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A Straight-Line Extractable Non-malleable Commitment Scheme

Seiko ARITA†a), Member

SUMMARY Non-malleability is an important security property of
commitment schemes. The property means security against the man-in-the-
middle attack, and it is defined and proved in the simulation paradigm us-
ing the corresponding simulator. Many known non-malleable commitment
schemes have the common drawback that their corresponding simulators
do not work in a straight-line manner, requires rewinding of the adver-
sary. Due to this fact, such schemes are proved non-malleable only in the
stand-alone cases. In the multiple-instances setting, i.e., when the scheme
is performed concurrently with many instances of itself, such schemes can-
not be proved non-malleable. The paper shows an efficient commitment
scheme proven to be non-malleable even in the multiple-instances setting,
based on the KEA1 and DDH assumptions. Our scheme has a simulator
that works in a straight-line manner by using the KEA1-extractor instead
of the rewinding strategy.
key words: commitment scheme, non-malleability, the KEA1 assumption,
extractability

1. Introduction

1.1 Commitment Schemes and Its Non-malleability

A commitment scheme, which is one of the most fundamen-
tal cryptographic protocols, is a two-party two-phase proto-
col:

1. Commit phase:
A sender, through some interactions with a receiver if
necessary, makes a commitment c = com(m; r) to a
message m with some randomness r and sends it to the
receiver.

2. Open phase:
The sender sends a decommit information m, r of c to
the receiver. The receiver determines the validity of
m, r by checking c = com(m; r). If valid, it accepts m
(else rejects).

(In the paper, we focus on a string commitment rather than
a bit commitment.) Fundamental requirements for a com-
mitment scheme are hiding and binding properties. It is hid-
ing when commitments c = com(m; r) are indistinguishable
among different m’s, and it is binding when it is infeasible
to generate a commitment which can be correctly opened by
distinct messages at once.

Dolev et al. [7] defines non-malleability (NM) of a
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commitment scheme, which means security against the
man-in-the-middle (MIM) attack. Suppose an adversary A
is in the MIM-setting, i.e., A is in the middle of honest
left and right parties. A commitment scheme is called non-
malleable when an adversary A, given a commitment c to
a message m from the left party, cannot generate a commit-
ment c∗ to another distinct message m∗, which is in some
polynomially-computable relation R with m, for the right
party. Here, A is supposed to get an open message m, r of
c from the left party when it attempts to open c∗ to m∗ to
the right party. (Strictly, this is non-malleability with re-
spect to opening. WhenA is supposed only to commit, i.e.,
not given the decommitment m, r and not required to open
c∗, it is called non-malleability with respect to commitment.
In this paper, we focus on non-malleability with respect to
opening.)

To prove non-malleability, we need a simulator S im of
A’s behavior. S im, alone without any help from the left
party (especially without any knowledge of c,m, r), must
generate a commitment c∗ to m∗ which has a relation R with
m with the same probability as in the case ofA in the MIM-
setting.

1.2 A Generic Method for Non-malleable Commitment
Schemes

Key properties for establishing non-malleability of commit-
ment schemes are equivocality and extractability. A com-
mitment scheme is called equivocal when one can, using
some trapdoor information, generate a commitment that can
be opened by any message later. A commitment scheme
is called extractable when one can, also using some trap-
door information, extract the message under the commit-
ment without any decommit information.

Generically, a non-malleable commitment scheme is
constructed through enhancing some primitive commitment
scheme to obtain equivocality and extractability at once.
If such enhancement succeeds, its non-malleability can be
proved as follows. Suppose an adversary A in the MIM-
setting is given. The simulator needs to simulate the left
view ofA without the knowledge of the real message m. In
order to do that, S im as a left party commits to a dummy
message m0 for A through an equivocal commitment c. By
equivocality, c can be opened by the real message m later
instead of m0, so the view of A is indistinguishable from
its real view with a true commitment to m. Next, from the
commitment c∗ generated by the simulated A, S im (using
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some trapdoor) extracts the committed message m∗ by the
extractability. Thus, S im can find m∗ without knowing the
true m and its commitment c at all with the same probabil-
ity that A commits to such m∗ in the real MIM attack. This
means non-malleability of the scheme.

1.3 Known Non-malleable Commitment Schemes

There are some known non-malleable commitment schemes.
Crescenzo et al. [2] constructed a non-interactive and non-
malleable commitment scheme. Unfortunately, the resulting
commitments are large (i.e., O(|m|k)-bit with the message
length |m| and the security parameter k). Crescenzo et al. [3]
and Fischlin and Fischlin [8], respectively, enhanced DL
(discrete-logarithm) based Pedersen’s commitment scheme
[11] into ones with equivocality and extractability, and give
efficient non-malleable commitment schemes.

One common drawback among those efficient non-
malleable schemes is the fact that their corresponding simu-
lators do not work in a straight-line manner, requires rewind-
ing of the adversary. Due to this fact, such schemes are
proved non-malleable only in the stand-alone cases. In
the multiple-instances setting, i.e., when the scheme is per-
formed concurrently with many instances of itself, such
schemes cannot be proved non-malleable. In such a setting,
one rewinding of A recursively invokes another rewinding
ofA, which recursively invokes another rewinding..., even-
tually results in super-polynomial time simulation.

Damgård and Nielsen [6] show a universally compos-
able (in particular, non-malleable in the multiple-instances
setting) commitment scheme, which is as efficient as non-
malleable schemes by [3], [8]. The key point of the scheme
is the use of the trapdoor discrete logarithm problem. The
trapdoor of the DLP (corresponding to the scheme’s Com-
mon Reference String (CRS)) enables extractability with-
out rewinding and leads to a straight-line simulator and
UC-secureness of their scheme. Unfortunately, the trap-
door DLP needs a non-standard assumption, called the p-
subgroup assumption. A more serious problem with the
scheme is that the scheme requires a very strong trust in
the third party who provides the CRS of the scheme. More
precisely, the CRS of the scheme consists of the following
pieces of information:

N, EK1, EK2, . . . , EKn.

