18 R B 2 4 35 [] (W 624614) &1l K & 1635

Query Processings by Relational Algebra extended with Unification

4M-9

Tadashi OHMORI and Hidehiko TANAKA
The University Of Tokyo, Div. of Eng.

1 Introduction

Conventional deductive databases concentrate on
fast retrieval of many fact-clauses through a few
rule-clauses. Practical applications, however, will
need a mass of rule-clauses and fast retrieval
mechanisms for them. For this purpose, we pro-
pose Relational Algebra extended with Unification
(RAU); a variant of relational algebra for han-
dling unification as in [1].

This paper shows a large database of rule
clauses, RAU-operators and their commutative
laws.

2 Large rule-database

Deductive databases in this paper allow func-
tor symbols. A rule-clause is abbreviated as
a rule and a fact-clause as a fact. In gen-
eral, deductive databases have two databases; a
database of facts (factDB) and the other one
of rules (ruleDB). We use two meta-predicates
ruledb and demo in [2] for managing a ruleDB.
ruledb(KB,Head,Body) says “a knowledgebase
KB knows a rule Head:-Body ”. demo(T,Goal)
says “ a theory T proves Goal ”. In this paper,
we say that a head-predicate p of a given rule
p(..):-... is the rule’s kind, and the rule be-
longs to or expresses its kind.

In pracical applications, two cases enlarge a
ruleDB; either there are many kinds of rules, or
many rules belong to one kind.

The latter case expresses “many different im-
plementations for a common interface”. In an
object oriented paradigm, it is the case that a
superclass C' requires a common interface p and
allows each subclass of C to implement p inde-
pendently. Then if there are 10* subclasses, 10%
rules belong to a kind p.

Figure 1 is an example of the latter case.
store(Media, User, Data) is a common inter-

% store(Media,User,Data):- Cond.
store(typel(T), usa(P,cal(X)),
image(noaa,A)):~ gl(T,P,X,A).
store(type2(sub2(T)), usa(ic,C),
text(£f1,A):~ g2(T,C,A).

10*
rules

% key(Data,Keyword,User):~ Cond.

key(text(S,A), K, usa(ic,X))
10t :- pl(S,A,K,X).
rules key(image(S,A), story(K),
. Japan(pie, tokyo(X)))
. :- p2(S,A,K,X).
% query
q(X,¥):-
ruledb(kbl,
key(D, story(aaa), japan(P,X)),
Condl),
ruledb(kb2,

store(M, usa(P,Y), D), Cond2),
demo(to, (Condl,Cond2)).

- Figure 1: an example of rule database

face of a class Media. It says “ a User stores a

Datain a Media”. In Figure 1, subclasses and val-

‘ues of attributes in Media, User... are expressed

by compound terms. e.g. User has a structure of
nation(group, city(idnumber)). Rules expressing
store are different from each other, depending
on a type (i.e. subclass) of Media (e.g. visual ter-
minal,...), properties of User (nation, group,..)
, and a type of Data (image, text, format,..). If
there are 102 types of Media and 10% properties
of User, 10* rules belong to the kind store. In
the same way, key(Data, Keyword, User) isa
common interface of a class Data. It says “a Data
is registered as a Keyword by a User”. Implemen-
tations of rules expressing key depend on a type
of Data and properties of a User.

Most of queries are issued via only those com-

~ mon interfaces regardless of different implementa-

tions. The query in Figure 1 is written in meta-
predicates. It retrieves applicable combinations
of rules expressing “store and key” at first, and
executes them.

Query Processings by Relational Algebra extended with Unification

Tadashi OHMORI and Hidehiko TANAKA

The University Of Tokyo, Div. of Eng.

.

1636

R, T : meta-relations. A, B, C : attributelD.

RTA B] TIA C]
f(a,X) p(X) ' X qX)
l 1 .
1(f(a,X)):- p(X) t(X):- q(X)

[A B C1
e R T =
> f@aX) pX) qf(a,X))

T='|A C1

o
A=g(X) gX) q(eX))
e I R= [A B] where p(b)
BT fab) p) s true
. p R= [A B C]
[f(A, B), C] a X pX)

Figure 2: examples of RAU-operators

3 RAU-operators

A DBMS for both a large ruleDB and a large
factDB must execute the query in Figure 1 as
fast as possible. The query clarifies two require-
ments. One is a fast retrieval mechanism for a
large ruleDB in case that many rules belong to
one kind. The other is to avoid random accesses
to a ruleDB in a disk when executing rules; be-
cause a large ruleDB may be stored in a disk.

A limited solution of the latter is a partial com-
pilation; transformation of each rule to simpler
ones which operate a factDB directly [3]. By this
method, much more rules belong to one kind. e.g.
arulep:-q,r. is compiled into 100 rules if q and
T are compiled into 10 rules. Therefore a fast

retrieval mechanism is fundamental for a large
ruleDB. <

Our approach is simple; At first, we compile in
advance each rule into programs of a variant of
relational algebra such as ERA in [4]. The variant
must be able to deal with functor symbols. Then,
in Figure 2, let R[A,B] (or T[A,C]) be a set of
rules expressing a common kind r(A):- B. (or
t(A):- C.). Set-operators are defined on these
sets. We call this set of rules a meta-relation and
these operators Relational Algebra extended with
Unification (RAU). Their formal definitions are
presented in [5,7]. In Figure 2, IgR[A,B] is a set
of facts satisfying each rule in R. R[A,B] ™ T[A,C]

is a set of rules expressing “r and t”. RAU is also
used for compiled exressions of rules. Queries are
described as tree-forms of these operators, optj-
mized, and executed by fast set-operation algo.
rithms. :

Because I-operator executes a set of modified
relational algebra programs, it needs a global.
query optimization for common subexpression”
sharings such as in [6].

4 Commutative laws

Commutative laws of RAU-operators are forms of
expl =, exp2. These laws are used for optimiz-:
ing query trees. i

Definition Assume that meta-relations R,;
T and tuples ¢, s are given. Then,

* RCw T ¥ Vi€ R, 3s € T,30: substitution,
t=s4.

*R=, T¥Rc, TandTc, R O

Commutative laws hold as follows [7); (M,N,R
are meta-relations. 1,2,... are attributelD).

1. Upl/\pz(M X N) =w Opl/\pg((fplﬁf X CfpgN),
where p1 (or p2)is a selection-predicate in--
cluding only attributes in M (or N).

2. olM =, Io M.
3. 7!'113 M[1,2,3] =w 7['113 1,3 M[1,2,3].

4. Las(M R N) =, L((T.M) R)
=y .M & IbNa
where a (or b) is an attribute of M (or N).

5. P T Iz .Al[l, 2] =w Tyl 12 /)[”, 2] A{[[l, 2],
where tlis a list of compound term. vlis a
list of distinct variable symbols in #l.

[References] [1]. Morita, VLDBSS, pp.52-59.
[2]. Bowen, amalgamating languages and meta
language in logic programming, Syracuse Univ,
TR June,’81. [3]. Miyazaki, ICOT-TR183.87.
[4]. Zaniolo, VLDB85. pp.458-469. [5]. Ohmori,
to be appeared in IWDMS87. [6]. Sellis, SIG-
MOD86, pp.191-205. [7]. Ohmori, master thesis,
Univ. of Tokyo. ’87.

