AL 2 3 (A2 4E R) & [A 2

~3
~

4U-8

Implementing “Safe” GHC the easy way

by Compilation to Guard-free form

Martin Nilsson and Hidehiko Tanaka *
The University of Tokyo

: Abstract

This paper describes compilation of the parallel logic
programming language GHC, into a parallel logic pro-
gramming language without guard goals. The advan-
tage with this compilation is that a language without

~guard goals is much easier to implement. A compiler
from Flat GHC written in Prolog becomes only a few
pages long.

1. Introduction

t has been shown [Ued 86] that GHC is a very nice
language for programming parallel computers. How-
ever, there are some points of GHC which makes it
hard to implement efficiently on existing computer ar-
chitectures. Such a feature is the use of arbitrary goals
in the guard part of clauses. This becomes hard to im-
plement efficiently because guard goals may not export
variable bindings outside the guard, but they may bind
variables which only occur in the guard.

.“Another implementational problem with GHC is the
management overhead of processes which is hidden un-
der the surface of the implementation. If GHC is given
@query G, H, consisting of two goals G and H, GHC

in‘effect requires that if execution of the goal G fails,

the ‘process H should be stopped, and vice versa.

“In this paper we will show how (in fact, more than)
Flat'GHC ean be compiled to a similar language
FLENG [Nil 86]. This method should be useful also
for compilation to the language Oc [Hir 86]. A similar
approach has been used by Codish [Cod 86] for com-
piling concurrent Prolog into Flat Concurrent Prolog.

2 GHC and FLENG
AGHC clause has the form
H: —-Gle . ..Gm|3132 ...Bn

Where H, G;, B; are atoms. The interpretation of this
clause is that the head H and the guard goals G, .

'The Tanaka Lab., Dept. of Electr. Engineering, Univ. of
Tokyo, Bunkyo-ku, Hongo 7-3-1, TOKYO 113

are tests (“if”), and that the body B; ... B, is an ac-

. tion (“then”).

All goals Gy ...G By ... B, are supposed to return
truth values to tell the result of their execution. The
guard and body are both considered as conjunctions
and the implementation is supposed to transmit failure
of goals to failure of the entire conjunction.

A FLENG clause has a form similar to a GHC clause,
but there are no guard goals. Ouly the head is used
for testing.

The goals in the body of a FLENG clause, as opposed
to GHC goals, may only return information about their
state by binding shared variables. This means that a

FLENG body is executed by just “forking” the bedy

goals and execute them independently.

3 Compilation of the Guard

Compared with GHC, FLENG’s testing ability is re-
stricted to head matching. This means that we can
test for equality in FLENG, but we cannot test prop-
erties like “greater than.”

We get around this problem by changing our pro-
gramming methodology: Instead of testing data in the
called clause, we test data in the caller. We pass the
result of this test as an argument of the call. Then, de-
pending on this argument, head matching alone will be
able to judge whether we should commit to the clause
or not.

Given a GHC clause

H(z,y) : —Test(z)|B(z,y).
the FLENG translation could be, for instance:

Test(t,z), H'(,z,y).
B(z,y).

H(z,y) :—
H'(TRUE,z,y) :-—

Here we assume that the predicate Test also is rewrit-
ten (compiled) so that it returns its result explicitly
by a parameter {. There is a complication: We have
assumed that the predicate Test does not try to in-
stantiate the variable . This is usually true in normal
(Flat) GHC programs, but it is not generally true. A

774

guard goal in GHC may treat variables in argument
positions in one of three ways:

e It might try to both use the variable’s value, if it
is bound, and also try to bind it.

o It might only try to use the variable’s value (“in-
put”)

e It might only try to bind the variable (“output”)

In Flat GHC, the only example of the first case is the
unification primitive “=” . All other system predicates’
arguments are either purely input or output. This
seems in fact to be the normal case for guard goals.
This is lucky for us, since compilation of the first case
is much harder than the second two cases.

We require for compilation to FLENG that the ar-
guments of guard goal predicates are declared to be
either input or output. We will not allow the first kind
of system primitive, except for unification. Clearly,
this is a strict subset of GHC, but it is still consider-
ably larger than Flat GHC. (It could possibly be called
“Safe GHC.”) The procedure is to replace a GHC guard
goal

P(:l‘.l, e

7xn1y17-~-)ym)

where 2;,...,z, are input terms, and y,..
output terms, with the equivalent GHC goals

., Ym are

P(x1, ..., 0,21, ...y Zm), 21 = Y1, ..

-y Zm = Ym
where z1,..., 2y, are fresh variables. This first step
isolates the risk of exporting variable bindings to the
unification system predicate. As the second step, we
compile this guard to FLENG. Here we have to be care-
ful only when we compile unification, so that unifica-
tion indeed always suspends when the GHC program
does.

The trick in compiling unification is to remember
that variables occuring in the head of the clause and
variables in guard goal output positions (z; in the ex-
ample above) may not be bound.

4 Compilation of Commit

The commit operator in GHC makes sure that only one
clause in a set of clauses with successful guards will be
used.

In our implementation, guards are executed in an
and-parallel way, and the first guard to succeed will
bind a shared variable to a number, which is unique
for that clause. If another guard succeeds later, it will
not be able to bind that variable. The shared variable
can thus function as a mutual exclusion mechanism.
The execution of the body can start at the moment
the shared variable gets bound.

We can now give the general pattern of a compilation
from GHC to FLENG. If a given GHC predicate is

P(z,...) :—) Bi(z,...).

Testl(x, ..

the whole definition of P in FLENG becomes:

P(z,...) :— Guardi(z,...,n),...
Guardy(z,...,n) :— Testy(t,z,..)),
Commit(t, 1,n),
Body,(n,z,...)..
Body(1,z,...) :— B(z,...).
Commit(TRUE,m,n) :— m=n

Note here that the compilation of the Test goals from
GHC to FLENG guarantees that these predicates w1ll
not interfere with each other.

5 Results and Discussion

We have briefly described a method for compllmg a
subset of GHC into FLENG. :

GHC programs probably become most efficient. 1f
they are compiled directly from GHC to machine code,
or executed directly by hardware. On the other hand,
FLENG is easier to implement than GHC, especially on:
a very low level. A computer tailored for FLENG may.
thus become simpler and faster than one for GHC. This-
could compensate for an efficiency loss in (non-optimal);
compilation. It is also worth noting that guards in;
GHC programs tend to be quite simple, and that GHC
clauses often can be read directly as FLENG clauses.:
Such programs compiled will not display any efﬁaency
loss at all.

6 References

[Cod 86] Codish,M.: Compiling Or-perallelism intos -
And-parallelism. In Proc. 3rd Int. Conf. on Logic
Progr., London. July 1986.

[Hir 86] Hirata,M.: Letter to the Editor.
Notices, ACM. March 1986.

[Nil 86] Nilsson,M.: FLENG Prolog - Turning super-
computers into Prolog machines. In Proc. Logic Progr:; .
Conf. ’86, Tokyo. June 1986.

[Ued 86] Ueda,K.: Guarded Horn Clauses.
Thesis, University of Tokyo. March 1986.

SIGPLAN