Here, N is the system-wide modulus of the form N = P2Q
with large primes P and Q, and EKi is the (public) key
to be used for making commitments for party Pi. That is,
all parties using this protocol work in the same modulus N
with tailored commitment keys for each of them. (So, the
length of CRS is proportional to the number of parities in-
volved.) Now suppose that the third party gets corrupted
and the primes P and Q are known to the adversary. Then,
the adversary can extract all of the messages under all of the
commitments among all of the parities using the P and Q,
just as he/she can decrypt ciphertexts using the (master) se-
cret key. This means that the scheme requires a very strong

trust in the third party providing the CRS, and once the third
party gets corrupted all of the security of the scheme col-
lapses catastrophically.

1.4 Our Result

We show another efficient DL-based commitment scheme.
Our scheme is the first straight-line extractable commit-
ment scheme based on the KEA1 assumption. Although
our scheme may not be UC-secure, it is proven to be non-
malleable even in the multiple-instances setting, using the
straight-line extractor. Our simulator works in a straight-
line manner by using the KEA1-extractor.

The KEA1 assumption is non-standard like the p-
subgroup assumption used in [6]. Moreover, the KEA1 can
be said “more non-standard,” since it is of non-black-box
type, i.e., the assumption depends on the code of the ad-
versary. However, we believe especially when all (compa-
rable) schemes we have are proved secure only under non-
standard assumptions, it is desirable to have several schemes
proved under different non-standard assumptions, since each
of non-standard assumptions can collapse accidentally due
to its non-standard property. So, it should be meaningful
to have another new commitment scheme proved under the
KEA1 assumption. More constructively, the use of KEA1
assumption brings us the following merit.

As an advantage compared to the scheme of [6], our
scheme can avoid the above-mentioned catastrophic col-
lapse of security by corrupting the third party providing the
CRS. The advantage is the effect of the KEA1 assumption
that enables extractability not only without rewinding but
also without having any system-wide master trapdoor. In
fact, in our scheme, even if trapdoors of CRS become known
to the adversary, the adversary cannot extract messages un-
der commitments. It is because the adversary cannot obtain
non-black-box access to honest parties as the simulator does
against adversaries in the proof of security. Note that to use
KEA1-extractor one needs non-black-box access to the tar-
get.

Our commitment scheme satisfies the following theo-
rem:

Theorem 1. Under the KEA1 and DDH assumptions, the
commitment scheme is non-malleable in the strong CRS
model. Moreover, the simulator works straight-line in the
strict-polynomial time.

Since our simulator works straight-line without
rewinding, the following corollary is immediate from the
theorem:

Corollary 1. Under the KEA1 and DDH assumptions, the
commitment scheme is non-malleable in the strong CRS
model in the multiple-instance setting.

2. Definitions

First, we recall the definition of non-malleability of a com-
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mitment scheme in the “strong” CRS model, and the defini-
tion of the KEA1 assumption.

2.1 Non-malleable Commitment in the Strong CRS Model

Definition 1 (non-malleable commitment in the strong CRS
model). Let Com be a commitment scheme. Let A be any
probabilistic polynomial-time adversary and R be any non-
trivial polynomial-time computable relation over message
space M. Here, non-triviality of R means that R doesn’t
contain any reflexive pair (x, x). Define two experiments
Expreal

Com(A,R) and Expsim
Com(A,R) as follows (k is a security

parameter, L and R denotes an honest sender and receiver,
respectively):

Expreal
Com(A,R) :

σ, σ∗ ← {0, 1}k; m←M;
L commits to m forA by Com with c under CRS σ;
A commits for R by Com with c∗ under CRS σ∗;
L sends decommit m, r of c toA under σ;
A sends decommit m∗, r∗ of c∗ to R under σ∗;
Output R(m,m∗)

Expsim
Com(A,R) :

σ∗ ← {0, 1}k; m←M;
A commits for R by Com with c∗ under CRS σ∗;
A sends decommit m∗, r∗ of c∗ to R under σ∗;
Output R(m,m∗)

A commitment scheme Com is said to be non-malleable
(with respect to open) if for any A there exists some proba-
bilistic polynomial-time algorithm S im such that for any R
we have

Pr[Expreal
Com(A,R) = 1]−Pr[Expsim

Com(S im,R) = 1] < ε(·)
with some negligible function ε.

The above definition of the non-malleability of com-
mitment schemes is the standard one (used in, e.g., [3],
[8]) with the exception that we are using a “strong” CRS
model, that is, CRS’s are randomly and independently cho-
sen for the left and right sessions. The strong CRS model
is common in UC-setting, as used in the scheme of [6].
On the while, note that schemes of [3], [8] use a “weak”
CRS model, where a single CRS is shared among the two
sessions. As seen later, our commitment scheme is non-
malleable only in the strong CRS model, not in the weak
CRS model. We believe there are scenarios where the strong
CRS model is meaningful, for example, the case where
some portions of CRS are prepared for every receivers, as
in [6].

A commitment scheme is called non-malleable in
multiple-instance setting when it is non-malleable even if
many instances of the commitment scheme are performed
concurrently in the presence of the MIM adversary A.
The adversaryA receives polynomially-many commitments

c1,..,cn from left parties and manages to make relating com-
mitments c∗1,..,c∗n for right parties. The formal definition is a
straightforward extension of Definition 1 and is omitted.

2.2 The KEA1 Assumption

The KEA1 assumption [1], [9] for group G = 〈g〉 means
that it is possible only when one knows b to generate a pair
(gb, gab) for a randomly selected ga.

Definition 2 (The KEA1 Assumption [1]). Let G be a prob-
abilistic polynomial-time algorithm (p.p.a.) which on the
input of a security parameter k, outputs a prime number q
of k bits and a generator g of a group of order q. For any
string w and any p.p.a.’s G,H,H∗, an experiment ExpwG,H,H∗
is defined as follows.

ExpwG,H,H∗ :

(q, g)← G(1k); a
$← Zq; A = ga;

(B,W)← H(q, g, A, w);
b← H∗(q, g, A, w);
If W = Ba, B � gb then return 1; Else return 0.

G is called to satisfy the KEA1 assumption if for any
w and any adversary H there exists an extractor H∗ with the
negligible AdvwG,H,H∗ (k) = Pr[ExpwG,H,H∗ (k) = 1].

