adv. If all keys {ki} ∀i ∈ R decrypt ciphertexts ci, not
containing valid puzzle solutions, then S outputs BAD and aborts. Else, S outputs
whatever Adv outputs and halts.

Figure 5.11: Simulator for the puzzle solver protocol in the case that the tumbler is
corrupt

x is a valid message of y. x is taken from Fsolver after Adv has sent Tpuzzle. Both games

receive refund instead of x and halt. The view in a2 is generated by just a single value x.

The view in a2 is indistinguishable from the view in a1. The simulator in a2 corresponds

to Simulator S in Fig. 5.10.

Case that the tumbler is corrupt. The simulator S in Fig. 5.11 plays a role of the

corrupt the tumbler T ∗. Because of the RLWE assumption, all ciphertexts β1, . . . , βµ+η are

uniformly distributed. They reveal no information about the sets F and R. Furthermore,

H and Hprg are modeled as a random oracle. The encryption of the key is binding.

It is impossible for an adversary Adv to change the values after the sets F and R are

revealed. We denote the event that an adversary presumes the set F as the event BAD.

The probability of the event BAD is as follows.

Pr[BAD] =
1(
µ+η
η

) +
1

2λ1

The difference between the transcript by the simulator S in Fig. 5.11 in the ideal

world and the one in the real world is if the event BAD happens or not. The two worlds

are distinguishable with the negligible probability Pr[BAD].

We conclude that the protocol in Fig. 5.8 securely realizes the functionality Fsolver in

Fig. 5.9.
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5.3.2 Puzzle promise protocol

We present the puzzle promise protocol, the ideal functionality, the theorem, and the

proof. We show the protocol in Fig. 5.12 and the ideal functionality in Fig. 5.13. We also

show the simulators in Fig. 5.14 and Fig. 5.15. The simulator in Fig. 5.14 corresponds

to the corrupt Bob. The simulator in Fig. 5.15 corresponds to the corrupt the tumbler.

Let us present the quick look at the protocol, the overview of the ideal functionality, and

proof sketch as the below paragraphs.

Quick look at the protocol. The tumbler and Bob interact at the protocol. As with

the puzzle solver protocol, we also use the cut-and-choose technique. At Step 1, the

tumbler sets up the escrow transaction. From Step 2 to Step 4, Bob creates real and fake

hash values and sends the shuffled hash values to the tumbler. At Step 5, the tumbler

signs everything does corresponding puzzles and sends these with promises. At Step 6,

he opens a fake set to the tumbler. At Step 7, the tumbler verifies them and presents

the puzzle answers corresponding to the fake values. At Step 8, he verifies these answers.

Note that we must arrange a situation where it is sufficient for him to send one of the

real puzzles to Alice. At Step 9, the tumbler sends the difference from other elements and

proves that the ciphertext is zero. The tumbler uses the non-interactive zero-knowledge

proof for the relation R0. At Step 10 and 12, he can agree that it is sufficient to send

either one to her by verifying the proof and the difference. At Step 11, the tumbler posts

the transaction.

The difference from TumbleBit is the adoption of the RLWE encryption instead of

the RSA encryption. The RLWE encryption is probabilistic encryption, unlike the RSA

encryption. One can verify the ciphertext by its plaintext and randomness by reproduc-

ing and verifying it with the encryption algorithm. We make the tumbler encrypt this

randomness with the symmetric key encryption and pass it to Bob. Let the key of the

symmetric key encryption be the plaintext itself. Even if we adopt the RLWE encryption,

we can use the only plaintext to answer the puzzle by this trick.

Overview of the ideal functionality. We show the ideal functionality in Fig. 5.13.

This ideal functionality is the same as TumbleBit. Let us outline the ideal functionality

briefly. The ideal functionality plays a role as a trusted third party. The functionality
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signs a transaction by calling the signature oracle. It is fairness for Bob that he obtains

a promise that contains a valid signature for at least one genuine transaction. It is

fairness for the tumbler that he has no knowledge of anything but the fake transaction

signature. Upon receiving fake and real transactions from him, the functionality stores

them and sends fake transactions to the tumbler. Upon receiving a promise from the

tumbler, the functionality signs the fake transactions. The functionality records fake

transaction signatures and the promises to real transactions. Finally, the functionality

sends the promises to him. Upon receiving the signature verification from any party, the

functionality tells them that the functionality has already recorded the fake transactions’

signatures. Since the functionality does not store real transactions, the functionality

records them.

