WH A 2 538 (A6 RN 2E A =

985

Weighted Transaction Precedence Graph

5Q-3

OHMORI, Tadashi and TANAKA, Hidehiko
Dept. Electrical Engineering, The University of Tokyo

1 Introduction

We are studying the concurrency control of Bulk Ac-
cess Transactions (BAT): the transactions to access
bulk of data to the database-disks. We proposed
a Weighted Transaction Precedence Graph (WTPG)
and a cautious scheduler using it {Ohm88]. By en-
forcing the serializable order (SR-order) to make the
shortest critical path in the graph, a schedule of less
data/ resource contention is generated. This paper de-
scribes the O(n?) algorithm to find such the SR-order
in a given chain WTPG.

2 The Algorithm

Fig.1 shows the chain WTPG G(1,N). The ‘chain’
means that the graph without the edges 70 — T' and
Ti— Tf for all i is a set of chains. As the notations,
G(i,j) (1 £ i £ j < N) is the subgraph of G(1,N),
composed of 70 and {n(i},n(i + 1), ..,n(j)}. The di-
rected edge n(i) — n(j) says “n(i) precedes n(j) in
the SR order”. A pair of directed edges (n(i), n(i-+1))
says “n(i) conflicts with n(i+1)”. The weights on the
edges are the cost of the transactions to be executed.
e.g. a(k) on n(k — 1) — n(k) is the cost of n(k) to
be executed after n(k — 1) commits and releases the
conflicting locks.

Give a SR-order, then a WTPG becomes a directed
acyclyc graph. Its critical path is the earliest possible
completion time of the total schedule. We must find
the SR-order to make the shortest critical path in it.

We say “the choice edge (n(i),n(i + 1)} is set up-
wards” when it is resoluted to n(i+1) — n(i), and “set
downwards” when it is resoluted to n(i) — n{i +1).

Definition 1 The parameter L(k) and R(k) are the
triplets { curr, crit, rev } defined below:

In G(k — 1,N) where (n(k — 1),n(k)) is set down-
wards, let S1(k — 1,N) be the SR-order of { n(k -
1),n(k),...,nN } to make the shortest critical path
in G(k — 1,N). Then L(k) is defined on the edge
n(k — 1) — n(k) as follows:

e L(k).crit : the length of the shortest critical path

in G(k =1, N) under S1(k — 1, N).

e L(k).rev : the smallest label among the label i
such that (n(i),n(i + 1)) is set upwards under
Si(k - 1,N).

e L(k).curr : the length of the path n0 — n(k —
1) = n(k) — .. - n(L(k).rev).

':/ZLCR v Motalion

@ > @: node of label k.
\a\:ﬂ ba r(k): weight on @) —»(¥)
N @ a(k): weight on @ _’®
N o bk): weight on (1) —» (k1)
)

Figure 1: chain WTPG

a) b) P c)

R(3).curr

R(3).crit

L(4} = (6,6,n4)
R(4) = (11,11,n4)

Figure 2: example of L(k) and R(k)

L(3) = (8,8,n4)R(3) = (5,6,n3)

In G(k ~ 1,N) where (n(k — 1),n(k)) is set up-
wards, let S2(k — 1, N) be the SR-order of { n(k —
1),n(k),..,nN } to make the shortest critical path
in G(k — 1,N). Then R(k) is defined on the edge
n(k) - n(k — 1) as follows:

o R(k).crit : the length of the shortest critical path
in G(k — 1,N) under S2(k — 1,N).

e R(k).rev : the smallest label among the label i
such that (n(3),n(i + 1)) is set downwards under
52(k -1, N).

o R(k).curr : the length of the critical path from
n0 to n(k—1) in G(k—1, R(k).rev) under S2(k -
1,N).

0

L{k) and R(k) are notated by the triplet (curr, crit,

n(rev)). .
Ezamplel: Fig.2-a illustrates the chain WTPG

G(2,4), L(4), and R(4). For computing L(3), the
edge (n2,n3) is set downwards (in Fig.2-b) at first.
Then 51(2,4) = {n2 — n3 — n4 } makes the shortest
critical path of length 8. Hence L(3) is (8,8,n4). For

{

986

main()
/* procedure L1(k) */
temp = L(k+1).curr — r(k) + r(k-1) + a(k) ;
It (temp =< L{k+1).crit) then
Li(k).crit = L(k+1).crit;
L1(k).curr = temp;
Li(k).rev = L(k+t).rev;
else { /*temp> L{k+1).crit */
Li(k).crit = min{ max(V(h), R(h+1).crit))i---{1)
h st h=kstto L(ke1).rev.
" V(h) = max(i(h) V(h-1)+a(h)); (k =<h)

V) = et);

!