3. Our Commitment Scheme

We describe our commitment scheme and show its hiding
and binding properties. The proposed scheme uses a tech-
nique similar to a “twin encryption technique” [4], [12] and
uses {q, g0, h0, g1, h1, σ} as CRS. The q in the CRS is a prime
order of group G with a generator g. We assume the KEA1
assumption for G. The rest of CRS are generated as follows:

g0
$← 〈g〉; e1

$← Zq, g1 = g
e1

0 ;

d0
$← Zq, h0 = g

d0

0 ; d1
$← Zq, h1 = g

d1
1 ;σ

$← {0, 1}l.
σ is CRS for a non-interactive zero-knowledge argument
system Π = (l, P,V, S = (S 1, S 2)) for the NP-language
{(g, h, j, k) | ∃b ∈ Zq, j = gb, k = hb} of DH tuples on G.

Commitment: S commits to message m(∈ Zq) for R
as follows:

1. R randomly chooses b0, b1 ∈ Z∗q, and computes j0 =

gb0

0 , k0 = hb0

0 , j1 = g
b1

1 , k1 = hb1

1 . Then, R computes
ZK proof πi ← P((gi, hi, ji, ki), bi, σ) for i = 0, 1. R
sends j0, k0, j1, k1, π0, π1 to S.

2. S verifies V(πi, (gi, hi, ji, ki), σ) = 1 for i = 0, 1. If it is,
S computes:

r
$← Zq, a1, a2

$← Z∗q;
g′1 = g

a1

1 , h′1 = ha2

1 , j′1 = ja1

1 , k′1 = ka2

1 ;
M0 = g

m
0 hr

0, M1 = g
′
1

mh′1
r, L0 = jm0 kr

0, L1 = j′1
mk′1

r

and sends g′1, h
′
1, j′1, k

′
1,M0,M1, L0, L1 to R.
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3. R checks j′1 = g
′
1

b1 and k′1 = h′1
b1 . If it is not, R aborts.

Decommitment: S opens the commitment to R canoni-
cally:

1. S sends m, r to R.
2. R verifies all of the equations M0 = g

m
0 hr

0, M1 =

g′1
mh′1

r, L0 = jm0 kr
0 and L1 = j′1

mk′1
r hold. If it does,

R outputs m. Otherwise it aborts.

It is easily seen that one can commit to a k-bit message
with O(k) bits in O(k3) computations with the scheme, us-
ing, e.g., an efficient NIZK scheme compile(Peqdlog) of [5]
as Π.

Lemma 1. Under the DDH assumption, the proposed
scheme is computationally hiding.

Proof. (Sketch) Among all the messages from S to R, those
depending on m are M0 = g

m
0 hr

0,M1 = g
′
1

mh′1
r, L0 = jm0 kr

0
and L1 = j′1

mk′1
r. By the soundness of ZK argument system

Π, we see that there are b0, b1 ∈ Zq such that L0 = Mb0

0 , L1 =

Mb1

1 . So, it is sufficient to show M0,M1 hides m computa-
tionally.

Let s
$← Zq and M′1 = g

a1m
1 ha2 s

1 . Obviously (M0,M′1)
hides m perfectly. So, the claim follows if (M0,M1)
and (M0,M′1) are computationally indistinguishable for any
p.p.a. A. But, if some A distinguishes (M0,M1) and
(M0,M′1), there must be a following distinguisher D against
the DDH assumption:

Distinguisher D on inputs (h0, hr
0, h1, h(= hr

1 or hs
1)):

m←M; a1, a2
$← Z∗q; g0, g1

$← 〈g〉;
Sets g0, h0, g1, h1 as CRS;
g′1 = g

a1
1 , h′1 = ha2

1 ;
return A(g′1, h

′
1, g

m
0 hr

0, g
′
1

mha2 ).

�

As in the case of Pedersen’s commitment scheme [11],
we see the scheme is computationally binding under the
DLA.

4. Equivocality and Extractability of the Scheme

We show the equivocality and extractability of our scheme.
The former is used to simulate the left party against the ad-
versary in MIM-setting, while the latter is used to extract
the committed message from the adversary’s commitment
for the right party in the proof of non-malleability of the
scheme. We use the following simple fact: If and only if we
have logg0

h0 � logg1
h1, two equations M0 = g

m
0 hr

0, M1 =

gm
1 hr

1 among m, r determines m, r.

4.1 Equivocality

First, we show equivocality of the scheme, that is, there is a
simulator S im that can generate, using some trapdoor infor-
mation on the CRS, commitments for adversary A, which

can be opened by any messages later.
S im generates an equivocal commitment for adversary

A as follows. SupposeA, playing the role of receiver, sends
the first message j0, k0, j1, k1, π0, π1 to S im. After verifying
the validity of proofs π0 and π1, S im computes:

m0 ← M, r0
$← Zq, a1

$← Z∗q, a2 = d0d−1
1 a1;

g′1 = g
a1
1 , h′1 = ha2

1 , j′1 = ja1
1 , k′1 = ka2

1 ;
M0 = g

m
0 hr

0, M1 = g
′
1

mh′1
r, L0 = jm0 kr

0, L1 = j′1
mk′1

r.

Then, S im sends g′1, h
′
1, j′1, k

′
1,M0,M1, L0, L1 toA.

Note the only difference between the simulated com-
mitment and the honest one is in the generation of a2: the
simulated a2 satisfies a relation a2 = d0d−1

1 a1 with a1, but
the real a2 is independently random. We show in the proof
of Theorem 1A cannot distinguish between simulated com-
mitments and real commitments under the DDH assump-
tion.

It is easily seen that the simulated commitment is
opened by any message m. In fact, since a2 = d0d−1

1 a1, we
have d0 = logg0

(h0) = logg′1 (h′1). Moreover, by the sound-
ness of the proofs π0, π1, we have log j0 (k0) = logg0

(h0) = d0

and log j′1
(k′1) = logg′1 (h′1) = d0. So, M0,M1, L0, L1 can be

opened by any message m with r = r0 + (m0 − m)/d0.

4.2 Extractability

Second, we show the extractability of the scheme, that is,
there is a simulator S im which can extract a message m from
an adversary’s commitment using some trapdoor informa-
tion on the CRS.

