
Strict Local Testability: a Linguistic Model for Syntactical Analysis

Antonio Magnaghi and Hidehiko Tanaka

The University of Tokyo

1 Introduction

Local Testability (LT ) is an active area of research in

the �eld of formal languages. It is a fruitful concept

in describing di�erent phenomena that extend to vari-

ous contexts and situations. On an abstract level, LT

expresses the possibility to ascertain the value of an

attribute of a complex instance from a class of objects

through the analysis of simple constituents of the in-

stance itself, without requiring to consider the whole

object at once. The interest in LT goes beyond formal

languages: it can be applied, for instance, to pattern

recognition, parallel parsing, error recovery, neural net-

works, symbolic logic and algebraic structures [2, 4]. In

the following sections we will pinpoint some consider-

ations about LT in a strict sense (LTs:s:): it identi-

�es a subclass of the class LT . Firstly, the paper will

outline some results we could achieve on LTs:s: reg-

ular languages. Then, preliminary considerations will

be examined about our intent to generalize the mathe-

matical framework and decidibility results to tree lan-

guages.

2 String LTs:s: and language parsing

This section focuses on k-local testability in a strict

sense (LTks:s:) for string languages. Moreover it un-

derlines the links of this class of languages to the lin-

guistic property of Aperiodicity, directly providing mo-

tivations to a further investigation about the more gen-

eral case of tree languages.

Based on [4], for every integer k a language L on the

alphabet � is LTks:s: if sets �k; �k; 
k � �k exist such

that: 8x 2 ��; x 2 L()

Lk(x) 2 �k ^ Ik(x) � �k ^ Rk(x) 2 
k (1)

In (1) Lk(x) is the k-pre�x of x, Rk is the k-su�x and

Ik(x) is the set of proper substrings of x.

For instance, let us consider the regular language L

over the alphabet � = fa; bg, whose strings are such

that the occurrence of symbol a implies the occur-

rence of the substring abb: L = fx : x = uav )

v = bbw; 8a 2 x;w 2 ��g. L 2 LT3s:s: because,

simply by a decomposition of an arbitrary string y in

its 3-substrings, it is possible to locally analyze the

string and evaluate whether it meets the syntactical

constraint de�ning L. Let �3 = fabb; bab; bba; bbbg,

�3 = �3, 
3 = fabb; bbbg denote respectively the sets

of all 3-pre�xes, 3-internal-substrings, 3-su�xes of sen-

tences belonging to the language. Such string collec-

tions represent the repository of recognition patterns

to utilize when y is parsed. The correctness of y can

be evaluated moving a 3-letter-wide one-dimension

window from the left to the right end of the string.

Every time the window is slid right-ward by one letter,

y is incorrect if the visible substring is not contained

either in �3 (if it is the pre�x) or in �3 (if it is a proper

substring) or in 
3 (if it is the su�x). On the other

hand, when such a test produces a positive result on

all 3-substrings and the right end of y is reached, then

the sentence is recognized as an element of L.

The example above clari�es the basic ideas underlying

the concept of LTs:s: Our interest in the property of

local testability bases on its link to the linguistic uni-

versal of Aperiodicity. Formally, the class of Aperiodic

languages is generated by the closure of LTs:s: class

w.r.t. boolean operators and concatenation. Aperiod-

icity expresses the property that the language de�ni-

tion is free from constraints counting modulo an integer

over any sentence constituents. Such a characteristic

is empirically met by all natural languages as well as

arti�cial ones. It is known that, instead, aperiodic lan-

guages can easily be algorithmically inferred [3]. Hence

LTs:s: constitutes a relevant linguistic model for syn-

tactical analysis. A systematic characterization of lo-

cally testable languages was presented in the past [2].

However, the adopted techniques relied on the study of

the algebraic structure of the syntactic monoid. There-

fore the conceptual framework results elaborate and

computational problems were left unresolved.

3 New Results on Strings

We tried to frame the concept of LTs:s: in an original

combinatoric perspective. Our approach aimed at cap-

turing strict local testability in a direct manner, with-

out employing any algebraic property of the syntactic

monoid. Instead, a set-theoretically based analysis is

carried out in order to link local testability to topolog-

ical properties of the automaton of language L. The

speci�c points we addressed can be summarized as fol-

lows:

1. Characterization of LTks:s: property: for a speci�c
integer value of k, the analyzed decision problem

is: \L 2 LTks:s:?"

A su�cient and necessary condition is formulated.

It involves topological properties of paths in the

accepting automaton. Such a characterization has

the advantage to impose determinism as a unique

constraint, without requiring the automaton to be

reduced. Nonetheless the minimal automaton case

is studied and then conveniently employed in sub-

sequent considerations.

2. Development of an algorithm to decide LTs:s:

property (existential problem): given language L,

1



does a value of k exist such that L 2 LTks:s:?

