5L A 2 S 36T (T RI63 41 91 Ze L6l K 2%

A Very Large Rule/Fact Database based on rule-goal graphs

3P -2

OHMORI, Tadashi and TANAKA, Hidehiko
Univ. of Tokyo, Information Eng. Course

1 Introduction

We have been developing a deductive database with
a very large database of rule-clauses {1]. In order to
retrieve rule-clauses fast, we use a variant of relational
algebra, named Relational Algebra extended with Uni-
fication (RAU). Among operators of RAU, I-operator
issues a global query [2] to a database of fact-clauses.
M operator retrieves pairs of rule-clauses.

This paper presents an algorithm of I-operator by a
rule-goal graph and that of M-operator by hash.

2 Large Rule/Fact Database

A deductive database in this paper has two very large
databases; a database of fact-clauses (factDB) in a
relational database and that of rule-clauses (ruleDB).
A rule-clause (rule) is a view definition of a relation.
A fact-clause (fact) is a tuple of a relation. As in (3],
functor symbols are allowed. Compound terms are
regarded as complex objects.

Two cases enlarge a ruleDB; either there are many
rules each of which has a different head-predicate, or
many different rules have a common head-predicate.

In the first case, an indexed file on a head-predicate
can retrieve necessary rules fast. Assume that this
ruleDB, Idb1, is resident in a main memory. Idbl with
a factDB is a conventional deductive database.

It is enough for us to concentrate on the fast re-
trieval of rules in the second case, where many rules
have a common head-predicate. Let's call this large
ruleDB Idb2. 1db2 is stored in a disk or a large main
memory. In Idb2, necessary rules are retrieved only
through unification.

Ex.1.”

I1db2 has two rules ‘r(f(a,X))-p1(X).", ‘c(f(X,b)):-
p2(X).” and also two rules ‘t(h(X,a)):-ql(g(X)c).’,
‘t(f(X,d)):-q2(X).”. Rules with a common head-
predicate are view definitions of a common relation.
They operate diflerent relations differently in the
body according to complex objects in their arguments.
Then, a query is given, “How to do ‘r(X) and t(X)’
? . The answer is a set of rules which defines a view
m(X) = ¢(X) A t(X); ie. ‘m(f(a,d))-pl(d),q2(a).”.
]

If we know 10 rules of ‘r(X)’ and ‘t(X)’ in Ex.1, a

naive method tries to unify 10° pairs. Hence we need
a mechanism to retrieve necessary pairs of rules fast
from Idb2.

Our approach is as follows [1]; At first, we compile
in advance a body-part of each rule in Idbl and Idb2
into a program of Idbl. So neither Idb1 nor Idb2 call
execution of rules in Idb2.

Secondly, we make a set of rules with a common
head-predicate. This set is called a meta-relation. It s
expressed literally by a set of tuples { tuplel, tuple2,...
}. In Ex.1, the set R with a scheme [4, B] is made as
a set of rules ‘r(A):-B.".

ie. R[A,B] = { ({&X).p1(X)), ((Xb).p2(X)) }.
By the definition of R, a tuple (f(a,X), p1(X)) in R s
interpreted as a rule ‘r(f(a,X))=-p1(X).".

In the same way, the set T with a scheme [4,C]
is a set of rules ‘t(A4):-C.. ie. T[4,C] = { (h(X,a),
q1(g(X),c)), (f(X,d), q2(X)) }. For 1db2, each meta-
relation will have thousands of tuples.

Thirdly, three set-operators N, o, and I-operator are
defined on meta-relations. The followings illustrate
them on meta-relations R and T defined above.

1. R[A, B] X T[A, C] with a scheme M[A4,B,Clis a
natural join of R and T', but unification occurs in the
join attribute ‘A’

eg. M4 B,C) = { (f(ad), pL(d), a2()) }.
MIA, B,C] is a set of rules ‘m(A):-B, C’, which de-
fines a view m(X) = ‘t(X) A t(X)’. The single tuple in
M is a rule ‘m(f(a,d))=-p1(d),q2(a).”. Thus B operator
retrieves necessary pairs of rules.

2. ¢ T[A,C] is a selection of rules in T', which is
restricted by unification.

e.g. O'A o= h(b,_) T[A,C] = { (h(b)a)) ql(g(b))c)) }

3. 1p R[A, B] is a set of facts satisfying a rule in R.

e.g. if only p1(il) and p1(i2) are true and p2(X)
has no answers in Idbl, I R[4, B] = { (f(a,il),p1(i1)),
(i(i2), p2(i2))).

Those operators are called Relational Algebra ez-
tended with Unification (RAU). Note that I-operator
issues a set of queries to Idbl with a factDB. M and o
are the same as those in [4].

A query to the rule/fact database is expressed as a
tree-form of RAU-operators. e.g. a query “retrieve a
set of facts which satisfy both a rule in R restricted
by F1 and a rule in T restricted by F2” is expressed
by 7 I [(cr1R) X (0p2T)]. It retrieves necessary pairs

(- att, a).) (= s(x. a).)

wl

q(f(X), a):- rdbcall.