Proof sketch. Regarding corrupt Bob, we change the RSA encryption in the simulator

in TumbleBit into the RLWE encryption. We show the simulator in Fig. 5.14. The

simulator in Fig. 5.15 is the same as TumbleBit for corrupt the tumbler. The proof in

TumbleBit holds in the same way.

Theorem 5.2. Let λ be a security parameter. Let d ≥ 2λ. Assume that H,H ′, and Hshk

are independent random oracles, and the RLWE and DSPR problems are hard. Then, the

protocol in Fig. 5.12 securely realizes the functionality Fpromise sign in Fig. 5.13 with the

following security guarantees. The security for T is 1− negl(λ) and the security for B is

1− 1/
(
µ+η
η

)
− negl(λ).

Proof. We divide the proof into two cases. One is the case of corrupt Bob. The other is

the case of the corrupt the tumbler.

Case that Bob is corrupt. Let us confirm the indistinguishability between the real

world and the ideal world with a hybrid argument. The simulator S in Fig. 5.14 plays a

role of the corrupt Bob B∗.

a0: This is the real world.

a0.5: When the simulator receives hR, hF and {β1, . . . , βµ+η} from B∗, the simulator

checks the set of queries QH and extracts the pair (salt||R, hR) and (salt||F, hF ). If there

is no pair regarding hR and hF , then the simulator aborts. This abort is the difference be-

tween a0 and a0.5. The probability of the abort is 1/2λ2 , so the two games are statistically
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Public input: (pk,PKephT ). πK in pk proves validity of pk in a one time setup phase.

T chooses a fresh ephemeral ECDSA-Secp256k1 key (SKephT ,PKephT ).
Bob B the tumbler T . Secret input: sk

1. Set up Tescr(T ,B)

Sign but do not post transaction Tescr(T ,B)

timelocked for tw2 offering one coin under
the condition: ”the fulfilling transaction

Tescr(T ,B)←−−−−−− is signed under key PKephT and key PKB”
2. Prepare µ real unsigned Tescr(T ,B).
For i ∈ 1, . . . , µ:

ρi
$←− {0, 1}λ, T iescr(T ,B) = CashOutFormat(ρi), hti = H ′(T ifulfill).

3. Prepare fake set.
For i ∈ 1, . . . , η:

ri
$←− {0, 1}λ, fti = H ′(FakeFormat||ri).

4. Mix sets.
Permute {ft1, . . . , ftη, ht1, . . . , htµ} randomly

and obtain {β1, . . . , βµ+η}
β1,...,βµ+η−−−−−−−→

Let R be the indices of the hti
Let F be the indices of the fti

Choose salt
$←− {0, 1}λ

hR = H(salt||R), hF = H(salt||F )
hR,hF−−−−→

5. Evaluation.
For i = 1, . . . , µ+ η:

ECDSA sign βi to get σi = Sig(SKephT , βi)

εi
$←− {0, 1}λ, vi, ei, fi

$←− χ.
Create promise ci = Hshk(εi)⊕ σi
Encrypt v̄i = Enc(vi; εi), ēi = Enc(ei; εi)

(c1, z1, v̄1, ē1, f̄1), . . . , and f̄i = Enc(fi; εi)
(cµ+η,zµ+η,v̄µ+η,ēµ+η,f̄µ+η)←−−−−−−−−−−−−−−−−−−− Create puzzle zi = RLWE.Enc(pk, 0λ||εi; vi, ei, fi)

6. Identify fake set.
R,F,ri ∀i∈F,salt−−−−−−−−−−→

7. Check fake set.
Check hR = H(salt||R) and hF = H(salt||F )
For all i ∈ F : Verify βi = H ′(FakeFormat||ri)

εi ∀i∈F←−−−−− Abort if any check fails
8. Check fake set.
For all i ∈ F :

Validate εi ∈ {0, 1}λ
Decrypt vi = Dec(v̄i; εi), ei = Dec(ēi; εi), fi = Dec(f̄i; εi)
Validate puzzle zi = RLWE.Enc(pk, 0λ||εi; vi, ei, fi)
Validate promise ci:

Decrypt σi = Hshk(εi)⊕ ci
Verify σi such that (PKephT , H ′(fti), σi) = 1

Abort if any check fails
9. Prepare differences
For R = {j1, . . . , jµ}:

Set d2 = εj2 − εj1 , . . . , dµ = εjµ − εjµ−1

d2,...,dµ,π2,...,πµ←−−−−−−−−−−− Set πj proving zj + dj ∈ C0

10. Difference test.
For R = {j1, . . . , jµ}: Verify πj
Abort if any check fails

11. Post transaction Tescr(T ,B)

12. Start Payment Phase.

Set zt = zj1 . mb
$←− {0, 1}λ.