Let g0, h0, g1, h1, σ denote the CRS of the scheme. We
assume a simulator S im knows discrete logarithms e1, d0, d1

among them: g1 = g
e1
0 , h0 = g

d0

0 , h1 = g
d1
1 . Suppose S im,

simulating a receiver, honestly sends the first message to an
adversary A who plays a sender’s role, i.e., S im randomly
chooses b0, b1 ∈ Z∗q, and computes

j0 = g
b0

0 , k0 = hb0

0 , j1 = g
b1
1 , k1 = hb1

1 ;
πi ← P(DH(gi, hi, ji, ki), bi, σ) for i = 0, 1;

and sends j0, k0, j1, k1, π0, π1 toA.
Then, A sends commitment g′1, h′1, j′1, k′1, M0, M1, L0,

L1 to S im. On the condition that the commitment should be
opened correctly, we have equalities

j′1 = g
′
1

b1 , k′1 = h′1
b1 (1)

and there must be m, r such that M0 = g
m
0 hr

0, M1 =

g′1
mh′1

r, L0 = jm0 kr
0, L1 = j′1

mk′1
r.

In the above, S im sends a randomly selected j1 to A
and A returns to S im (g′1, j′1) which constitute a DH-tuple
(g1, j1, g′1, j′1) by Eq. (1). That is, A is seen as playing the
role of the KEA1-adversary against S im. So, using the cor-
responding KEA1-extractor, S im can extract a1 satisfying
g′1 = g

a1
1 . Similarly, S im obtains a2 satisfying h′1 = ha2

1 .
Then, S im can compute α = e1a1, β = e1d−1

0 d1a2 and
get
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gm
0 = (Mβ0 M−1

1 )
1
β−α . (2)

Here, note that α = β happens with only a negligible prob-
ability, because if α = β then g0, h0, g1, h′1

1/a1 constitute a
DH-tuple and A should violate CDH assumption. (If the
same CRS was used among the left and right sessions in the
MIM-setting,A could reuse the h′1, which was generated by
S im in the left session, also in the right session, and then the
fact α = β (in the right session) doesn’t imply the violation
of CDH assumption. This is why we need the strong CRS
model.)

Since log j0 j1 = logg0
g1 = e1, log j0 k0 = logg0

h0 = d0

and log j1 k1 = logg1
h1 = d1, using the same α, β, S im gets

also

jm0 = (Lβ0L−1
1 )

1
β−α . (3)

Thus, S im can compute gm
0 , jm0 from A’s commitment

g′1, h
′
1, j′1, k

′
1,M0,M1, L0, L1 and the trapdoor e1, d0, d1 on the

CRS. Here, A is seen as playing the role of the KEA1-
adversary again: A gets a random j0 and returns gm

0 , jm0 .
Using the corresponding KEA1-extractor, S im can extract
the message m.

5. Non-malleability of the Commitment Scheme

Now we show the main theorem:

Theorem 1. Under the KEA1 and DDH assumptions, the
commitment scheme is non-malleable in the strong CRS
model. Moreover, the simulator works straight-line in the
strict-polynomial time.

Since our simulator works straight-line without
rewinding, the following corollary is immediate from the
theorem:

Corollary 1. Under the KEA1 and DDH assumptions, the
commitment scheme is non-malleable in the strong CRS
model in the multiple-instance setting.

Before proceeding to the formal proof of Theorem 1,
we point out some key-points that make the proof work.
Suppose an adversary A in the MIM setting is given. Sim-
ulator S im generates independent CRS’s for the left and
right sessions with trapdoor information as specified in the
scheme. A is invoked given the CRS. In order to prove non-
malleability, S im has to “simulate from the left and extract
from the right” againstA.

Simulate from the left: To simulate the left view of
A without the knowledge of the real message m, S im as a
left party commits to a dummy message m0 for A through
an equivocal commitment c using the trapdoor information
as shown in Sect. 4.1. By equivocality, the commitment c
cannot be distinguished from real commitments and it can
be opened by the real message m instead of m0, later. This
indicates that S im can correctly commit to m without the
knowledge of m.

When doing an equivocal commitment, S im fakes

a1, a2 as shown in Sect. 4.1. We will show an equivocal
commitment with the faked a1, a2 is indistinguishable from
a real one under the DDH assumption.

Extract from the right: From the commitment c∗
generated by A, S im, as the simulated right party, can ex-
tract the committed message m∗ by using the trapdoor in-
formation and the suitable KEA1-extractors as descried in
Sect. 4.2. Here, note that when A generated c∗, A only
knew an equivocal commitment c. So, m∗ must be indepen-
dent of m. This means that S im can find m∗ without using
m at all with the same probability that A outputs such m∗
in the real MIM setting. This means non-malleability of the
commitment scheme.

Proof of Theorem 1

Suppose an adversary A against the scheme in the MIM
setting and a nontrivial computable relation R on message
space M is given (here, non-triviality of R means that R
doesn’t contain any reflexive pair (x, x)). In the following,
we define six experiments Exp0,Exp1, · · · ,Exp5 below (for
the full description of those experiments, see Appendix).
Exp0 is identical to the real experiment Expreal

Com specified
with our commitment scheme and Exp5 is seen as the ideal
experiment Expsim

Com specified with our commitment scheme
and a suitable simulator derived from the adversary in Exp0
(see Definition 1). In order to prove the non-malleability of
the scheme, we need to show outputs of Exp0 and Exp5 are
indistinguishable. We do that by showing (outputs of) Expi
and Expi+1 are indistinguishable for i = 0 to 4 step by step.

As stated, Exp0 is Expreal
Com specified with our commit-

ment scheme. The only difference between Exp1 and Exp0
is in the generation of a2: a2 in Exp1 is equal to d0d−1

1 a1 (in-
stead of a random element). To prove Exp1 is indistinguish-
able from Exp0, we first define a game GameLR(DLR) for a
probabilistic polynomial-time algorithm DLR as follows.

