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1 Introduction

Conventional deductive databases concentrate on
fast retrieval of many fact-clauses through a few
rule-clauses. Practical applications, however, will
need a mass of rule-clauses and fast retrieval
mechanisms for them. For this purpose, we pro-
pose Relational Algebra extended with Unification
(RAU); a variant of relational algebra for han-
dling unification as in [1].

This paper shows a large database of rule
clauses, RAU-operators and their commutative
laws.

2 Large rule-database

Deductive databases in this paper allow func-
tor symbols. A rule-clause is abbreviated as
a rule and a fact-clause as a fact. In gen-
eral, deductive databases have two databases; a
database of facts (factDB) and the other one
of rules (ruleDB). We use two meta-predicates
ruledb and demo in [2] for managing a ruleDB.
ruledb(KB,Head,Body) says “a knowledgebase
KB knows a rule Head:-Body ”. demo(T,Goal)
says “ a theory T proves Goal ”. In this paper,
we say that a head-predicate p of a given rule
p(..):-... is the rule’s kind, and the rule be-
longs to or expresses its kind.

In pracical applications, two cases enlarge a
ruleDB; either there are many kinds of rules, or
many rules belong to one kind.

The latter case expresses “many different im-
plementations for a common interface”. In an
object oriented paradigm, it is the case that a
superclass C' requires a common interface p and
allows each subclass of C to implement p inde-
pendently. Then if there are 10* subclasses, 10%
rules belong to a kind p.

Figure 1 is an example of the latter case.
store(Media, User, Data) is a common inter-

% store(Media,User,Data):- Cond.
store(typel(T), usa(P,cal(X)),
image(noaa,A) ):~ gl(T,P,X,A).
store(type2(sub2(T)), usa(ic,C),
text(£f1,A):~ g2(T,C,A).

10*
rules

% key(Data,Keyword,User):~ Cond.

key( text(S,A), K, usa(ic,X))
10t :- pl(S,A,K,X).
rules key( image(S,A), story(K),
. Japan(pie, tokyo(X)) )
. :- p2(S,A,K,X).
% query
q(X,¥):-
ruledb(kbl,
key(D, story(aaa), japan(P,X) ),
Condl),
ruledb(kb2,

store(M, usa(P,Y), D), Cond2 ),
demo( to, (Condl,Cond2)).

- Figure 1: an example of rule database

face of a class Media. It says “ a User stores a

Datain a Media”. In Figure 1, subclasses and val-

‘ues of attributes in Media, User... are expressed

by compound terms. e.g. User has a structure of
nation( group, city(idnumber)). Rules expressing
store are different from each other, depending
on a type (i.e. subclass) of Media (e.g. visual ter-
minal,... ), properties of User (nation, group,..)
, and a type of Data (image, text, format,..). If
there are 102 types of Media and 10% properties
of User, 10* rules belong to the kind store. In
the same way, key( Data, Keyword, User) isa
common interface of a class Data. It says “a Data
is registered as a Keyword by a User”. Implemen-
tations of rules expressing key depend on a type
of Data and properties of a User.

Most of queries are issued via only those com-

~ mon interfaces regardless of different implementa-

tions. The query in Figure 1 is written in meta-
predicates. It retrieves applicable combinations
of rules expressing “store and key” at first, and
executes them.
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R, T : meta-relations. A, B, C : attributelD.

RTA B] TIA C]
f(a,X) p(X) ' X qX)
l 1 .
1(f(a,X)):- p(X) t(X):- q(X)

[A B C1
e R T =
> f@aX) pX) qf(a,X))

T='|A C1

o
A=g(X) gX)  q(eX))
e I R= [A B] where p(b)
BT fab) p) s true
. p R= [A B C]
[ f(A, B), C ] a X pX)

Figure 2: examples of RAU-operators

3 RAU-operators

A DBMS for both a large ruleDB and a large
factDB must execute the query in Figure 1 as
fast as possible. The query clarifies two require-
ments. One is a fast retrieval mechanism for a
large ruleDB in case that many rules belong to
one kind. The other is to avoid random accesses
to a ruleDB in a disk when executing rules; be-
cause a large ruleDB may be stored in a disk.

A limited solution of the latter is a partial com-
pilation; transformation of each rule to simpler
ones which operate a factDB directly [3]. By this
method, much more rules belong to one kind. e.g.
arulep:-q,r. is compiled into 100 rules if q and
T are compiled into 10 rules. Therefore a fast

retrieval mechanism is fundamental for a large
ruleDB. <

Our approach is simple; At first, we compile in
advance each rule into programs of a variant of
relational algebra such as ERA in [4]. The variant
must be able to deal with functor symbols. Then,
in Figure 2, let R[A,B] (or T[A,C] ) be a set of
rules expressing a common kind r(A):- B. (or
t(A):- C.). Set-operators are defined on these
sets. We call this set of rules a meta-relation and
these operators Relational Algebra extended with
Unification (RAU). Their formal definitions are
presented in [5,7]. In Figure 2, IgR[A,B] is a set
of facts satisfying each rule in R. R[A,B] ™ T[A,C]

is a set of rules expressing “r and t”. RAU is also
used for compiled exressions of rules. Queries are
described as tree-forms of these operators, optj-
mized, and executed by fast set-operation algo.
rithms. :

Because I-operator executes a set of modified
relational algebra programs, it needs a global.
query optimization for common subexpression”
sharings such as in [6].

4 Commutative laws

Commutative laws of RAU-operators are forms of
expl =, exp2. These laws are used for optimiz-:
ing query trees. i

Definition  Assume that meta-relations R,;
T and tuples ¢, s are given. Then,

* RCw T ¥ Vi€ R, 3s € T,30: substitution,
t=s4.

*R=, T¥Rc, TandTc, R O

Commutative laws hold as follows [7); (M,N,R
are meta-relations. 1,2,... are attributelD).

1. Upl/\pz(M X N) =w Opl/\pg((fplﬁf X CfpgN),
where p1 (or p2 )is a selection-predicate in--
cluding only attributes in M (or N ).

2. olM =, Io M.
3. 7!'113 M[1,2,3] =w 7['113 1,3 M[1,2,3].

4. Las(M R N) =, L((T.M) R )
=y .M & IbNa
where a (or b) is an attribute of M (or N).

5. P T Iz .Al[l, 2] =w Tyl 12 /)[”, 2] A{[[l, 2],
where tlis a list of compound term. vlis a
list of distinct variable symbols in #l.
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