
An Inter-procedural Approach for Optimizations of Java Programs

Antonio Magnaghi, Shuichi Sakai, Hidehiko Tanaka

The University of Tokyo

1 Introduction

Java is capturing an increasing interest both in aca-

demic and industrial contexts. Code portability

("Write once-Run everywhere") is one of the most

relevant aspects of the language, and it relyes on

the interpretation of Java byte-code by the JVM. As

a drawback, program execution can be considerably

slower compared to native code. Our research activity

aims at improving execution performance of Java pro-

grams through the extraction of implicit parallelism

[1, 2, 3]. This paper reports on the source-to-source

Java optimizer that we are developing in order to re-

construct source code into a semantically equivalent

multi-threaded program. As original contribution, the

adopted approach directly addresses the rich and artic-

ulated Object Oriented features of Java. Source code

static analysis is performed on an inter-procedural level

through the characterization of method invocation ef-

fects in order to achieve a better description of program

dependencies.

2 Target Optimizations

We are focusing on task-level parallelism extraction

[1, 2], hence we are developing a framework for stat-

ically analyzing program behavior beyond method in-

vocation boundaries. As follows a Java code fragment

is proposed as a working example that will be consid-

ered also in subsequent sections to illustrate the tasks

performed by the optimizer in di�erent passes. Before

proceeding, let us discuss how we intend to identify

implicit parallelism in source programs.

class Y {

S1: private X myX;

S2: public void p() {

S3: int myValue;

...

S4: myX.m();

S5: myX.n(myValue); }

}

class X {

S6: private char c;

S7: private int i;

S8: public void m() {

S9: System.out.println("X"+c); }

S10: public void n(int e) {

S11: this.i = e; }

S12: public void n(long j) {

... }

}

class XX extends X {

S13: public void m() {

S14: System.out.println("XX"+c); }

}

Let us focus on the code of method p in class Y (us-

ing a notation borrowed from C ++: X :: p()) and on

its body. In order to characterize the potential depen-

dencies between instructions S4 and S5 (true, output

or anti dependency) it is necessary to describe the ef-

fect produced in the program execution environment

as a consequence of invocation of methods m and n

respectively. The member �eld myX of class Y is a

nested object whose type is X , hence it comprises two

primitive member �elds: c and i. In S4 and S5, the

actions performed by methods m and n on the receiver

object myX can alter the state of its constituent �elds.

Therefore we need to analyze X :: m() and X :: n(int).

Method X :: m() performs an output operation that

uses as input the value of member �eld c. Hence we

can conclude that:

� No alteration is produced on the state of the re-

ceiver by X :: m().

� The execution of X :: m() requires the bit of in-

formation associated to member �eld c.

This situation can be conveniently modeled by asso-

ciating two sets to method X :: m(), a set IN (X ::

m()) = fthis:cg containing the member �elds used

as input to the task performed by the method (meth-

ods instructions are considered as a whole), and a set

OUT (X :: m()) = fg containing the member �elds

modi�ed by the method invocation. Proceeding in the

same way for the other method (X :: n(int)) invoked in

S5, the following sets are produced: IN (X :: n(int)) =

feg, OUT (X :: n(int)) = fthis:ig. After collecting

this necessary information, let us return to our orig-

inal matter: the dependency analysis of instructions

S4 and S5. It is possible to produce more detailed

considerations. The call site represented by instruc-

tion S4 operates on receiver myX, and we know that

myX:c is used by m(), because IN (X :: m()) con-

tains "this:c". In S5 the receiver is still myX, and

the method invocation produces an alteration ofmyX:i

because OUT (X :: n(int)) contains "this:i". As it is

not possible for the two member �elds of myX object

to be alias of one another, these considerations lead

us to conclude that S4 and S5 do not interfere with

each other even if they are invoked on the same object.

Therefore S4 and S5 can be issued simultaneously in

a multi-threaded manner.

1



3 Compiler First Pass

In the previous paragraph we exposed ideas underlying

the implementation of an analysis framework. In the

following sections an overview is presented of current

implementation status and of the design choices neces-

sary to face the great deal of situations arising when

optimizing a real program. While parsing the input

Java code, the following attributes are evaluated:

1) Construction of the Symbol Table (ST). The ST

stores objects declared in the program according to the

language scope rules. Compared to C language, in Java

the task is simpli�ed by the absence of "typedef" dec-

larations. On the other hand, visibility extends also to

class member �elds. Moreover in Java an object can be

declared in any point where an instruction can appear,

and not only at the beginning of a new scope marker.

