
A Hierarchical Task Level Representation of Java Programs for

Parallelization

Antonio Magnaghi and Hidehiko Tanaka

The University of Tokyo

1 Introduction

Extraction of parallelism from source programs is an

important and active area of research in the �eld of

compiler design. By actual trends, code paralleliza-

tion is accredited as a key technology for an e�cient

utilization of computational resources. However, di-

rect detection of parallelism is generally a di�cult

task, whose scope spans di�erent conceptual levels [4].

In particular, there exists a strict mutual interdepen-

dency between the speci�c type of parallelism to con-

sider in automatic reconstruction and the target archi-

tecture. Therefore status-of-art architecture technol-

ogy impacts on compiler design. The scenery is basi-

cally dominated by two major complementary strate-

gies. On one hand, dedicated ad-hoc hardware compo-

nents are produced and assembled into complex sys-

tems. The remarkable development costs in such a

case are justi�ed by the intent to aggressively utilize

a precise form of parallelism. Numerical application

programs are one of the most relevant examples, also

for historical reasons due to the popularity of Fortran

for scienti�c computations. However for most commer-

cial applications it is not admissible such an investment

of capital on new components, yet advantages are rel-

evant deriving from extraction of concurrency. In such

a stream, the employment of o�-the-shelf components

has led to those kinds of architectures such as PC-

networks, cluster of workstation or hybrid con�gura-

tions. The new perspectives revealed by this approach

constitute the framework to our research project about

Java language.

2 Java and the Hierarchical Task Graph

Our research project aims at the development of proper

techniques to optimize programs written in Java. The

choice of Java can be motivated by the consideration

that it includes many of the most meaningful and ad-

vanced features of programming languages such as C

and C++. Java introduces new elements [3], in par-

ticular the thread paradigm for parallel program exe-

cution is part of the language speci�cation. Nonethe-

less, also some important restrictions are imposed. The

most relevant ones do not allow memory address arith-

metic, the goto statement and multiple inheritance.

Our approach consists in restructuring source pro-

grams, based on the introduction of the Hierarchical

Task Graph (HTG). Previously the HTG was intro-

duced only for C language [2]. As original contribution,

we aim at extending it to Java and analyzing how in-

heritance mechanism can impact on such a program

representation model. The hierarchy among classes

makes additional information available about program

structure that could be used in order to improve per-

formance. This paper will not provide a formal spec-

i�cation of the concept of HTG for Java because of

space limitations. Rather, we will proceed intuitively

through an example that will further be developed in

following sections. Let m be a method de�ned as fol-

lows:
void m()

{ 1: obj_3.m_1(13);

2: obj_1.m_3();

3: obj_1.m_2();

4: for(...)

5: obj_1.m_1(17);

6: obj_2=obj_1; }

The relationship between classes and methods is ex-

pressed by the taxonomy of �gure(1). obj1; obj2; obj3

&��

&���

&��

&�

REM�

REM�

REM�

YRLG P��LQW L�

YRLG P��LQW L�

YRLG P���

YRLG P��LQW L�

YRLG P���

Figure 1: Class Taxonomy

are instances of classes C1; C12; C11 respectively.

m1;m2;m3 are methods. The HTG of input programs

is built from control 
ow and data dependency. It

provides an intermediate representation which decom-

poses the program in constituents tasks of di�erent

granularity. Let us focus on method m. We assume

the existence of a class containing a static variable v:

v 2 use(m1 of C11); v 2 def(m3 of C1). Moreover

methods m1;m2 do not alter the internal state of the

object they use as input. The HTG of m is showed

in �gure (2). The instructions of m have been rep-

resented by single nodes because they contains control


ow transfer due to method invocations, and each node

should be linked to the HTG of the associated method.

