S HRAL 5 2 5 37 B (B RI634E 1 1) &1 ke 2

407

P

Batch Transaction Scheduling on Multi Disk Database Computers

Q-1

OHMORI, Tadashi and TANAKA, Hidehiko

Information Engineering Course, Univ. of Tokyo

1 Introduction

In database applications, batch transactions ac-
cess as large bulk data as hundreds of mega byte
to database-disks.

This paper points out a ‘convoy’ of batches oc-
curs when they run concurrently. The ‘convoy’
prevents multiple disks from running in paral-
lel. In order to avoid it, we propose a scheduler
using ‘Weighted Transaction Precedence Graph
(WTPG)’.

2 Environment

Our target environment is a multi disk-module
database computer; It is composed of multiple
database-disk modules interconnected by a net-
work. :

As for data placement on multiple disks, “range
partitioning” in [2] is assumed. Each relation
is divided into partitions by range of values on
a specified attribute. FEach disk module (DM)
stores one partition per relation.

A batch is modeled as a serial sequence of a
read /write step to a partition on a DM.

As a concurrency controller, we use cautious
(strict) two phase lock protocol (C2PL) in [1].
C2PL is a cautious scheduler where each transac-
tion obeys strict two phase lock protocol. Thus a
read /write step is a shared(S) / exclusive(X) lock
request. All locks are held until commitment and
released after deferred updates. Lock mode eleva-
tion is allowed. Lock granule is a partition. C2PL
is a deadlock free protocol by declaring access-
dataset of transactions.

Each partition is given a cost in proportion to
its size of data. The unit of cost is a unit of bulk
data such as cylinder of a disk. e.g. if a partition
has 4MB and one cylinder is 1MB, its cost is 4.
Read/Write steps to a partition is also given the
cost of the partition.

T1: ri(D).
T2: r2(A) —» r2(E) —» w2(A).
T3: r3(C) —» w3(A,C).
T4: wa4(C) —» wa(F).
data-placement of partitions :

DM1 ---E,D DM2 - F, A, C.
cost of partition:

A C:1, EF:3, D:4.

Batch:

Figure 1: batch model

3 Convoy of batch

Fig.1 illustrates four batch transactions T1 to T4,
data placement on two disk modules DM1, DM2,
and its cost.

Suppose that they are ordered in the sequence
T1, T2, T3, T4 in the ready queue (RQ) of the
concurrency controller (CC). CC runs as follows;

When one of the DMs gets idle, CC selects one
of the transactions, T, in RQ using a service dis-
cipline such as FIFO. T must have a ready step
to run on the idle DM. Then CC runs T’s step on
the DM if its lock is granted. After the step is
completed, T is queued into RQ again. []

Note that, in the above scenario, CC does not
process lock-request until one of the DMs gets
idle.

e.g. I'ig.2-a is a Gantt chart where CC sched-
ules the batches in Fig.1 by FIFO service. FIFO
makes a serializable order (SR-order) T1, T2 —
T3 — T4 as follows; (T2 — T3 says ‘T2 precedes
T3.)

Until clock (clk) 2, CC using FIFO service
discipline has started r1(D) on DMI1, and has
completed r2(A) and r3(C) on DM2. At clk 2,
DM2 gets idle. Then all ready steps for DM2 are
blocked until T2 commits; w3(A) is blocked by
r2(4), elevated to X-lock. w4(C) is blocked by
r3(C). After T2 commits at clk 8, T4 is blocked
again until T3 commits. []



408

(a) FIFO schedule Serializable-order _ ) WTPG b) FIFO c) least critical
C’H T2 —>T3—> T4) paih
DML (D) . 12(B) idle , /’21;?5 V 9/ T5
4 3 TO "’ T3 TO —V T3 TO ._> T3
M2 | 13(C). idle w2(A) , WA(C) w4(F) T
L 1 1 I 1 1 1 ] 4
r2(A) 1 1 w3(AC) 1 3 L 3 L \ l4
— CLOCK ,
7 8 9 10
01 2 3 4 5 6 11 12 13 14 “’Jﬂ'.chmce edge
(b) WTPG schedule Serializable-order Figure 3: WTPG of Fig.2-a at clock 0
oML r1(D) r2(E) | idle h
T
4 3 1" T4 A pair of conflicting transaction Ti and Tj has a
M2, 28 wa(F) wa(h) ™ ., | pair of edges named choice edge. The’edge Ti-Tj
13(C) w3(A.C) ' wa4(C) 3 1 has a weight as an incremental cost from commit-

Figure 2: Gantt chart of the batches in Fig.1

In Fig.2-a, DM2 is idle yntil T2 commits. After
clk 7, DM1 is idle in turn. Consequently two
DMs don’t run in parallel. It is because FIFO
makes a long chain of transactions T2 — T3 —
T4. Furthermore r1(D) makes DM1 busy and
defers commitment of T2.

We refer to the situation as convoy of batches.

A solution to the convoy is to make many
batches active and run no-conflicting ones on idle
disks. However the number of active batches is
small because they require much resource such as
large main memory.

Another solution is to predict the possible con-
voy among a few active batches and avoid it.

Fig.2-b is the case where CC selects T3 at clk
0 on DM2. The SR-order is T1, T3 — T2, T3 —
T4. Both DMs can run in parallel.

Thus CC must determine SR-order of batches
so that all DMs can run in parallel.

4 Scheduler using WTPG

We propose a cautious scheduler which predicts
and avoids ‘convoy’ of batches. For the predic-
tion, we use Weighted Transaction Precedence
Graph (WTPG); transaction precedence graph
with weighted edges, defined in [3].

Fig.3-a is a WTPG of Fig.2-a, at clkO after T1
has started. TO is the initial transaction. The
final transaction Tf and its edges are omitted in
Fig.3.

In the WTPG, the edge T0-Ti has a weight as
Ti’s earliest possible commitment time. e.g. T2
can commit at clk 8 at earliest.

ment of Ti to that of Tj. So does the reverse edge
Tj-Ti. When Ti is determined to precede Tj, the
edge Tj-Ti disappears. The operation is named
resolution of choice edge. e.g. it takes the cost of
w3(4,C) = 2 until T3 commits after T2 commits.

The edge Ti-Tf has a weight as a cost from
Ti’s commitment to its completion. The weight
is negligible in C2PL and omitted in Fig.3.

A full schedule gives a SR-order which reso-
lutes all choice-edges in a WTPG. The resoluted
WTPG should be acyclic. In the WTPG, the ear-
liest possible completion time of the schedule is
the length of the critical path from TO to Tf.

Fig.3-b is the WTPG resoluted by FIFO. Its
critical path is T0-T2-T3-T4 with the length 14.
The SR-order ‘T3 — T2, T3 — T4’ makes the
least critical path T0-T3-T2 with the length 8 in
Fig.3-c.

Using WTPG, CC predicts ‘convoy’ and runs
as follows;
when a DM gets idle, CC determines the SR-

 order with the least critical path in the current

WTPG. Then, among ready transactions under
the order, it selects one to run whose ready step
has the smallest processing time. [] :

The latter part obeys Small Processing Time
priority in job-shop scheduling. Fig.2-b is 2
schedule generated by the above strategy. :

It is NP-complete to decide the SR-order with
the least critical path in a given WTPG. Its re-
stricted problems are, however, solved in linear
time of the number of nodes [3].

[references] ‘

[1]. Nishio, et al, IWDM87 pp.212-225. [2] De-
witt, et al, VLDB86,pp.228-237. [3] Ohmori, et al, to
appear in Data Eng., Tech. Rep., IEICE, July,88.




