
Optimizations for Automatic Extraction of Parallelism

Antonio Magnaghi and Hidehiko Tanaka

The University of Tokyo

1 Introduction

In scienti�c research world, massively parallel comput-

ers are considered to be one of the most promising an-

swers to the remarkable demand increase in computa-

tional power. The continuos improvements in hardware

technologies had made possible to produce computers

based on articulated and complex architecture, indeed

capable of a high system performance on a potential

level. However, a frontier challenge is to e�ectively

exploit available resources in order to bridge the gap

between actual and achievable performance. The pro-

cess of e�cient parallel software development becomes

a critical factor, being extremely error-prone because

of the inherent complexity of the programming envi-

ronment. Parallelizing compilers [2, 3] for imperative

languages aim at automatically discovering as much

parallelism as possible from sequential source code, and

at mapping the original program to a modi�ed paral-

lel one with improved execution performance. Recon-

struction techniques have been extensively developed

for vector computers, but in the �eld of massively par-

allel machines relevant questions still need analysis.

2 Compiler implementation design

The implementation part of our project is concerned

with the design of a source-to-source compiler (�g.1).

It will perform the fundamental optimizing mappings

on input code, producing as output a program to be

executed on a massively parallel computer. In addi-

tion to this, our goal is to study reconstruction criteria

that might allow the extraction of more concurrency

on a parallel computer. Our research activity aims at

designing a parallelizing compiler that uses imperative

C-like source code as input to produce optimized par-

allel code as output. The compiler implementation de-

sign considers that the abstraction level of the analyzed

source code has a strong impact on the kind of opti-

mizations to perform. Therefore, a clear distinction is

introduced between high level and low level mappings.

This approach well matches the typical modular orga-

nization of commercial compilers into a front-end and

a back-end.

The �rst group of reconstruction techniques, to be

included in the front-end of the compiler, relays on

machine independent properties of the input code in

order to increase its portability on di�erent systems.

As a �rst step, standard optimizing transformations

presented in the literature are being implemented. The

compiler front-end gathers information about control

ow and dependency analysis to be conveniently

'LDJUDPP�0LWWZRFK§ 1����¢�-XOL¦ ~�������

'LDJUDPP�0LWWZRFK§ 1����¢�-XOL¦ ~������

)URQW�(QG

�0DFKLQH ,QGHS�

2SW��

,QWHUPHGLDWH

5HSUHVHQWDWLRQ

%DFN�(QG

+LWDFKL65����

�0DFKLQH 'HS�

2SW��

%DFN�(QG

)XMLWVX$3����

�0DFKLQH 'HS�

2SW��

3DUDOOHO

&RGH

�&$3 /LE�

6RXUFH�WR�6RXUFH &RPSLOHU

& 6RXUFH

&RGH

Figure 1: Compiler functional structure

exploited in successive transformations. An interme-

diate code representation is produced and optimiza-

tions are carried out including constant propagation,

loop normalization [3] and induction variables identi�-

cation [2]. In some cases a variety of transformations

might be applicable, but some of them can later inhibit

successive reconstruction phases. Thus, additional in-

formation needs to be produced, because it is necessary

to address the issue of \mappings invertibility", in or-

der to undo code transformations, if convenient.

On the other hand, the machine dependent group of

restructuring tools, to be included as part of the back-

end, addresses more speci�c transformations. Concur-

rency is to be extracted mainly from loops contained in

the program, basing on data dependency and control

ow analysis. In this context, program transformations

are more strictly linked to architectural characteristics

of the target computer. For instance, improving mem-

ory locality through loops reordering and strip-mining

requires additional information about the cache lines

size, data partitioning in shared memory space will re-

sult in execution speed-up only if synchronization and

communication overhead costs are conveniently evalu-

ated.

The adopted strategy is to design a parametric back-

end for distributed memory computers, basing on pe-

culiar architectural parameters. Therefore it is pos-

sible to build a compiler for di�erent computers by

re-using the portable front-end and by modifying the

set of parameters the back-end employs. In partic-

ular, our interest is in the massively parallel com-

puter HitachiSR2201 and in FujitsuAP1000. Both

have distributed-memory and are based on a message-

passing paradigm. Target code performs message pas-

sage through MPI (Message Passage Interface) library

on HitachiSP2201, and through CAP library on Fujit-

suAP1000.