Our approach consists, �rst, in de�ning the Pre�x-

Path-Intersection Graph (PPIG). For its construc-

tion a �xed-point algorithm is formulated. Then

its complexity is shown to be o(j�j2mn), where

�;m and n are, respectively, the alphabet of L,

the number of edges and the number of states of

the �nite state automaton accepting L.

3. Development of an algorithm for the optimiza-
tion problem of order evaluation: for a language

L 2 LTs:s:, which is the minimum value kmin
such that kmin = minkfk : L 2 LTks:s:g?

The study of the PPIG properties relates the

length of the longest path in the PPIG to the or-

der of language L. Then, �nally, we obtained the

major result: the order of L can be evaluated in

o(j�j2mn).

In addition to previous results, the introduced ap-

proach seems to have a worthwhile characteristic: the

syntactic monoid and its algebraic structure are not in-

volved. This leads us to think that such an approach

might e�ectively give insights on how to extend our

considerations to di�erent contexts, where linear se-

quences of symbols are replace by more complex lin-

guistic structures. Therefore we are now investigating

on tree languages.

4 Preliminary results on Tree Languages

The representative power of regular languages does not

allow to describe important linguistic aspects. Hence

programming languages are always de�ned through

context-free grammars (type 2 in Chomsky's classi�-

cation [1]) and during parsing activity the input pro-

gram is represented, internally to the compiler, by

an abstract syntax tree. However context-free gram-

mars are capable to describe also counting phenomena,

which are never present in linguistic communication

processes. Therefore this kind of formalism appears

to be excessively general. We aim at investigating the

adequacy of LTs:s: on trees as a linguistic model to

describe syntactical aspects. Let us consider the gram-

mar G and the sentence x = a + a+ a � a.

G: E -> E + T | T

T -> T * F | F

F -> a

G de�nes arithmetic expressions in two operators of

di�erent precedence. The skeleton language S(G) of

G is the set of all derivation trees T (G) of sentences

of G where non-terminals have been deleted from in-

ternal nodes. Intuitively the tree language S(G) is 2-

strictly locally testable in the sense that every skeleton

can be parsed by elements belonging to convenient sets

�2; �2. �2 contains all possible depth-2 pre�x recogni-

tion skeletons generated from the axiom of G, and �2
consists of depth-2 internal/frontier recognition skele-

tons that can be generated by non-terminals reachable

from the axiom: in this case E and T . Let s be the

skeleton associated to sentence x. s can be decomposed

in depth-2 trees belonging to �2 and �2 ensuring that

it is syntactically correct.

Let L be a tree language, �k a set of k-pre�x recog-

nition trees, and �k a set of k-internal/k-frontier recog-

nition trees. We propose the following de�nition. L is

in LTks:s: w.r.t. �k; �k i�:

8 tree t : t 2 L() prek(t) 2 �k ^ intk(t) � �k (2)

In (2) the operator prek(t) produces the k-depth sub-

tree rooted in the root of t and the operator intk(t)

produces the set of k-depth subtrees of t whose root is

at depth level one at least. The introduced de�nition

tries to extend LTs:s: property from linear sequences

of symbols to more articulated structures with a topo-

logical asset. The developed model shows a remarkable

property concerning grammatical inference. Through a

convenient labeling procedure of the nodes of elements

in �k; �k, it is possible to infer a generative context-

free grammar whose skeleton language coincides with

the language de�ned by (2). In addition, the analysis of

such and algorithm reveals that LTs:s: tree languages

are accepted by deterministic top-down tree automata.

On the other hand it is known that a non-deterministic

top-down tree automaton is required for the general

case of an arbitrary context-free grammar. This shows

that our de�nition is a re�nement compared to type 2

grammars. Hence, such a characteristic constitutes a

preliminary supporting result to the aim of capturing

peculiar linguistic aspect of LT .

5 Future Research Activity

Future research activity will elaborate a proper math-

ematical framework for tree languages in order to ad-

dress problems of LTs:s: decidibility and order evalua-

tion. In particular, as an applied aspect, software tools

will be implemented for testing the soundness of theo-

retical considerations w.r.t. the syntax of programming

languages.

References

[1] A. Aho, J. Ullman. The Theory of Parsing, Trans-
lation, and Compiling. Volume 1, Addison-Wesley,

1974

[2] J. A. Brzozowski. Hierarchies of aperiodic lan-
guages. R.A.I.R.O. Information Th�eorique (vol.

10, No. 8, août 1976, pp. 33-49)

[3] S. Crespi-Reghizzi, M. A. Melkano�, L. Lichten.

The use of grammatical inference for designing
programming languages. Comm. ACM 16, 2 (Feb.

1973), pp. 83-90

[4] R. McNaughton, S. Papert. Counter-free au-
tomata. M.I.T. Press, Cambridge, MA, 1971

[5] M. Steinby. A theory of language varieties. in Tree

Automata and Languages, M. Nivat and A. Podel-

ski (editors), Elsevier Publ., 1992, pp. 57-81


