R IRALTE 2 B 430 (FRR 3 F) 2 E A2 5—269

FRHERESERBZRHAOFH
AT & 2 D & BT R

= os= 3 T = T B 2= =

O Kk == oo OHB

1 Introduction

We propose a new syntax notation of descriptive names
useful for users.

Currently we intend to construct a revolutional naming
system including descriptive names for distributed environ-
ments. A conceptual view of our model is shown in figure 1.
In this paper, we concentrate on the user interface part in

, the figure. ‘

> Descriptive name is defined in [IS] as a sentence that
"A name that identifies a set of one or more objects by
means of a set of assertions concerning the properties of

" the objects of the set.”

We consider descriptive names are important because
there are at least following two reasons.

(a) Identifiers are used to distinguish objects. However,
we can refer to an object by some identifiers only
when we know them correctly. Thus, if we are aware
of their identifiers ambiguously or do not know them,
using identifiers cannot work for referring to objects.
Another way is necessary. A solution to this is to use
descriptive names.

-(b) When we want to know whether an object with some
‘ property exists or not, we will inquire about it. How
do we ask it? If a system supports a descriptive name
scheme, then we can ask for it by descriptive names,
else we have to, for example, phone a friend to ask it.
The latter is inconvenient because if the friend does

not know it, we can do nothing.

§,.
2 Background and Issues

- What should we describe in each descriptive name? From
he definition in [IS], properties of each object must be de-
cribed. Then, what structure-elements are used for the
escriptions? We have already discussed these structures
1 [TR] and have obtained that properties of each object
re represented by attributes and their relations, and each
altribute is composed of a type and its related value(s): a
. 4¥pe shows a class and includes values which indicates vari-
us levels of abstraction. These values have relations, such
a inclusion or dependency, each other; different types have
elations, such as dependency on each other, independent
fone another or uncompatible.

Syntax Notation of Descriptive Names for
' Users

Fumiko KOUDA and Hidehiko TANAKA
University of Tokyo

With the assumption of the structure above, that is, a
descriptive name consists of attributes and their relations,
we have already constructed a resolution method for such -
forms of descriptive names[TR].

As shown in figure 1, the input form of the name resolu-
tion is different from that of users. The form is appropriate
for the method and not for users. Remains the problem
to provide users with suitable forms of descriptive names.
Therefore we consider that the main issue of this paper is
to show the syntax notation which is convenient to users.

3 Requirements for the Syntax Ex-
pression

Since properties of objects are described by their attributes
and relations with some structures in common, these fea-
tures must be expressed by rules and users write descriptive
names with them. These features are included:

(a) to be able to represent the correspondence between a
type and a value.

(b) to enable to show the relation or dependency among
types or that among values.

(c) to be able to choose level of generality for attribute
as one wishes.

(d) to enable to leave out some elements which one con-
siders unnecessary.

(e) to be able to put sequences of elements in free order.

(f) if a description shows incorrect objects, then the sys-
tem answers for its incorrectness.

4 How to Represent the Syntax
Notation ' '

Step 1: Basic Notation
Basic attribute consists of a type and its corresponding
single value. It is necessary to relate a type to its corre-
sponding value. We shall denote this as a two-paired tuple
covered with parenthesis:(type-name, value).
Generality level of a type-value pair can vary by select-
ing values so that the value determines generality of an
attribute. If we choose a value with some generalization
level, then we can show the attribute with such level of
generality. This enables us to describe attributes with any
level of abstraction.

5—270

Step 2: Considering Dependency

Usually, an object has more than a single attribute. Some
attributes have dependency on the others, and some are
not. If there is no dependency among attributes, then they
are put sequentially in the arbitrary order. On the other
hand, if there is some dependency between attributes, then
its structure must be considered. From [TR] there are three
kinds of dependency: between types, between values and
among attributes.

case 1: Dependency of values mainly occurs in relation
to a type, such as a possible scale of length of the type inter-
val. Thus the notation of dependency on values is to relate
to a type: it is denoted by (type-name, value-range)
or more generally, (type-name, ope(value,..,value)).

case 2: Dependency between types should be denoted
within the type position. If we denote dependency of types
separately from their corresponding values, then the type-
value relation, such as step 1, is destroyed. There is a need
to include the dependency among different types in the
parenthesis of type-value notation. On the other hand, if
dependency of types is denoted in the left half of a paren-
thesis, then it may be difficult to put the values in the
corresponding position of the types in the right half of the
parenthesis. To overcome this difficulty, we propose the
following notation: first put a type in the left position, and
then follow a denotation of dependency on a set of types
related to this type; after these type denotations, put the
value corresponding to the leftmost type. This is denoted
by (type-name : dep(type,..,type), value).

If we take this notation; any of type-value relation, de-
pendency on different types and dependency among values
for a type can be described in a uniform fashion.

case 3: Dependency between. attributes can be de-

scribed by the combination of attributes and its depen-
dency functions.)
Step 3: Leaving out or Sequence-Order From the
users’ point of view, it is important to be able to describe
various levels of descriptions. To perform this, it is nec-
essary to allow to leave out some attributes of an object
which one considers unnecessary or not to compel the se-
quence order of attributes.

Hint Name

(menu) Dﬁgg@“’e (result)

IR

User interface

* >y Name
(transform) - Resolution
(compare)

5 Resolved Expressions

Consideration in the previous section leads to the following
syntax notations for users to describe descriptive names.

function = | dep | ope | int |

types = | type, type | type, types |

Type = | type | type : dep(types) |

values = | value, value | value, values |

Value = | value | values | ope(values) |
attribute = | (Type, Value) |

attributes = | attribute | attribute, attributes |
relation = | attributes | int(relation, relation) |
descriptive name = | relation |

6 Discussion

6.1 Requirements and Expressions

From the step 1 in section 4, requirement of (a) and (c)
in section 3 is satisfied. Step 2 in section 4 shows (b) in
section 3 and step 3, (d) and (e). On the other hand, the
resolution method described in section 2 guarantees (f).

7 Conclusion

To provide users with convenient syntax for writing de-
scriptive names, first, we have reviewed the structures of
properties which objects have: attributes and relations
stand for properties of objects. Then, we have checked
the requirements for the users to describe these properties.
Finally, by projecting the necessary structures of proper-
ties for users to construction of a syntax, we have obtained
a new syntax notation to satisfy these requirements. It en-
ables us to describe objects by their attributes and relations
with some dependency and with no restriction of sequence
order nor that of leaving out of some of their elements.

Conformation of the syntax notation and its prototype
implementation are for further study.

References

[TR]: F. Kouda and H. Tanaka: Anal-

ysis of Descriptive Name Resolution,
ngperation TRIE-91-5, Te.chnic‘a.l Report of Ig-
for@atlon Engineering Course, Uni-

versity of Tokyo, June 1991

Rule (IS]: 1S '7498 Part 3: Naming and
Dictionary Addressing, 1988
(dependency)
(relation)
Figure 1. System Configuration

