17 P LB 2 585 36 1] (IR 1634 il 1)) 4 6 K 2%

SH-4

- A GHC Implementation for Supercomputers

Martin Nilsson and Hidehiko Tanaka *
The University of Tokyo

Abstract

We will describe an implementation of Flat GHC for
vector parallel supercomputers. We first compile GHC
programs to a simpler form, which does not contain
any guard goals. We then execute the programs by a
vectorized interpreter to attain high degrees of paral-
lelism.

1 Introduction

We are interested in parallel languages for symbolic
data processing on supercomputers. We have been
attracted to logic programming languages, because of
their relative simplicity and expressive power. We are
interested in supercomputers, because of the poten-
tially high degrees of parallelism, and the scalability
of the architecture.

We have initially chosen the language GHC [4], which
is a parallel logic programming language of committed-
choice type. We selected this language since it seemed
to be one of the simplest of its kind, and since it has
been shown to have reasonable expressional power, e.g.
[1].

In order to compactify the central interpreter loop as
much as possible, we first compile GHC down into
a low-level logic programming language, called Fleng
[2],[3]. We then execute Fleng code on the supercom-
puter by a tightly coded interpreter.

In this paper we briefly describe.the compilation of
GHC into Fleng, design details of the supercomputer
Fleng interpreter.

2 Flat GHC and Fleng

A Fleng clause has a form similar to a GHC clause,
but there are no guard goals. Only the head is used
for testing.

The goals in the body of a Fleng clause, as opposed to
GHC goals, may only return information about their
state by binding shared variables. This means that
a Fleng body is executed by just “forking” the body
goals and execute them independently.

Suppose that we have a GHC predicate p, defined as

*The Tanaka Lab., Dept. of Electr. Engineering, Univ. of
Tokyo, Bunkyo-ku, Hongo 7-3-1, TOKYO 113

p(X)
p(X)

= g1(X) | bi(X).
= g2(X) | v2(x).

This definition will be converted into the Fleng defini-
tion

p(X) :- p1(X,N), p2(X,N).
pi(X,¥) :- g11(X,N), bi1(N,X).
p2(X,N) :~ g22(X,N), b22(N,X).

b11(1,X) :- b1(X).
b22(2,X) :— b2(X).

The introduced variable ¥ is a mutual exclusion vari-
able. It ensures that only the body corresponding to
the first succeding guard is executed.

The compilers task is to convert the guard g1(X) into
the guard test g11(X,N), where it must be clear that
gl1 cannot export any bindings ouiside p1l except for
the mutual exclusion variable N. The compiler must
similarly convert the guard g2.

The conversion can be done essentially by partially
evaluating unification as far as possible in the guards,
and replacing calls to system predicates with slightly
modified versions.

3 Vectorization

The are two radical ways of vectorizing the interpreter
loop: One is to turn every scalar in the loop into a vec-
tor, and to make one, big loop of the whole interpreter.
We could call this vertical vectorization. Another way
is to turn every single instruction into a loop. This
could be called horizontal vectorization.

Completely vertical vectorization is not practically
possible unless the loop is short. It also tends to
waste execution time. On the other hand, complete
horizontal vectorization requires much overhead for
preparing vector execution. The ideal vectorization
model is somewhere in between these two methods,
where the loop size is optimized to keep the supercom-
puters pipelines/interconnection network at maximum
throughput. With current supercomputers, this means
bias towards horizontal vectorization.



780

4 SIMD Programming Restrlc—
tions

In order to obtain any vectorization speed up, we must
make sure that practically all code in the interpreter
loop is vectorizable. In order to be vectorizable, it
obviously may not contain any jump instructions or
subroutine calls. Another restriction is that we cannot
use linear stacks, since at least one stack would be nec-
essary for every vector element, which would be quite
impossible for memory reasons.

The implementation has to be inherently heap-based,
allowing processes to allocate memory from a common
pool.

All operations has to be made real-time, 1.e. must be
finished in bounded time. Thus, for instance, derefer-
encing, which is non-real-time, must be split into real-
time dereferencing steps. The interpreter has exactly
four different operations which are non-real-time: Uni-
fication (including dereferencing); process activation,
since several processes might be restarted by one ac-
tivation; AND-reduction, since there may be several
goals in a body; OR-reduction, since there may be sev-
eral clauses defining a predicate.

5 Fleng Interpreter Structure

Our interpreter consists of four blocks, each a loop on
its own. Each block corresponds to one non-real-time
operation, so there is an AND-, OR-, ACTIVATE- and
UNIFY-block.

Each block takes a queue of processes as its input
and produces two new queues of processes: Processes
which are ready for the next block, and processes which
should be fed back into the current block. UNIFY also
adds processes to the special queune for activation.

e AND
The AND block takes trees of goal literals as input
and pairs the goals with predicate definitions. It
also adds a shared Trust-cell. It executes built-ins
for arithmetic.

¢ OR
The OR block inputs pairs of goals and definitions,
and produces pairs of goals and candidate clauses.
It creates new environments, and “pre-commits”
environments which are used for active unification.

e ACTIVATE
The ACTIVATE block prepares activated goals for
re-unification.

e UNIFY
The UNIFY block handles both passive (head)
and active (body) unification. It handles deref-
erencing, variable binding, and commitment. For

successful passive unifications, new goals are pro-
duced for the AND block.

6 Implementation Details and
Discussion

The target language of the implementation is Fortran.
In order to make development and debugging reason-
able, the source code uses macro definitions extensively,
to be compilable both into C, or, using the Ratfor pre-
processor, into Fortran.

Unification dominates the code. Initially, we thought
that code for mutual exclusion (variable binding and
commitment) would be critical for performance, but it
now seems different: Variables are bound at exactly
one point in the code, and committing is also done at
only one point, representing rather little overhead.
Not to get caught in too much idiosynchratic detail of
a particular computer’s architecture, we cannot go to
a much lower implementation language than Fortran.
The absolute efficiency of the implementation will thus
necessarily be severly limited by the vectorizing For-
tran compiler. Despite this, we can still compare rela-
tive speed-up and degree of parallelism for vectorized
vz. sequential execution on the same computer, in the
same language.

References

[1] Furukawa,K. and Mizoguchi,F. (Eds.): The Par-
allel Programming Language GHC and its Appli-
cations. Kyoritsu Publishing Co. Tokyo, 1987. (In
Japanese).

[2] Nilsson, M. and Tanaka, H.: Fleng Prolog - The
Language which turns Supercompuiers into Pro-
log Machines. In Wada,E. (Ed.): Proc. Japanese
Logic Programming Conference. ICOT, Tokyo,
1986. p 209-216. Proceedings also printed as
Springer LNCS 264. '

[3] Nilsson, M. and Tanaka, H.: The Art of Building
a Parallel Logic Programming Sysiem. In Wada,E.
(Ed.): Proc. Japanese Logic Programming Con-
ference. ICOT, Tokyo, June, 1987. p 155-163. Pro-
ceedings also to appear as Springer LNCS.

[4) Ueda, K.: Guarded Horn Clauses. D.Eng. The-
sis, Information Engineering course, University of
Tokyo, Japan. March 1986.