Send ztb = zt + RLWE.Enc(pk, 0λ||mb) to Alice A.

Figure 5.12: Puzzle promise protocol. We model H, H ′ and Hshk as random oracles.
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Parties.

• B, T and adversary S.

Setup.

• Inform Fpromise sign if T is corrupt or honest.

Key generation.

• Receive message (Keygen,B) from B.

• Send (Keygen,B) to S.

• Receive response (PKephT ,Sig) from S.

• Send (Setup,PKephT ) to B.

• Record (PKephT ,Sig).

Signature request.

• Receive message (sign request,PKeph
′

T , {FkTxni}i∈[η], {mi}i∈[µ]) from B.

• If PKeph
′

T 6= PKephT , then do nothing.

• If ∀i,FkTxni compiles with FakeFormat, then send (sign request,B,PKephT , {FkTxni}i∈[η]) to T .

• Else, do nothing.

Promise.

• Receive (promise,B, ans,Set) from T .

• If ans = no, then set all signatures to ⊥.

• Else, if Set 6= ∅, compute signatures as follows:

– If T is honest, Set FkSigni = Sig(FkTxni,PK
eph
T ) for i ∈ [η].

– Else T is corrupt, Send (Sign,FkTxni,B) to adversary S, and obtain respective signatures.

– Abort if there is a recorded entry (FkTxni,FkSigni,PK
eph
T , 0).

– Record entries (FkTxni,FkSigni,PK
eph
T , 1) and (mj ,PK

eph
T , promise).

• Send (sign promise, ans) to B.

Signature verification.

• Receive (Verify, sid,m, σ,PKeph
′

T ) from any party P:

– If PKeph
′

T 6= PKephT , then do nothing.

– Else, if T is honest:

∗ If there is a recorded entry (m,σ,PKephT , 1), then set ver = 1. (completeness condition)

∗ If there is no recorded entry (m,σ,PKephT , 1), then set ver = 0 and set the entry

(m,σ,PKephT , 0). (unforgeability condition)

– Else, if T is corrupt, then let ver be set by S. (corrupt signer case)

• Send (Verify, sid,m, σ, ver) from party P.

Figure 5.13: Ideal functionality Fpromise sign (Fig. 8 in [HAB+16])
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• Simulator S simulates the messages that Adversary B∗ expects from T as follows.

1. Inform Fpromise sign that T is honest.

2. Compute (PKephT ,SKephT ) = Keygen(1λ).

3. Send PKephT to B∗ and Fpromise sign.

• Receive hR, hF and {β1, . . . , βµ+η} from B∗, runs as follows:

1. Extracts the sets F,R from the random oracle, checking the set of queries QH and extracting
the pair (salt||R, hR) and (salt||F, hF ). If there is no pair regarding hR, hF , then set R =
F = ⊥.

2. Send B∗ the pair (ci, zi) which is made as:

(a) For all i, ci
$←− {0, 1}s.

(b) For i ∈ F, εi
$←− {0, 1}λ and zi = RLWE.Enc(pk, 0λ||εi).

(c) For R = {j1, . . . , jµ}, zj1 , d2, . . . , dµ
$←− {0, 1}λ and zji = RLWE.Enc(pk, 0λ||di) +

(0λ||zji−1)

• Receive (F ′, R′, ri) from B∗, runs as follows:

1. If F ′ 6= F or R′ 6= R, then abort.

2. If any (FakeFortmat||ri, βi) 6∈ QH′ for i ∈ F , then abort.

3. For j ∈ R, set mj = γ if (γ, βi) ∈ QH′ . Else set mj = ⊥.

4. Send to Fpromise sign the message (sign request,PKephT , {FakeFormat||ri}i∈F , {mj}j∈R).

5. Obtain response (promise,B∗, ans, {FkSign}i∈[η]).

6. If ans = no, then halt and output whatever B∗ outputs.

7. Compute hjl = cjl ⊕ FkSignl.

8. Store the pair (εjl , hjl) in QHshk .

9. Send εi for i ∈ F and the differences d2, . . . , dµ.

• Finally, output whatever B∗ outputs and halt.