GameLR(DLR) :

g0
$← 〈g〉; e1, d0, d1

$← Zq, g1 = g
e1
0 , h0 = g

d0
0 , h1 =

g
d1
1 ; cLR

$← {0, 1};
Invoke DLR((g0, h0), (g1, h1));

If DLR makes a query j1, k1, then
If k1 � jd1

1 , then abort;

a1
$← Z∗q;

If cLR = 0, then a2
$← Z∗q else a2 = d0d−1

1 a1;
g′1 = g

a1
1 , h′1 = ha2

1 , j′1 = j1
a1 , k′1 = k1

a2 ;
Return g′1, h

′
1, j
′
1, k
′
1 to DLR;

DLR outputs ĉ and halt;
Output ĉ;

In the above, DLR is supposed to make a query once
at most. The advantage of DLR is defined by AdvDLR =

2Pr[ĉ = cLR]−1.We call G = 〈g〉 LR-secure if the advantage
AdvDLR is negligible for any probabilistic polynomial-time
algorithm DLR. As to LR-secureness, we show two lemmas:
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Lemma 2. If G is LR-secure, then Exp1 is indistinguishable
from Exp0.

Proof. Suppose, on the contrary, there is a distinguisher D0,1

between Exp0 and Exp1 with a non-negligible advantage.
We construct an adversary DLR with a non-negligible ad-
vantage against G in GameLR by using D0,1.

According to the definition of GameLR, we prepare

with g0, h0, g1, h1 and c
$← {0, 1}. Given g0, h0 and g1, h1,

the DLR proceeds as follows. First, DLR chooses a mes-
sage m and uniformly selects σ from {0, 1}l. Moreover,
DLR uniformly select u0 from G, t1, s0, s1 from Zq, and
η from {0, 1}l, and computes u1 = ut1

0 , v0 = us0

0 , v1 =
us1

1 . Then, DLR sets {g0, h0, g1, h1, σ} as the left CRS and
{u0, v0, u1, v1, η} as the right CRS, and invokes the adversary
A. DLR, simulating the right party, generates the first mes-
sage j0, k0, j1, k1, π0, π1 honestly and sends it to A. A is
supposed to send j∗0, k

∗
0, j∗1, k

∗
1, π
∗
0, π
∗
1 to the left party sim-

ulated by DLR. DLR, after verifying proofs π0 and π1 just
like the honest left party, makes a query j∗1, k

∗
1 to the ora-

cle in GameLR, which replies with g′1, h
′
1, j′1, k

′
1 (note by the

soundness of the proof π1, we have k∗1 = j∗1
d1 ). From now on,

using this g′1, h
′
1, j′1, k

′
1 as a real g′1, h

′
1, j′1, k

′
1, DLR proceeds

just as in Exp0 (or Exp1) until A outputs some decommit
message m∗, r∗. Finally, DLR outputs D0,1(R(m,m∗)).

It is obvious that the distribution of R(m,m∗) in the
above is identical to the one of Exp0 if c = 0 and to Exp1
if c = 1. So, the advantage of D0,1 is transferred to the one
of DLR, which makes a contradiction to the assumption of
LR-secureness of G. �

Lemma 3. G is LR-secure under the DDH and KEA1 as-
sumptions on G.

Proof. Suppose, on the contrary, there is an adversary
DLR with a non-negligible advantage against GameLR in
G. We construct a DDH distinguisher Dddh with a non-
negligible advantage on G by using DLR and a suitable
KEA1-extractor.

We prepare with an input g0, h0, g
′
1, h
′
1 for Dddh as

usual:

g0
$← 〈g〉;

d0, e′1
$← Zq, h0 = g

d0

0 , g
′
1 = g

e′1
0 ;

cDDH
$← {0, 1};

If cDDH = 0 then d′1
$← Zq else d′1 = d0;

h′1 = g
′
1

d′1 ;

Given g0, h0, g
′
1, h
′
1, the Dddh proceeds as follows. First,

Dddh generates two random elements g1, h1 on G by e1, d1
$←

Zq, g1 = g
e1
0 , h1 = g

d1
1 . Next, Dddh invokes DLR with

inputs of g0, h0, g1, h1 and with a random tape R. When,
DLR makes a query j1, k1 (remember such query is once at
most), Dddh verifies k1 = jd1

1 (if not it aborts), and calls the
KEA1-extractor H∗ (described below) with inputs of g1, h1

and an auxiliary input g0, h0,R to get an output b. Then,

Dddh computes j′1 = g
′
1

b and k′1 = h′1
b, and replies DLR with

g′1, h
′
1, j′1, k

′
1. Finally, Dddh outputs an output ĉ of DLR.

In the above, H∗ is the KEA1-extractor corresponding
to

H(g1, h1; g0, h0; R):

Invoke DLR with the input of g1, h1, g0, h0

and the random tape of R;
When DLR makes a query j1, k1, output j1, k1;

We can suppose outputs of H satisfy k1 = jd1 condi-
tioned on the success of DLR. So, by the KEA1 assumption,
we have

j1 = g
b
1, k1 = hb

1 (4)

for b = H∗(g1, h1; g0, h0,R) with negligible exceptions.
Let

a1 = e′1/e1, a2 = a1d′1/d1.

It is directly verified that

g′1 = g
a1
1 , h′1 = ha2

1 .

Then, under Eq. (4), we have

j′1 = g
′
1

b
= ga1b

1 = ja1
1

k′1 = h′1
b
= ha2b

1 = ka2
1 .

Moreover,

cDDH = 1⇔ d′1 = d0 ⇔ a2 = a1d0/d1.

Thus, we see that in the case of Eq. (4) holds, the view of
DLR simulated by Dddh on a DDH-tuple is identical to the
view of DLR in GameLR with cLR = 0 and the view simulated
on a random tuple is identical to the view with cLR = 1. So,
the advantage of DLR is transferred to the one of Dddh with a
negligible loss, and a contradiction to the DDH assumption.

�

Lemmas 2 and 3 show that Exp1 is indistinguishable
from Exp0 under the DDH and KEA1 assumptions on G.

We proceed to Exp2. The only difference between
Exp2 and Exp1 is that the simulated left party in Exp2
commits to a dummy message m0 instead of m. However,
since a1 and a2 are faked both in Exp1 and Exp2, the com-
mitment M0,M1, L0, L1 is equivocal in both experiments.
Hence Exp2 is indistinguishable from Exp1.