(*2)
s{f(Y), a):- rdbcall.

» original

rules q(X, a):- rdbcall.
in ldb1 {

s(f(X), Y) :- rdbcall.

* g1, g2 are goal clauses to Idb1

—» :the direction of dataflow.

Figure 1: a rule-goal graph

of rules from Idb2 and issues a global query to Idbl
with a factDB.

3 I-op. by rule-goal graphs

Given a global query , then a rule-goal graph is gener-
ated in the depth first order resolution with common
expression sharing [2] (Figure.1).

We use the simplest rule-goal graph [5]. It consists
of goal nodes and rule nodes. A goal node is a goal
literal which appears during the depth-first resolution.
It has rule nodes as child-nodes. A rule node is an
instance of an original rule, which is a unified form
with its parent goal-node. e.g. in Figure.l, a rule
node (*1) is a unified form of an original rule. Due to
the depth first order, the node g1 has a goal node ‘-
s(X,a)’, not ‘- s(X,Y)’.

If a goal node “-G.’ finds an already generated rule
node ‘H:-B.” such that G = H 6 (6 : substitulion),
the rule node is declared as a common expression and
a reduction of “-G.’ succeeds. In Fig.1, the goal g2
succeeds and a rule node (*1) is a common expres-
sion. If g21is “-q(X,a).’, the common expression (*1)
is replaced by ‘q(X,a):-rdbcall.” and is still shared.

The generated rule-goal graph is executed by a
relational database after materializing all rule-nodes
which are declared as common expressions.

Our rule-goal graph is unique in these two points.

1. variable-bindings are propagated in the depth
first order. e.g. in Fig.1, a binding {X/f(Y)} at the
node(*2) is not propagated to the node(*1). It is much
simpler than the exhaustive propagation in [6].

2. temporal relations are needed only for the de-
clared common expressions. The dataflow approach
in [6,7] needs to store temporal results in all nodes in
the graph for common expression sharing.

4 X-op. by hash

This section presents a hash based algorithm for &
operator. We have already proposed an algorithm for
it by hash and sort [1,8]. The sort is not, however,
always useful if all operands are resident in a main
memory.

For simplicity, in A M B, operands A and B are sets
of terms which have a specified tree structure Tree.
e.g. let Treel be functor(atoml, atom?2), expressed by
[functor, atoml, atom2] or [n0, ni, n2). Then 4 is {
{(X,a), h(a,b),... }.

Distinct hash-tables Atbl(Bid, Key) are made ac-
cording to (Bid, Key); Bid of a tuple t is a sequence
of 0 or 1. It tells t has a variable or a constant symbol
respectively on nodes of Tree. e.g. a tuple t1 = f(X,a)
has Bidl = [1,0,1] on Treel. We say t1 has a value
[f,a] on [n0,n2].

Key in a given Bid is a sequence of constant nodes
whose values must be equal when unification succeeds.
e.g. Key is [n0] or [n0,n2] for Bidl. If a tuple t2=
f(b,a) is unified with any tuple t3 whose Bid is Bid],
both t1 and t3 must have an equal value on Keyl =
[n0,n2]. Keyl is called a Key between 11 and Bidl.

A tuple t is given a hash value hv(1) = hash-
Junction(V’s value on Key) in htbl(Bid, Key). e.g.
hv(t1) = hash-function(f,a) in htbl([1,0,1], [n0,n2)),
and hash-function(f) in hibl({1,0,1}, [n0}).

The hash-based algorithm for A M B is as follows;

stepl. for all tuple t in A and Key in Bid of t, insert
t to the entry ‘hv(t)’ in htbl(Bid,Key).

step2. for all tuple t in B and Bid in A, do the
following operations; get Key between t and Bid, and
next try unification of t and tuples in the entry ‘hv(t)’
in htbl(Bid, Key). O

5 Concluding remarks

An experimental (not large) rule/fact database has

~ been developed in CProlog. I-operator is implemented

by the method in this paper. b and o are supported
by nested loop and simple hashing, respectively.

The algorithm for M in this paper can be improved;
When terms in A and B have nodes N which are not
on Tree, some coding methods are useful. One W8y
is to append another hash table of SSCW [9] on such
nodes N to each entry of our hash table.

[ref.] [1). Ohmori. IWDM’87, pp.291-304. [2]. Sel-
lis. SIGMOD’86, pp.191-205. {3]. Zaniolo. VLDB'85,
pp.458-469. [4]. Morita. VLDB’86, pp.52-59. [5]. Ul
man. ACM-TODS. 10(3) ’85. [6]. Kifer. ICDT:86»_
pp.186-202 in LNCS243. [7]. Gelder. SIGMOD86
pp.155-165. [8]. Obmori. 32nd.A.C. 1M-6, 1PSJ. (&
Morita. 33rd.A.C. 6L-8, IPSJ. :

