R S e R QU R TG E RN R od T N

1563

SU-7

Distributed Garbage Collection for the Parallel Inference Machine: PIEG4

L Xu, Kentaro Shimada, Takeshi Shimizu, Hanpei Koike, and Hidehiko Tanaka
Tanaka Lab., Dept. of Electrical Engineering, Univ, of Tokyo®

Abstract

o this paper, we will present an elegant algorithm for
garbage collection of distributed heap memories. Qur
method mainly combines reference counting on memory
piage with noglobal Mark-Sean scheme, This atgoritlun s
very Lime-eflicient, partly real-thme and can be inplemented
with very little space overhead. The sources of its efficiency
ate discnimination of single reference objects, memory al-
location and management according to object lifetime, and
special hardware support for global Mark-Scan GC.

1 Intreduction

50 far, many methods about distributed garbage col-
lection have been proposed. They are all based on two
schemes : Reference Counting and Mark-Scan. But
they lose cither the advantages supplied by Reference
Counting or the advantages supplied by Mark-Scan be-
cause Lhey cannot combine the two schemes efficiently.

In the following, we will show how we implement
reference count, memory allocation and manageinent
according to lifetime efficiently with low overhead in
our system, and combine it with mark-scan method
to ensure the high performance of hoth efficiency and
real-time property.

Our garbage collector has three stages:

1. The real-time garbage collection based on Paging
Reference Counting,

2. The local garbage collection of goal frame area,

3. The global garbage collection by mark-scan
method,

The third stage has been deseribed in [5], and here
we will only describe the other two stages.

2 The Featurces of FLENG

Like many other logic parallel languages, FLENG
tends to consume memory at much higher rate than
conventional ones, L is also said that most objects are
referenced only onee. For example, goal franies are al-
ways referenced only onees This makes it possible that
we manage memory and do garbage collection much
more efliciently.

“Hougo 7-3 1, Buakyo-ku, Tokyo 113, Japan

cloim form: (lype, slze)

it (the page of the type is still enough
for this allocotion)
then allocate Tor the objact In the paga
else 1,10 ellocate a new page for the type
2. to allocate for the object In the page

if (the type Is one kind of SRO)
then 1o increase the reference count

of the corresponding page

Figure 1: The allocation seheme of 088

3 Object-Storage System (0OSS)

In order to collect the garbages efficiently, we do alloca.
tions according to the lifetimes. We can divide cacl lo
cal memory into pages. Therefore, there are twa kiuds
of allocations in our system. One is page-allocation,
The other one ts object-allocation. Wae keep a refer-
ence count for every page of SRO (Single Reference
Objects) areas,

The committed-choice languages like FLENG are of
ten said that most objects are referenced only once. We
will assort such objects into several categories accord-
ing to their lifetimes and manage them respectively.

The allocation scheme is shown in Fig.1.

4 The Real-time GC Based on
Paging Reference Counting

The base of our real-time collector is the cansideration
about lifetime. In the papers [2] [i3], they concentrate
on how long an object has lived. With the assumption
that an object graduated from many garbage collec-
tions would live for a long time, the eflorts are concen-
trated on the newer objects. In our case, we would Jike
to allocate alf objects being of the same lifetime to the
same area, rather than pay attention to how long an
object lives exactly. '
According to our 085, we allocate and manage ob-
jects according to their lifetimes. Therelore, we can
expect most objects in one page are of almos!, the same
lifetime. In the perfect case, ali objects in onc page can
be expected to be dereferenced at the same time. I'lis
ntakes it possible that we treat all ebjeets in one page

ISTER

dereference form ; (type, size)

if (the type Is one kind of SRO)
1. to decrease the reference count
of the corresponding page
2. If (the reference count becoame zerq)

then

then to reclalm the page

Figure 2: The real-time garbage collection scheme

as one objecl. We ouly have to keep reference count
for papes. We ecan reclaim a page when its reference
count became to zero,

In order Lo avoid the problem of premature, we would
propose to keep reference eount for the pages of the ob-
jects that the references to them can be determined
stalically. For PIEGA, we will only keep reference
counts for the pages of SRO.

As described above, we assort the ohjects reflerenced
only onece into several categories and keep the refer-
ence count when allocations or deallocations happen
on ecach page of SHRO. When the count of a page is de-
creased to zero, we can reclaim and re-use the page.
The dereference selieme is shown in Fig.2.

5 The Local Garbage Collection of
SRO Areas

There js a problem in the real-time garbage collection.
There may be many pages in which only a small part
of them are still in use, but Lthey cannot be reclaimed
campletely, To solve the problem, we introduce the
second stage of garbage collection,

When free pages of a local memory have been ex-
hausted, we starl the second stage garbage collection.
It will mark all the accessible objects in SRO areas from
the local roots and compact them into as few pages as
possible.

For PIEG4, we will do this garbage colleetion only for
goal frames. In cach local memory of PIEGY, there is
two local root queucs. One is active goal queue, the
olher is suspended goal queuss,

When this garbage collector is started, it will mark all
the goal frames accessible from the active goal queue
and the suspended goal queue. This mark phase is
different from the conventional one, because there is
no need of marking all the cells in the goal frames. It
15 enough only to mark the first cell of the goal frames.

Secondly, we will do the compaction. All the pages of
goal frames can be seen as consecutive logically, there-
fore we can do compaction only to slide all the goal
frames to as few pages as possible.

Because in each goal frame only the first cell is needed
to be marked and the compaction can be fulfilled with
only one scan, this garbage collection can be fulfilled
much more quickly than the conventional methaod.

6 The Co-operations for the

Global GC

When global garbage collection is required, the co-
operations between processors are needed, In the mark
phase, the active goal quene, the suspended goal queue,
and the remote mark requirements are treated as local
roots. When mark phase is started,

e the SPARC processor in each TU will mark all
cells of the local roots and writes them into the
queue prepared for the pipeline in UNIRED.

o UNIRED reads the roots from gqueve and starts
marking according to the

above.

scheme described
When a remote pointer is fonnd, a
remote-mark-requirement primitive will he sent

to the NI’s.

o when a NIP receives a remote mark requirement
from UNIRED, it will store it in the destination
11 with the help of the corresponding N1P, and
rewrite the original cell.

The compaction phase can be fulfilled in the same way
as described in [1).

7 Conclusion

As described above, we know that the garbage collec-
tor can implemented with a little overhead. We will
evalute the mcthod in the near future.

References

[1] Morris, F.L. A Time- and Efficient
Garbaye Compaction Algorithm, Comm. ACM,

Vol. 21, No. 8, (1978) 662-665

Space-

[2] Lieberman, II., and Hewitt, C. A Real-Time
Garbage Collcctor Based on the Lifetimes of Ob-
jeets, Comm. ACM 26, 6 (June 1983), 419-429.

{3] Moon, D.A. Guarbage Collection in a Large LISP
System, In: ACM Sysposivm on ISP and TFune-
tional Programming, (1034} 235 246,

[4] Shimizu, T., Tanaka, H. The Network Interface
Processors for Parallel Inference Machine: PIFE6]
Parallel Processing Symposium Ieb. 1989

[5] Xu, L., Shimada, K., Koike, . and Tanaka, 1.
A Study of Garbage Collection for PIEGY, Proc.
31th Annual Convention IS Japan 1987,