Procedure RO1, which is the random oracle simulation for H is as follows:

1. Receive query q for H.

2. If q ∈ QH , retrieve (γ, a) for QH .

3. Else a
$←− {0, 1}λ2 .

4. Append (γ, a) to QH .

5. Output a.

Procedure RO2, which is the random oracle simulation for Hshk is as follows:

1. Receive query q for Hshk.

2. If q ∈ QHshk , retrieve (γ, a) for QHshk .

3. If γ = RLWE.Dec(sk, zi) for some i ∈ R and (γ, a) 6∈ QHshk , then output RLWE failure.

4. Else a
$←− {0, 1}λ2 .

5. Append (γ, a) to QHshk .

6. Output a.

Figure 5.14: Simulator for the puzzle promise protocol in the case that Bob is corrupt
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The simulator S executes T ∗ internally.
First, we introduce the algorithm Sig(mi,PK

eph
T ) as follows.

• Lfake, Lreal are internal variables.

• If (mi, βi, σi) ∈ Lfake, output signature (βi, σi).

• Else if (mi, βi, σi) ∈ Lreal, then append (mi, βi) to QH′ , and output signature (βi, σi).

• Else, abort.

Receive (Keygen,B). Send request to T ∗. Obtain PKephT . Send (PKephT ,Sig) to Fpromise sign.

Receive (sign request,B,PKephT , {FkTxni}i∈[η]).
Pick randomly F,R with F ∩ R = ∅. Compute the RO outputs hF , hR and β1, . . . , βµ+η. Send them to
T ∗.
Receive a pair (ci, zi) from T ∗:

1. Extract εi by queries to Hshk

2. Let σi be the signature decrypted from ci with εi

3. If ci, zi, εi, βi, σi for i ∈ F are valid, store (FkTxni, βi, σi) in Lfake.

4. If ci, zi, εi, βi, σi for i ∈ F are valid, append i to set Set and append (βi, σi) to Lreal. If such i does
not exist, set real = no.

For all i ∈ F , ri
$←−. Send ri to T ∗. Append the pair (FkTxni||ri, βi) to QH′ .

Receive the openings ε′i to fake messages i ∈ F . Obtain σ′i with ε′i, ci. If any (i, ci, zi, ε
′
i, βi, σ

′
i) is invalid,

send (promise,B, no,⊥) to Fpromise sign. Else, send (promise,B, yes,Set) to Fpromise sign.
Now let us confirm the below two cases:
Case 1: If any i ∈ F such that (i, ε′i, βi, σ

′
i) is valid but (·, βi, σ′i) 6∈ Lfake, then abort and output binding fail.

Case 2: Suppose that all i ∈ F such that (i, ε′i, βi, σ
′
i) is valid and (·, βi, σ′i) ∈ Lfake.

1. If real = no, abort and output cut and choose fail.

2. Else, set variables Lfake, Lreal for the algorithm Sig.

Figure 5.15: Simulator for the puzzle promise protocol in the case that the tumbler is
corrupt (Appendix F in [HAB+16])
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close.

a1: Instead of computing ci = Hshk(εi) ⊕ σi, the simulator chooses ci
$←− {0, 1}s and

stores the pair (εi, ci ⊕ σi) in QHshk in a1. The both games a0.5 and a1 are statistically

close because Hshk is unpredictable.

a2: Instead of computing zji = RLWE.Enc(pk, εji), the simulator randomly chooses

zj1 , d2, . . . , dµ from {0, 1}λ and computes zji = RLWE.Enc(pk, di) + zji−1
. Let us check for

RLWE failure. According to the RLWE assumption, the ciphertext zji cannot be distin-

guished from a uniformly random value. The probability that the plaintext presented will

match is 1/2λ. It is negligible. Note that a2 computes neither εi nor σi for real messages

mi with i ∈ R.

a3: Instead of the actual signature, the simulator sends the message

(sign request,PKeph
T , {FakeFormat||ri}i∈F , {mj}j∈R)

to Fpromise sign. Then, the simulator S obtains the response (promise,B∗, ans, {FkSign}i∈[η])

and uses σi = FkSigni. a2 and a3 is identical from the view of B∗. a3 is the simulator S

in Fig. 5.14 itself.

