WML 2 B4R CEK 2 £ 2 EHAS

1—-233

PY—EAXR—ZVZAFALIZETD S HF2 S 3 L OXITHIE

Q-7

fl FL EhRZ
FRRZTER

1 Introduction

We are implementing service base systems (SBS)
based on an object-oriented approach [1]. SBS pro-
vides extensible as well as integrated environments
for users and application programs to access and
combine distributed resources conveniently. Cur-
rent version of SBS is implemented by C++ and
works serially. Reliability and concurrency control
are two important issues which should be solved in
SBS. This paper presents our design considerations
to deal with these issues.

2 Motivation

SBS is a distributed system with the following
features: a service base in every node is constructed
and cooperates with each other by invoking service
requests. Information about data or programs in
computers are abstracted as objects and registered
in SBS. Basing on these information, SBS combines
distributed data and programs to provide services
to users or application programs.

To implement SBS, two important problems should
be solved: reliability and concurrency. A service
may performs operations on data scattered across
networks, There is the possibility that part of the
system fails while the rest continues to operate. To
execute a service, it is necessary to ensure that sys-
tem failing will not cause unconsistency: either up-
dates on data are done, or updates on data is not
done when crashes occur. Concurrency makes SBS
more efficient: operations in a service may be exe-
cuted in several nodes concurrently; An users may
invoke several service requests at the some time.
Without concurrency control, e.g., SBS will make
a service request. to a remote node and block for
results.

To solve the problems above, we are consider-
ing to introduce distributed atomic transactions to
SBS. Atomic transactions have two important prop-
erties. First, each transaction is recoverable: either
it runs to completion and commits, or a failure oc-
curs and it aborts. In other words, either all or

Concurrency Control of Transactions in Service Base Sys-
tem
Qianshan He and Hidehiko Tanaka
University of Tokyo

none of the eflects of a transaction occur, partial
executions are not possible. Second, transactions
are serializable: transactions are allowed to execute
concurrently, but the results will be the same as if
the transactions executed serially.

To implement a transaction system, we have the
flexibility in choosing the granularity of transactions.
A finer granularity of transactions may lead to greater
concurrency, by typically at the expense of a more
complicated program.

3 Transactions and Concurrency Con-
trol

We divide transactions in SBS into three levels:

Level 1: Execution of One Service In SBS, a
service can be described as: “An operation is im-
posed on data and certain results are produced”:

method(results,inputl,input?,)

The inputs,results are data which can be files in
OS or data in a database etc. The methed is the
operation imposed on these data. A method can
be a OS’s command or a program etc. For each
method or data, SBS contains its attribute infor-
mation which are abstracted as an object and are
stored in a database. These attribute information
tell about where this data or program is located,
what formate this data is, etc.

On accepting a service request from an user or ap-
plication program, SBS works in the following steps:

1. From the database, get objects which contain
attributes of the data or the method.

2. Check where each data or method is located.

3. If a data is not in the node where method is lo-
cated, fetch the data to the node where method
is located.

4. Semantic checking: to see whether the method
can be imposed on these data. If not, transform
the data to a suitable formate.

5. Execute the service in the node where the method
is located.

1-234

raquest & service: methpdiresuit, inputl, lnput2)

get objecls trom DB| method result

forward 44
the request

¥
no
<> —_— sxecute smore
concurrency yes
sond
—_— result
transactions serlal ord

Bd 1: Transactions and Concurrency in Level 1

6. Send the results to a node where the user spec-

ified.

Each step can be seen as a transaction. For exam-
ple, during step 6, this transaction should abort if
there is a communication failure or node crash, and
data in that remote node should not be changed
partly. We can also find that there are many con-
currency among these transactions. For example,
in step 3, the transaction to fetch a remote data
means to open a communication port (to connect
a server socket in our implementation) and to get
the data stream. When it is necessary to fetch sev-
eral data which scatter in different nodes, step 3
can be divided into several transactions and these
transactions can be executed concurrently. Figure 1
shows transactions and concurrency during the exe-
cution of one service. We are considering to use the
two-phase commitment protocol in each transaction,
because it is easy to be implemented. We are also
considering to use two-phase locking to implement
concurrency control among transactions.

Level 2: Combination of Services SBS pro-
vides facilities to combine services which are already
registered in SBS. This is an important character-
istic of SBS: providing a way to extend computer
functions. Combination of services can be specified
by an user or an application program, or done by
SBS automaticly when it is necessary. Concurrent
execution of services in a combination must consider
synchronization between services: outputs of a ser-
vice may become inputs of another service. Using
parallel logic language FLENG++ [2] can solve with
this problem easily. Suppose that an user specifies
to combine three services: servicel is independent of
service2 and serviced, the output of service2 is the

input of service3. With FLENG++, the service re-
quest can be expressed as the following three goals:

7-servicel(inl), service2(in2, out2), serviced(out2).

FLENG++ will first try to execute these three
goals concurrently. In the execution of serviced, be-
cause out2 is not available, serviced suspends until
the execution of service2 completes and out2 is avail-
able.

In this level, we consider each service is a transac-
tion. That is, either each service commits or aborts.
Node crashing will not cause unconsistency during
the execution of a service. The transaction commit-
ment protocol and concurrency control in this level
use the same one as in level 1 described above.

Level 3: Multi-users The process structure of
SBS uses one SBS_backend_process per user or ap-
plication program. There will be one SBS_demon
process per machine, and it will be started at ma-
chine initiation time. An user runs a SBS inter-
face (which runs on X window environment), and
the interface is connected to SBS.demon through
a stream socket port. After SBS_demon forks one
SBS _backend_process for an user, the SBS_backend_proc
is responsible for accepting service requests from
this user and forwarding requests to remote nodes.
Backend processes work concurrently.

4 Future Works

We have discussed how to divide transactions and
how to manage concurrency control of transactions
in SBS. We believe that it i3 easy to implement
transactions and concurrency control in SBS by par-
allel language FLENG++. FLENG++ is also suit-
able to be a query language of SBS for users to make
concurrent service requests. A future work is to use
FLENG++ to implement the designs described in
this paper.

LB

[1] Q. He and H. Tanaka, “An Object-Oriented
Distributed System Integrating Multimedia Re-
sources”, Proc. of the First International Con-
ference on Systems Integration, New Jersey, April
1990,

[2] H. Nakamura and H. Tanaka, “Object-Oriented
Programming Language FLENG++ Based on
Parallel Logic Language FLENG”, WOOC'89,
Tokyo, 1989.