We proceed to Exp3. The only difference between
Exp3 and Exp2 is that we use, in the right session of Exp3,
the simulator (S 1, S 2) of the non-interactive zero-knowledge
argument system Π = (l, P,V, S = (S 1, S 2)) instead of the
real prover P (and don’t use the witness bi). By the zero-
knowledge property of Π, Exp3 is indistinguishable from
Exp2.
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We proceed to Exp4. The only difference between
Exp4 and Exp3 is that we use the KEA1-extractor H∗ to ex-
tract the message n∗ under the adversary’s commitment and
output R(m, n∗) instead of R(m,m∗) in Exp4. The KEA1-
extractor H∗ corresponds to the following KEA1-adversary
H. Given u0, j0(= ub0

0 ) and auxiliary input w (independent of
b0), H outputs un∗

0 , jn
∗

0 by simulating the MIM-setting against
A:

H(u0, j0;w = (RA,m, g0, e1, d0, d1, σ,
t1, s0, s1, z, b1, z0, z1,m0, r0, a1)):

Set (g0, h0 = g
d0
0 , g1 = g

e1
0 , h1 = g

d1
1 , σ) as the left CRS

and (u0, v0 = us0
0 , u1 = ut1

0 , v1 = us1
1 , η) as the right CRS

with (η, ξ) = S 1(1k; z);
InvokeA with random tape RA;
Compute simulated proofs π0, π1 as in Exp4 and send
j0, k0 = js0

0 , j1 = ub1
1 , k1 = v

b1
1 , π0, π1 to A, which in

turn sends j∗0, k
∗
0, j
∗
1, k
∗
1, π

∗
0, π

∗
1 to L;

Generate g′1, h
′
1, j
′
1, k
′
1,M0,M1, L0, L1 as in Exp4 and

send it to A, which in turn sends u∗1, v∗1, j∗1, k∗1, M∗
0 ,

M∗
1, L∗0, L∗1 to R;

a∗1 := H∗1(u1, j1;w1); a∗2 := H∗2(v1, k1;w2);
(Here, w1 = w2 = (RA,m, g0, e1, d0, d1, σ, u0, v0, s1, z,
j0, k0, z0, z1,m0, r0, a1)) is independent of b1.)
α := t1a∗1; β := t1s−1

0 s1a∗2; If α = β then abort;
Output ((M∗

0
βM∗

1
−1)1/(β−α), (L∗0

βL∗1
−1)1/(β−α));

In the above, the KEA1-extractor H∗1 in H corresponds to
KEA1-adversary H1, which given u1, j1(= ub1

1 ) and w1 (in-
dependent of b1), outputs u∗1, j∗1 as follows:

H1(u1, j1;w1 = (RA,m, g0, e1, d0, d1, σ,
u0, v0, s1, z, j0, k0, z0, z1,m0, r0, a1)):

Set (g0, h0 = g
d0
0 , g1 = g

e1
0 , h1 = g

d1
1 , σ) as the left

CRS and (u0, v0, u1, v1 = us1
1 , η) as the right CRS with

(η, ξ) = S 1(1k; z);
InvokeA with random tape RA;
Compute simulated proofs π0, π1 as in Exp4 and send
j0, k0, j1, k1 = js1

1 , π0, π1 to A, which in turn sends
j∗0, k

∗
0, j
∗
1, k
∗
1, π

∗
0, π

∗
1 to L;

Generate g′1, h
′
1, j
′
1, k
′
1,M0,M1, L0, L1 as in Exp4 and

send it to A, which in turn sends u∗1, v∗1, j∗1, k∗1, M∗
0 ,

M∗
1, L∗0, L∗1 to R;

Output (u∗1, j∗1);

The KEA1-extractor H∗2 in H corresponds to KEA1-
adversary H2, which given v1, k1(= vb1

1 ) and w2(= w1), out-
puts v∗1, k

∗
1 in the similar way as H1. We omit the details of

H2. The description of Exp4 is completed.
Now we show Exp4 is indistinguishable from Exp3.

First, note that the view of A in H,H1,H2 is identical to
the view of A in Exp3 (or Exp4), because we distribute the
randomness used in Exp3 (or Exp4) to H,H1,H2 through
auxiliary inputs. So, it is sufficient to show n∗ derived by

H∗ is equal to m∗ decommitted byA with an overwhelming
probability conditioned on A’s success. This is nothing but
the extractability.

More precisely, by the KEA1 assumption on (H1,H∗1),
we see that the output a∗1 of H∗1 satisfies

u∗1 = u
a∗1
1 , j∗1 = j

a∗1
1 (5)

with only negligible exceptions. Similarly, a∗2 satisfies

v∗1 = v
a∗2
1 , k∗1 = k

a∗2
1 (6)

with only negligible exceptions. Since m∗, r∗ in Exp3 is a
valid decommitment for M∗0,M

∗
1, L

∗
0, L

∗
1 (conditioned onA’s

success), we have M∗0 = um∗
0 v

r∗
0 , M∗1 = u∗1

m∗v∗1
r∗ , L∗0 =

jm
∗

0 kr∗
0 , L∗1 = j∗1

m∗k∗1
r∗ . By Eqs. (2) and (3) in Sect. 4.2

together with Eqs. (5) and (6), we see that, if α, β (de-
fined in the description of H) are not equal, um∗

0 =

(M∗0
βM∗1

−1)1/(β−α), jm
∗

0 = (L∗0
βL∗1

−1)1/(β−α) and the KEA1 as-
sumption on (H,H∗) means that n∗ = m∗ with only negli-
gible exceptions. The remaining case α = β happens with
only a negligible probability by the following Lemma 4:

Lemma 4. The case of α = β happens with only a negligible
probability under Discrete Logarithmic Assumption.