Solid arcs correspond to control 
ow and dotted ones

represent data dependency. In particular, in node 2,

m3 assigns a new value to variable v; in node 5 that

value could be used, hence the dependency edge from 2

1



to 5 is required. Figure (2) shows that the HTG is ob-

tained by merging control 
ow and data dependency

in a structured manner. Nodes 4 and 5 are grouped

together to form a loop-component, labeled 4-5, whose

granularity level is the same as nodes 1, 2, 3 and 6, if it

is considered as an atomic unit. On the other hand, if

we need to concentrate on �ner grain parallelism, it is

possible to re�ne the information associated to node 4-

5, analyzing its inner structure. Hence we can conclude

that the represented task graph contains two distinct

levels, hierarchically related to each other. However in

previous considerations the taxonomy among classes

has not been properly utilized. Our investigation aims

at optimizing the information encapsulated in the HTG

of a Java program by detecting and consequently delet-

ing potential dependency constraints that actually do

not subsist because of program semantics and inheri-

tance structure.

�

�

�

�

�

�

���

Figure 2: HTG of method m

3 Optimizing the HTG

Object-oriented technology relies on the concept that

every data type is de�ned not only by its internal struc-

ture, but also by the operations we can perform on it.

And inheritance allows to represent the relationships

among instances of di�erent classes. The taxonomy of

Java code provides additional information whose uti-

lization can reveal insights about the program behav-

ior. Let us consider the HTG of �gure (2), and the

data dependency arc connecting nodes 2 and 5. It

imposes to delay the execution of instruction 5 until

instruction 2 has completed. The following analysis of

inheritance structure and program semantics will show

that such and arc can be safely suppressed improving

performance. Let H=(C,E) be the tree of classes in

the program, where C is the set of classes and E the

set of connecting edges. Let P (obj) denote the col-

lection of all classes that are descendants to the class

which object obj is declared of, including the class of

obj. In our example, P (obj1) = fC1; C11; C12; C121g;

P (obj2) = fC12; C121g; P (obj3) = fC11g. The mech-

anism of dynamic binding allows an object pointer to

point also any other instances of inner classes in the in-

heritance taxonomy. Hence a generic instance obj can

point to any element in P (obj). However, being able

to reduce the cardinality of the pointed-to instance set

can make parallelism extraction more e�ective. Let us

focus on object obj1. In instruction 3 method m2 is

invoked, which is a member only of class C121. obj1

is never assigned a di�erent object in m, therefore its

actual object instantiation can not change and it is re-

stricted to C121. We can statically foresee that method

activation in instruction 5 will dynamically be linked to

method m1 which class C121 inherits from its parent.

As previously assumed, m1 in C12 does not use variable

v, hence the potential data dependency of node 5 from

node 2 does not actually occur, and the corresponding

arc can be safely deleted. This guarantees that node

5 (or loop-level node 4-5) can be executed before node

2. In particular, the restriction of possible pointed-to

objects in the case of obj1 propagates to obj2 also: in-

struction 6 assures that obj2 can identify only instances

of class C121.

The discussed example underlines that in Java poly-

morphism and dynamic binding produce a situation

where inter-procedural optimizations are complex. An

object can potentially point to several class types,

therefore a conservative approach causes the loss of im-

portant information. An analogy can be drawn with

pointer handling in C language: the di�culty of trac-

ing pointed-to data by a pointer limits the extraction

of parallelism. However Java couples each program to

its taxonomy of classes, where data types are merged

with their associated methods. Hence new informa-

tion is made available to the compiler, that, as shown

above, can re�ne the HTG topology.

4 Conclusions

Our research aims at introducing the concept of HTG

to Java programs, in order to identify di�erent task

levels for concurrency extraction. The interest in Java

springs from its state-of-art language design features,

among which portability is a key factor for software

development. The interest in the concept of HTG is

motivated by its high 
exibility in dynamically tuning

the granularity of program concurrency: Java applica-

tions can be executed on a wide category of architec-

tures and the HTG representation can properly address

optimizing reconstructions for such systems.

References

[1] C. Brownhill, A. Nicolau, S. Novack, C. Poly-

chronopoulos. Achieving Multi-level Paralleliza-

tion. Proc. of International Symposium ISHPC'97

Japan. Springer, pp. 183-194, 1997.

[2] C. Polychronopoulos. The Hierarchical Task

Graph and its Use in Auto-Scheduling. Proc. of

the 1991 International Conference on Supercom-

puting. ACM, pp. 252-263, 1991

[3] P. van der Linden. Just Java and Beyond, third

edition. The Sunsoft Press, 1997

[4] H. Zima, B. Chapman. Supercompilers for Parallel

and Vector Computers. ACM press, 1992