1

As concerns the compiler life cycle, an incremental

approach seems to be the most valuable, in order to de-

velop successive extended versions with enlarged sets

of optimizing instruments. Hence, new optimizing al-

gorithms can be e�ectively integrated with the core of

the compiler itself, enabling a comparative evaluation

of performance improvement and a more complete un-

derstanding of key factors in parallel computation.

3 Preliminary considerations for parallelism

extraction

Parallel execution requires data distribution and du-

plication on computer nodes, because of dependen-

cies among di�erent program statements. As a con-

sequence, consistency issues arise. It is critical to de-

cide how to map data, because on one hand gener-

ally many di�erent alternatives are available, and on

the other hand the adopted choice will have a remark-

able impact on the global amount of communication.

Therefore some implemented systems require a direct

interaction with the programmer.

A possible direction we are interested in investigat-

ing is to perform a data partition based on depen-

dency constraints in order to identify distinct code

points from which parallel execution could indepen-

dently start. Considerations about usage of data in the

program computations could pinpoint those portions

more weakly or not even interfering with each other in

sharing information. Thus, improvements can derive

from limiting locally duplicated data to strictly neces-

sary parts and minimizing communication costs among

computer nodes. In this context, it is worthwhile how

to properly represent data dependency. FUD (Factored

Use De�nition [2]) chains are a powerful and compact

manner to link a variable use to its reaching de�ni-

tions, taking into account at the same time also control

ow structure of the analyzed program. The analysis

of FUD chains for some code fragments seems to help

understand better the characteristics of the algorithm

to compile. Basing on the following simple example,

we are aiming at intuitively showing the reason why

a proper data partition on FUD chain can produce a

positive impact on execution time.

for(I=0;I<N;I++)

{

S1 : b=a[I]+1;

S2 : c = a[I]-b;

S3 : d = c+200;

S4 : f = a[I]/2;

S5 : a[I] = f+2;

S6 : a[I+1] = f+250+a[I];

}

Figure 2 presents the FUD chain for the loop

body. We can distinguish two graph components

'LDJUDPP�6RQQWDJ§ 1����¢�-XOL¦ ~�������

,Q

D>L@

6�

F

6�

E

6�

G

6�

H

6�

I

6�

D^L`

6�

D^L��@

&� &�

Figure 2: FUD chain representation

C1=fIn,S1,S2,S3,S4g and C2=fIn,S5,S6,S7g employ-

ing as input a[I]. The element a[I] is the unique com-

mon node for C1 and C2. Eliminating it produces a

disconnected graph.

Each loop iteration could be executed faster by the

employment of two processors P1 and P2, one for com-

ponent C1 and one for C2, requiring duplication of only

a[I] on P1 and P2. Moreover, we can get an additional

improvement through parallel execution compared to

sequential one, because such a decomposition allows to

hasten next iteration. The i-th loop iteration can be

started as soon as the value of a[I] is available. There-

fore, through the considered partition it is also possible

to execute in advance the (i+1)-th iteration, successive

to i-th one. In the sequential case, the computation of

a[I+1], input element to (i+1)-th iteration, requires the

value of a[I] in S6. However S6 can be executed only

after S4 because of an anti-dependence constraint from

S4 to S6. As a consequence a[I+1] is to be produced at

the end of each iteration, therefore the execution of the

successive iteration is to be delayed until the previous

one is over. In the parallel case, the value of a[I+1]

is determined earlier, on processor P2, independently

from processor P1, hence the next (i+1)-th loop itera-

tion can begin before the i-th one is terminated.

4 Future work

Design activity is driving the programming phase in

order to implement and test the optimizing compiler.

Then, a comparative analysis will be carried out on

commercial benchmarks.

References

[1] T. Fahringer

Automatic performance prediction of parallel pro-

grams. Kluer Academic Publ., 1996

[2] M. Wolfe

High performance compilers for parallel comput-

ing. Addison-WesLey, 1996

[3] H. Zima, B. Chapman

Supercompilers for parallel and vector computers.

ACM Press, Addison-Wesley, 1991