Proof. Assume, on the contrary, the case α = β happens
with a non-negligible probability. We construct discrete-
logarithm extractor E as follows:

E(u0, v0(= us0
0 )):

Generate randomness (RA,m, g0, e1, d0, d1, σ,
t1, s1, z, b0, b1, z0, z1,m0, r0, a1)) as in Exp4 (or Exp3);
Set (g0, h0 = g

d0
0 , g1 = g

e1
0 , h1 = g

d1
1 , σ) as the left CRS

and (u0, v0, u1 = ut1
0 , v1 = us1

1 , η) as the right CRS with
(η, ξ) = S 1(1k; z);
InvokeA with random tape RA;
Compute j0, k0, j1, k1, π0, π1 as in Exp4 and send it to
A, which in turn sends j∗0, k

∗
0, j
∗
1, k
∗
1, π

∗
0, π

∗
1 to L;

Generate g′1, h
′
1, j
′
1, k
′
1,M0,M1, L0, L1 as in Exp4 and

send it to A, which in turn sends u∗1, v∗1, j∗1, k∗1, M∗
0 ,

M∗
1 , L∗0, L∗1 to R;

a∗1 := H∗1(u1, j1;w1); a∗2 := H∗2(v1, k1;w2);
(Here, w1 = w2 = (RA,m, g0, e1, d0, d1, σ, u0, v0, s1,
z, j0, k0, z0, z1,m0, r0, a1)) is independent of b1.)
Output s1a∗2/a

∗
1;

Recall α = t1a∗1 and β = t1s−1
0 s1a∗2 by definition. So, α = β

means a∗1 = s−1
0 s1a∗2, and this means that s0 = s1a∗2/a

∗
1. �

Thus, we have shown that Exp4 is indistinguishable
from Exp3.

We arrive at the final experiment Exp5. The only differ-
ence between Exp5 and Exp4 is that the simulated left party
sends (m0, r0) as decommit information instead of (m, r) in
Exp5. Since n∗ is determined before decommitment by the
left party, it is obvious that Exp5 is identically distributed
to Exp4. Moreover, note that the simulated left party L in
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Exp5 doesn’t use the message m. So, L and A in Exp5
constitute the desired simulator S im in the ideal experiment
Expsim

Com. The proof is completed.

6. Conclusion

We showed another efficient DL-based commitment
scheme, which is proven to be non-malleable even in the
multiple-instances setting, based on the KEA1 and DDH
assumptions. Our scheme has a simulator that works in a
straight-line manner by using the KEA1-extractor instead of
the rewinding strategy. The KEA1 assumption enables our
scheme’s extractability not only without rewinding but also
without having any system-wide master trapdoor. So, our
scheme can avoid the catastrophic collapse of security pos-
sible by corrupting the third party providing the CRS.
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Appendix: Experiments in the Proof of Theorem 1

Exp0 :

m←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = g
e1
0 , h0 = g

d0
0 , h1 = g

d1
1 , σ

$← {0, 1}l;
u0

$← G, t1, s0, s1
$← Zq, u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 ;

η
$← {0, 1}l;

InvokeA with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q;

j0 = ub0
0 , k0 =

v
b0
0 ;
j1 = ub1

1 , k1 =

v
b1
1 ;
π0 ←
P((u0, v0, j0, k0),
b0, η);
π1 ←
P((u1, v1, j1, k1),
b1, η);
⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0, k∗0, j∗1, k∗1,
π∗0, π∗1;

Verify π∗0 and π∗1;
If not valid,
abort;

r
$← Zq, a1, a2

$←
Z
∗
q;
g′1 = g

a1
1 , h′1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = g
m
0 hr

0;
M1 = g

′
1

mh′1
r;

L0 = j∗0
mk∗0

r ;
L1 = j′1

mk′1
r ;

g′1, h′1, j′1, k′1, M0,
M1, L0, L1 ⇒;

u∗1, v∗1, j∗1, k∗1, M∗0,
M∗1, L∗0, L∗1 ⇒;

Verify j∗1 = u∗1
b1

and k∗1 = v
∗
1

b1 ;
If not valid,
abort;

m, r ⇒;
m∗, r∗ ⇒;

Verify all of
the following:
M∗0=um∗

0 v
r∗
0 ,

M∗1=u∗1
m∗ v∗1

r∗ ,
L∗0= jm

∗
0 kr∗

0 ,
L∗1= j∗1

m∗k∗1
r∗ ;

If not valid,
abort;

Output R(m, m∗);
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Exp1 :

m←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = g
e1
0 , h0 = g

d0
0 , h1 = g

d1
1 , σ

$← {0, 1}l;
u0

$← G, t1, s0, s1
$← Zq, u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 ;

η
$← {0, 1}l;

InvokeA with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q;
j0 = ub0

0 , k0 =

v
b0
0 ;
j1 = ub1

1 , k1 =

v
b1
1 ;
π0 ←
P((u0, v0, j0, k0),
b0, η);
π1 ←
P((u1, v1, j1, k1),
b1, η);
⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0, k∗0, j∗1, k∗1,
π∗0, π∗1;

Verify π∗0 and π∗1;
If not valid, abort;

r
$← Zq, a1

$←
Z
∗
q;

a2 = d0d−1
1 a1;

g′1 = g
a1
1 , h

′
1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = g
m
0 hr

0;
M1 = g

′
1

mh′1
r;

L0 = j∗0
mk∗0

r;
L1 = j′1

mk′1
r;

g′1, h′1, j′1, k′1, M0,
M1, L0, L1 ⇒;

u∗1, v∗1, j∗1, k∗1, M∗
0,

M∗
1, L∗0, L∗1 ⇒;

Verify j∗1 = u∗1
b1

and k∗1 = v
∗
1

b1 ;
If not valid, abort;

m, r ⇒;
m∗, r∗ ⇒;

Verify all of the
following:
M∗

0 = um∗
0 v

r∗
0 ,

M∗
1 = u∗1

m∗v∗1
r∗ ,

L∗0 = jm∗
0 kr∗

0 ,
L∗1 = j∗1

m∗k∗1
r∗ ;

If not valid, abort;
Output R(m,m∗);

Exp2 :

m←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = g
e1
0 , h0 = g

d0
0 , h1 = g

d1
1 , σ

$← {0, 1}l;
u0

$← G, t1, s0, s1
$← Zq, u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 ;

η
$← {0, 1}l;

InvokeA with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q;
j0 = ub0

0 , k0 =

v
b0
0 ;
j1 = ub1

1 , k1 =

v
b1
1 ;
π0 ←
P((u0, v0, j0, k0),
b0, η);
π1 ←
P((u1, v1, j1, k1),
b1, η);
⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0, k∗0, j∗1, k∗1,
π∗0, π∗1;