L1(k).rev = hD; s..t h=h0 takes the minimun in (1).
L1(k).curr = the length of the path
n0 - n(k-1)+ n{k)> n(k+1)--3n{ L1(k).rev)
endif /* end of L1(k) */

/* procedure L2(k) */
L2(k}).curr = r{k-1) + a(k);
L2(k).crit = max(L2{k).curr, R{k+1).crit);
L2(k).7ev = k; /* end of L2(k) */

L(k).crit = min(L1(k).crit, L2(k).crit);
if (Li(k).orit =< L2(k}.crit) then
L{k).curr = L1{k).curr;
L(k).rev = L1(k).rev;
else
L(k).curr = L2(k).curr;
L(k).rev = L2(k).rev;
endif

Figure 3: the algorithm for L{k)

R(3) in Fig.2-c, 52(2,4) is {n3 — n2,n3 — n4}, not
{n4 — n3 — n2}. Consequently R(3) is (5,6,n3).[]

Theorem 1 Suppose that L(i) and R(i) for all i =
k+ 1 to N are given in G(k,N). Then the SR~
order S1(k, N), S2(k, N) in Definitionl and the SR-
order S(k, N) to make the shortest critical path P in
G(k, N) are computed by the formulae:
Si(k,N)={k—(k+1)—..— L(k+1).rev}
US2(L(k+1).rev,N)
S2(k,N) = {k — (k + 1) — - R(k + 1).reu}
US1(R(k+ 1).rev,N)
guch that S1(k, k) = S2(k,k) = ¢ for all k.
The length of P = min(L(k+1).crit, R(k+1).crit).
S(k,N) = S1(k,N); if L(k +1).crit < R(k+1).crit
S(k,N) = S2(k, N); otherwise

Ezampie®: In the Examplel, L(3).crit = 8 >
R(3).crit = 6. Hence 5(2,4) = S2(2,4) = {n2 «
n3}US1(3,4) = {n2 «— n3 — nq} US2(4,4) = {n2
n3 — n4}.

Theorem 2 Suppose that G(k — 1, N) and all the
parameter L(i) and R(i) st. { = k+ 1 to N are

yAo) v
5 /(‘D P - 5),/,—-" @ §L1(2)=
/3 10 ’r 5 10 ;(16.16,n3)
2 Q|
L= ¥ | |tdeur- 1§ L
(8,8,nd) L(3).crit @;_
‘v e ? R(4) =
O @ (111104)

Figure 4: example of the algorithm for L(k)

given. Then the algorithm in Fig.3 computes L(k) in
O(N - k). [}

outline of the proof L(k).crit is the minimum of
those of L1(k) and L2(k). L1{k) is the value of L{k)
when (n(k),n(k + 1)) is set downwards. L2(k) is that
of L(k) when it is set upwards. L1(k) and L2(k) must
only consider the case where n(k — 1) — n(k) is ap-
pended to G(k, N) under S1(k,N) and S2(k,N) re-
spectively. In L1(k), if the new generated path PO
=n0 - nk-1) = nk) = nlk+1) — ..
n(L(k + 1).rev) is longer than the critical path in
G(k,N), the new critical path PO may get shortened
by setting upwards an edge in P0. The expression (1)
in Fig.3 computes this case. In the expression, V(h)
is the length of the critical path in G(k -1, N) s.t, all
its choice-edges are set downwards. The other cases
are trivial. ||

—_

corollary 1 The SR-order of the shortest critical
path in a given chain-WTPG is found in O(n?). a.t.
n is the number of nodes in the WTPG.

proof. R(k) is computed by O(N — k) as L(k) is. By
computing L(k)} and R(k) from k = N to 2, S(1,N)
in theorem1 is computed by O(n?).[]

Eramples. Fig.4 shows the case when the edges
n0 — nl of the weight 5 and r1 — n2 of the weight 10
are appended to the graph in Fig.2-a. Fig.4-a shows
the behaviour of the algorithm to compute L1(2).
When adding nl — n2 to G(2,4) under S1(2,4),
the new path P is n0 — nl — n2 — n3 — nd of
length 20, greater than L(3).crit = 8. But P can be
shortened by setting the edge (n3,n4) upwards as in
Fig.4-b. In Fig.4-b, the critical path has the length
maz([n0 — nl — n2 — nd|, R(4).crit) = 16, Hence
L1(2) is (16,16,n3). []

3 Conclusion

This paper describes the O(n?) algorithm to find the
SR order of the shortest critical path in the given chain
form WTPG. In the simulation for the BAT process-
ing, our scheduler outperforms the other locking pro-
tocols by 30% to 100% in throughput.

Reference: [Ohm88] IEICE, Tech.Rep., DE-88-

19. July,’88.