We conclude that the transcript by the simulator S in Fig. 5.14 is indistinguishable

from the one in the real world.

Remark 5.5. The below lemma shows that B∗ cannot forge a valid signature σ for a valid

message Tcash(T ,B).

Lemma 5.6 ( Lemma 3 in [HAB+16] ). If ECDSA is an existentially unforgeable signature

scheme, then Pr[Eforge] is negligible.

Case that the tumbler is corrupt. The simulator S in Fig. 5.15 plays a role of

the corrupt the tumbler T ∗. The difference between the real world and the ideal world

is whether the simulator S in Fig. 5.15 stops. Let us confirm the probability that the

simulator will stop for each event.

• Event cut and choose fail:

Pr[cut and choose fail] =
1(
µ+η
η

) +
1

2λ1
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• Event binding fail:

Pr[binding fail] =
1

2λ2

We conclude that the protocol in Fig. 5.12 securely realizes the functionality Fpromise sign

in Fig. 5.13.

5.4 Conclusion

Scalability and privacy protection are significant problems with blockchain. In this work,

we have proposed an anonymous probabilistic payment to solve these simultaneously.

Our proposal is not restricted to any particular cryptocurrency. We have mediated the

tumbler of the payment channel hub between a payer and a payee. A cryptographic

puzzle plays a role in controlling the intermediation and the execution of transactions.

Masking the puzzle allows the payer and the payee to unlink their payments. Besides, we

have introduced a novel fractional oblivious transfer based on the RLWE encryption. We

have adopted it for the probabilistic payment. The proposed protocol realizes the ideal

functionalities discussed in TumbleBit (NDSS 2017).
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Chapter 6

Conclusion

Blockchain is an underlying technology that constitutes our digital society. Privacy protec-

tion is a significant theme in society. Homomorphic encryption is a promising technology

for privacy protection. Confidentiality and unlinkability are challenging issues regard-

ing privacy-preserving blockchain. High throughput is also a challenging issue regarding

blockchain. A permissionless blockchain has a much lower throughput than permissioned

blockchain. We hope that blockchain will be widely available in the real world. Privacy-

preserving and high throughput blockchain are desirable. In this thesis, we have studied

privacy-preserving blockchain with homomorphic encryption. First, we achieve a privacy-

preserving and verifiable permissioned blockchain. Next, we realize a confidential and

auditable permissionless blockchain. Finally, we propose an unlinkable and high through-

put permissionless blockchain.

Traceability in permissioned blockchain. We have achieved privacy protection and

high transparency in a permissioned blockchain. Meaningful traceability consists of three

properties. These are trade privacy, preservation, and noninvolvement. This work is

a proposal wherein both preservation and noninvolvement hold while protecting trade

privacy. We have constructed a traceability model based on the three properties and

encrypted it with the RLWE encryption. Moreover, we have encrypted the model with

somewhat homomorphic encryption by using the ring isomorphism encoding. We have

confirmed that the encrypted model is feasible. We have shown the protocol to verify

that the plaintext is equal to zero using non-interactive zero-knowledge proof.

97



98 CHAPTER 6. CONCLUSION

Confidential and auditable payments. We have constructed a confidential and au-

ditable payment scheme. The proposed scheme allows a court or an authority to audit

transactions while keeping the transaction information confidential. Every participant

writes the ciphertexts of transaction information in a ledger. We have confirmed the con-

cealment of the transaction information and the soundness of the scheme. The proposed

scheme is secure in this sense. The court or the authority can forcibly reveal transaction

information with a unique secret key. In this sense, the proposed scheme is auditable.

Anonymous probabilistic payment in payment hub. Scalability and privacy pro-

tection are significant problems. To solve these simultaneously, we have proposed an

anonymous probabilistic payment. Our proposal is not restricted to any particular cryp-

tocurrency. We have mediated the tumbler of the payment channel hub between a payer

and a payee. A cryptographic puzzle plays a role in controlling the intermediation and

execution of transactions. Masking the puzzle allows the payer and the payee to unlink

their payments. Besides, we have introduced a novel fractional oblivious transfer based on

the RLWE encryption. We have adopted it for the probabilistic payment. The proposed

protocol realizes the ideal functionalities discussed in TumbleBit (NDSS 2017).
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