2) Construction of method abstract syntax trees.
Syntax trees provide a structured representation of

source code, allowing successive analysis phases. The

adopted syntax tree representation is designed to facil-

itate inter-procedural analysis. In this initial phase we

are not directly addressing more standard transforma-

tions as, for example, expression optimizations, hence

expressions are represented in a compact way in syntax

trees.

3) Identi�cation of call sites. Call sites represent

discontinuity points in program control 
ow and the

points of interest in task-level optimizations. Every

method keeps a list whose elements point to tree nodes

where a method is invoked. Every time a new call site

is met, it is added to the call site list, and a call site

descriptor is compiled with information that includes

the receiver and actual parameters. If these are locally

declared variables or method parameter, their descrip-

tors are already allocated on the ST. However, not all

information required to completely characterize a call

site can be available in this phase. For example, call

site descriptors need to contain also information about

the invoked method, but it can belong to a di�erent

class that maybe textually follows the invocation point

in the source �le. Let us consider method Y :: p(). Its

call site list contains the syntax tree nodes that repre-

sent instructions S4 and S5. The call site descriptor of

S5 links the identi�er myV alue to the corresponding

variable descriptor stored in ST; on the other hand the

link to the code of method n is still dangling and it will

be resolved successively.

4 Compiler Second Pass

The second pass of the compiling process aims at gath-

ering additional information that is available only after

parsing the whole input program. In particular, the

following activities are carried out:

1) Resolution of name references. All name refer-

ences that were dangling from previous pass are �xed.

This concerns, for example, member �eld accesses: the

reference to a class member �eld is linked to the ap-

propriate descriptor in this phase.

2) Construction of the call-graph. A method invoca-

tion in a call site descriptor is associated to the cor-

responding syntax tree. Inheritance and method over-

loading play a relevant role in this context. When iden-

tifying the appropriate method, at �rst the type of the

receiver object provides a candidate class from which

to start the matching procedure. It can be necessary to

inspect one or more ancestor classes of the candidate

class, moving upward in the program taxonomy. Inside

a class is then required to resolve method overloading:

the more speci�c method is identi�ed that matches the

descriptor of the call site under analysis. Also in this

case it is required to consider the program taxonomy

when matching actual invocation parameters against

formal parameters in method signatures. Hence, con-

sidering our example, in the call site descriptor of S5

the method reference is set to X :: n(int).

3) Evaluation of Extent set for every method. The

Extent of a method m is de�ned as the set of all other

methods that, at run time, m might invoke directly or

indirectly. Such information corresponds to the iden-

ti�cation of the portion of call graph reachable from

m. Current implementation does not support recur-

sion yet. Given a call site descriptor D, Extent evalu-

ation requires to inspect also all descendant classes of

the class containing the method linked to D. If, for

example, after declaration S3, �eld myX is assigned

an object of type XX and if this de�nition reaches S4,

then the execution of S4 would activate method m()

in class XX (XX :: m()) because of dynamic bind-

ing mechanism. Therefore, Extent(X :: p()) = fX ::

m();XX :: m();X :: n(int)g.

4) Topological sorting of program methods. Based on

the Extent set, all methods are topologically sorted in

a list L. If Xq :: mh(:::) is the k-th element in L, then

every method in Extent(Xq :: mh(:::)) is included in

the (k-1)-length pre�x of L. In our example a possible

method sorting is L =< XX :: m();X :: n(int);Y ::

p();X :: n(long) >. Processing methods in this order

guarantees that all information necessary in a method

is available when it is processed.

5 Current Implementation Activity

Current activity is concluding the program static anal-

ysis in order to characterize method behavior. Follow-

ing steps will include the identi�cation of parallelizable

code portions and multi-threaded code generation.

References

[1] C. Brownhill, A. Nicolau, S. Novack, C. Polychronopou-
los. Achieving Multi-level Parallelization. Proc. Of Inter-
national Symposium ISHPC'97, Springer, pp. 183-194

[2] M. Rinard, P. Diniz. Commutativity Analysis: A New

Analysis Technique for Parallelizing Compilers. ACM,
Trans. on Programming Languages and Systems, vol. 19,
No.6, Nov. 1997, pp. 942-991

[3] H. Zima, B. Chapman. Supercompilers for Parallel and

Vector Computers. ACM Press, 1992.