Verify π∗0 and π∗1;
If not valid, abort;

m0←M, r0
$← Zq;

a1
$← Z

∗
q, a2 =

d0d−1
1 a1;

g′1 = g
a1
1 , h

′
1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = g
m0
0 hr0

0 ;
M1 = g

′
1

m0 h′1
r0 ;

L0 = j∗0
m0 k∗0

r0 ;
L1 = j′1

m0 k′1
r0 ;

g′1, h′1, j′1, k′1, M0,
M1, L0, L1 ⇒;

u∗1, v∗1, j∗1, k∗1, M∗
0,

M∗
1, L∗0, L∗1 ⇒;

Verify j∗1 = u∗1
b1

and k∗1 = v
∗
1

b1 ;
If not valid, abort;

r=r0+(m−m0)/d0;
m, r ⇒;

m∗, r∗ ⇒;
Verify validity of
(m∗, r∗);
If not valid, abort;

Output R(m,m∗);
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Exp3 :

m←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = g
e1
0 , h0 = g

d0
0 , h1 = g

d1
1 , σ

$← {0, 1}l;
u0

$← G, t1, s0, s1
$← Zq, u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 ;

(η, ξ) = S 1(1k; z) ;
InvokeA with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q;
j0 = ub0

0 , k0 =

v
b0
0 ;
j1 = ub1

1 , k1 =

v
b1
1 ;

z0, z1
$← {0, 1}∗;

π0 ←
S 2((u0,v0, j0,k0),

ξ, η; z0) ;
π1 ←
S 2((u1, v1, j1, k1),

ξ, η; z1) ;
⇐ j0, k0, j1, k1,

π0, π1;
⇐ j∗0, k∗0, j∗1, k∗1,
π∗0, π∗1;

Verify π∗0 and π∗1;
If not valid, abort;

m0 ← M, r0
$←

Zq;

a1
$← Z

∗
q, a2 =

d0d−1
1 a1;

g′1 = g
a1
1 , h

′
1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = g
m0
0 hr0

0 ;
M1 = g

′
1

m0 h′1
r0 ;

L0 = j∗0
m0 k∗0

r0 ;
L1 = j′1

m0 k′1
r0 ;

g′1, h′1, j′1, k′1, M0,
M1, L0, L1 ⇒;

u∗1, v∗1, j∗1, k∗1, M∗
0,

M∗
1, L∗0, L∗1 ⇒;

Verify j∗1 = u∗1
b1

and k∗1 = v
∗
1

b1 ;
If not valid, abort;

r = r0 + (m −
m0)/d0;
m, r ⇒;

m∗, r∗ ⇒;
Verify validity of
(m∗, r∗);
If not valid, abort;

Output R(m,m∗);

Exp4 :

m←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = g
e1
0 , h0 = g

d0
0 , h1 = g

d1
1 , σ

$← {0, 1}l;
u0

$← G, t1, s0, s1
$← Zq, u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 ;
(η, ξ) = S 1(1k; z);
InvokeA with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η) and random tape RA;

L A R
b0, b1

$← Z∗q;
j0 = ub0

0 , k0 =

v
b0
0 ;
j1 = ub1

1 , k1 =

v
b1
1 ;

z0, z1
$← {0, 1}∗;

π0 ←
S 2((u0, v0, j0, k0),
ξ, η; z0);
π1 ←
S 2((u1, v1, j1, k1),
ξ, η; z1);
⇐ j0, k0, j1, k1,

π0, π1;
⇐ j∗0, k∗0, j∗1, k∗1,
π∗0, π∗1;

Verify π∗0 and π∗1;

m0 ← M, r0
$←

Zq;

a1
$← Z

∗
q, a2 =

d0d−1
1 a1;

g′1 = g
a1
1 , h

′
1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = g
m0
0 hr0

0 ;
M1 = g

′
1

m0 h′1
r0 ;

L0 = j∗0
m0 k∗0

r0 ;
L1 = j′1

m0 k′1
r0 ;

g′1, h′1, j′1, k′1, M0,
M1, L0, L1 ⇒;

u∗1, v∗1, j∗1, k∗1, M∗
0,

M∗
1, L∗0, L∗1 ⇒;

Verify j∗1 = u∗1
b1

and k∗1 = v
∗
1

b1 ;
If not valid, abort;
n∗=H∗(u0, j0,w);

r = r0 + (m −
m0)/d0;
m, r ⇒;

m∗, r∗ ⇒;
Verify validity of
(m∗, r∗);
If not valid, abort;

Output R(m, n∗);
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Exp5 :

m←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = g
e1
0 , h0 = g

d0
0 , h1 = g

d1
1 , σ

$← {0, 1}l;
u0

$← G, t1, s0, s1
$← Zq, u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 ;
(η, ξ) = S 1(1k; z);
InvokeA with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η) and random tape RA;

L A R
b0, b1

$← Z∗q;
j0 = ub0

0 , k0 =

v
b0
0 ;
j1 = ub1

1 , k1 =

v
b1
1 ;

z0, z1
$← {0, 1}∗;

π0 ←
S 2((u0, v0, j0, k0),
ξ, η; z0);
π1 ←
S 2((u1, v1, j1, k1),
ξ, η; z1);
⇐ j0, k0, j1, k1,

π0, π1;
⇐ j∗0, k∗0, j∗1, k∗1,
π∗0, π∗1;

Verify π∗0 and π∗1;

m0 ← M, r0
$←

Zq;

a1
$← Z

∗
q, a2 =

d0d−1
1 a1;

g′1 = g
a1
1 , h

′
1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = g
m0
0 hr0

0 ;
M1 = g

′
1

m0 h′1
r0 ;

L0 = j∗0
m0 k∗0

r0 ;
L1 = j′1

m0 k′1
r0 ;

g′1, h′1, j′1, k′1, M0,
M1, L0, L1 ⇒;

u∗1, v∗1, j∗1, k∗1, M∗
0,

M∗
1, L∗0, L∗1 ⇒;

Verify j∗1 = u∗1
b1

and k∗1 = v
∗
1

b1 ;
If not valid, abort;
n∗=H∗(u0, j0, w);

m0, r0 ⇒;
m∗, r∗ ⇒;

Verify validity of
(m∗, r∗);
If not valid, abort;

Output R(m, n∗);
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protocols. He is with Institute of Information
Security, Kanagawa, Japan. He is a member of
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