l—".‘-[_I:Iﬂr*’-/\.gfy‘g'?.(n *”63/4—‘{&)ﬁ)‘rj_ ‘/\ 149

5N-8
A Study of Garbage Collection for PIE64

Lu Xu, Kentaro Shimada, Hanpei Koike, and Hidehiko Tanaka
Tanaka Lab., Dept. of Electrical Engineering, Univ. of Tokyo*

Abstract

There are many proposed distributed architectures
for efficient execution of programs with potential par-
allelism. One of these architectures is a loosely-coupled
multiprocessor system, in which the processing ele-
ments share only the communication medium. PIE64
is such a machine. Here, we will discuss a global
garbage collection algorithm suitable for PIE64, with
assumption that no real-time constraints is given, but
that a fast garbage collector with minimal space, time
is required.

Introduction

PIE64 is a parallel inference machine and executes
programs described by the committed-choice language
referred to as FLENG. In PIEG4, there are 64 IUs(
inference unit), which are connected by two high-
intelligent and high-speed interconnection networks.
In each IU, there are 1M word local memory(1 word=4
bytes) and four processors, one of them is UNIRED(
unify/reduce) used for inference, one is for control, the
other two are for communication using the intercon-
nection networks. In the UNIRED, there is a pipeline
for unification.

In our proposal of garbage collection for PIEG4, we
divide the GC into two phases, one is marking phase,
the other is compaction phase. In the marking phase,
the system-wide accessible cells will be marked using a
combination of parallel breadth-first/depth-first strate-
gies. In compaction phase, the marked cells will be
compacted to one end of local memories as much as
possible. -

‘Why not the incremental method ?

The global methods are usually disputed because of
non-real-time. To meet the real-time constraints, peo-
ple uSually adopt incremental garbage collectors. In
particular, it is usually said that in case of committed-
choice languages, the memory is consumed up rapidly
and garbage collection is required much more fre-
quently. But we choose the conventional method. The
reason is that the applications for PIE64 are assumed
to be time-consumed and space-consumed problems
and there may be no real-time constraints in most of
them. Even there are real-time constraints indeed, we
think we can guarantee that our GC performance is no

*Univ.of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113

bad compared with other methods, because

o for any program in PIE64, on an average, the
garbages created by the program must be collected
by itself. This is unavoidable. For the incremental
methods, this work is distributed in the computa-
tion, while for the conventional method, this work
is done with halting the computation. But the
total amount of the work is same. In this view,
the conventional method is much better than in-
cremental methods.

e we can do our best to guarantee that the time for
GC is so little that users may not take care of it.
By experience, we know in case that the memory
is larger than 3M bytes, the users will take the
GC’s time into account if conventional method is
used. For PIE64, there are 4M bytes(1M words)
in each IU. But, if we do garbage collection with
making full use of the pipeline, the time used will
be so little as to almost meet real-time constraints.

It must be admitted that when an incremental
method is selected, the computation, may be slowed
down to a certain extent. In order to meet real-time
constraints but slow down computations, or to expedite
computations but neglect real-time constraints, which
is better? it’s a problem. For PIE64, we choose the
latter. So we would obviate from incremental methods
as long as possible.

Nevertheless, some other methods may be added in
the future to improve the performance of the conven-
tional method.

Object Structure and Object Storage

All objects in PIE64 are distributed in the local
memories. As the basic element of objects, cell is pre-
sented whose size is 4 bytes. Fach cell consists of a
two-bit field used for GC, and the data or pointer it-
self. Because in PIE64, goals are often copied between
IUs, there are quite a lot of remote pointers. To manip-
ulate remote pointers efficiently, no difference is made
between representation of remote pointers and that of
local pointers. But when a remote pointer is created,
additional space must be kept for the use of GC in the
future.

Global Garbage Collection Sp ecifications

150

Dy

e Synchronization

We choose the method without Master, because
if there is a master, either it is a distinguished
IU, or it is any general U, additional transits are
unavoidable. But we can do synchronization with-
out master, by using simple hardware support and
choosing properly maximum possible transmission
delay of a message in the communication subsys-
tem. With the synchronization mechanism, we
can start GC, and decide when the marking phase
and compaction phase are completed respectively.

¢ Marking Phase

Now, we present the idea of the marking scheme.
The space requirement of it is determined and can
be guaranteed in advance. The original idea is

got from Huak and Keller in their Marking-Tree

Collector.
The key idea is :

In a conventional collector used before, a stack is
used to execute marking. But if a tree structure is
used instead of stack, we can get the idea suitable
for parallel marking. This tree is referred to as the
Marking Tree. So we can imagine a marking task
for.root is spawned when GC is called. Therefore,
a number of sub-mark-tasks are spawned in ac-
cordance with its children with the limitation of
definite space. In addition, the marking tree is si-
multaneously built for termination. Termination
is detected since each mark task eventually spawns
an uptree task, which propagates upward in the
marking tree. When an uptree task arrives at a
cell, whether all the children of the cell have been
marked will be tested. If not, a number of mark-
ing tasks will be spawned in accordance with the
children that have not been marked, otherwise, a
new uptree task will be spawned from this cell and
pass over upward the Marking Tree. Spawning an
uptree task from the root indicates that marking
is complete.

In fact, there is no need of keeping the pointers
form parents to their children. But the pointers
form children to their parents are required. In
PIEG4, because we have no other space to store
them, we have to make use of technique of the
reverse pointer. So in PIE64, marking objects is
performed by two kinds of messages :

— Mark-object(o,p) : which means that as one
child of p, o is to be marked.

— Mark-object-Reply(o,p) : which means that
as one child of p, o has been marked.

We will use these two as basic primitives for GC.

o Compaction Phase

We plan to-use the morris’ algorithm.

¢ About the Remote Pointers

As said previously, when a remote pointer is cre-
ated, the space needed by GC must be kept. In the
marking phase, when a remote pointer is found,
the acknowledgement signal is sent to the corre-
sponding IU, and marking is done there. When
compaction is completed, the new address is sent
to the cell whose address may also be chang;d.

\\\\\\ J -

N

AN

o

a remote pointer in PIE

AN

S
NN

W

o remote pointer when it Is morked

\\\X\\m
N

%

7

/

iy
AR

when a reverse pointer hos been created

Future Research

In the global garbage collection, the compaction is

very tedious and very time -consumed. How to make
use of the pipeline to do the compaction is still a prob-
lem. And whether the global garbage collection is
enough or not must be tested by means of simulation.
These are our future work.

References @

[1]. P.Hudak, R.Keller, “ Garbage Collection and
Task Deletion in Distributed Applicative Processing
Systems”, Proceeding of the ACM Symposium on LISP
and Function Programming, Aug. 1982

[2]. A.Goto, “Real Time Garbage Collection for In-
ference Machine By Lazy Reference Count”, LPC, 1988

[3]. K.M.Ali, “Global Garbage Collection for Dis-
tributed Heap Storage Systems ”, Internal IBM Rep.
RC 11082(49769) '

