i s Bl 2 S 3510l (WA FI6 24F 14 01) 415l K 4

3C-9

Flong - A Portable Software System

for the Inference Machine PIEEE

Martin Nilsson and Hidehiko Tanaka *
The University of Tokyo

Abstract

Flong is a portable software system for developing and
executing GHC and Fleng programs running on paral-
lel inference machines. The system is both somewhat
like an interpreter and a very small operating system.
It contains the essential mechanisms for managing par-
allel processes and shared resources, like peripheral de-
vices and I/O streams. It also contains a basic set of
tools such as an editor and a debugger. We will here
briefly describe how goals are delegated from local pro-
cessors to Flong, how device [/O is handled, and how
exceptions are handled.

1 Introduction

Flong is a small runtime system for GHC and Fleng
programs on parallel computers, such as PIEEE
[KYNT 87). It is portable in the sense that its require-
ments of the underlying machine are small, and that it
can easily be modified to fit a new machine architec-
ture. Fleng itself is also easily implementable, and can
be used to boot the part of the system software which
is written in Fleng.

Target systems for Flong are supposed to run GHC
and Fleng programs on a large number of parallel pro-
cessors. Most of these processors are supposedly very
simple and can only perform the execution cycle and
three basic system primitives [NT 86]. These system
primitives are unification, one-argument metacall, and
a primitive for computing simple arithmetic, compari-
son, and type checking.

To be useful, however, the system must for instance
also be able to communicate with peripheral devices,
modify the program database, and interact with the
user. This work is done by different system components
which we call monitors. A monitor’s main task is to
administrate system resources, like setting up a com-
munication paths between processes and peripherals.
Monitors have a function similar to that of front-end
Processors, or the kernel part of an operating system.

The system is made up of monitors, simple proces-
sors, and peripheral devices. All of these communicate

*The Tanaka Lab., Dept. of Electr. Engineering, Univ. of
Tokyo, Bunkyo-ku, Hongo 7-3-1, TOKYO 113

through streams in the form of shared variables. (From
the user’s viewpoint, communication is always through
streams, but the actual physical implementation may
be different.) When a simple processor faces a situa-
tion it cannot handle, it passes it to a monitor, which
decides on the proper action. In the following, we will
assume that the reader is familiar with the concept of
stream communication.

2 Monitors Handle Non-Local
Goals

Every process is connected to a monitor by a stream.
This stream is also distributed to the children of the
process. Since this stream is always there, it is tac-
itly understood, and not explicitly written in program
source code. As an example, the clause

a(Xx) :- b(X), c(X).
is in fact:
a(X,Sys) :- b(X,Sys1), c(X,Sys2),

merge(Sys1,Sys2,Sys).

where merge merges the two streams Sys1 and Sys2
into Sys.

A predicate call which cannot be handled locally can
easily be handed over to a monitor by passing it in
the stream. E.g., if the predicate ¢ above cannot be
handled locally:

a(X,Sys) :- b(X,Sys1), Sys = [c(X)|Sysi].

An example of a system primitive which is handled in
this way is the primitive for defining program clauses.

Two other types of situations, that cannot obviously
be handled locally by a simple processor, are periph-
eral device I/O and exceptions. The handling of these
constitute a central part of the Flong kernel, so we will
describe them in more detail.

3 I/0 Interface

All I/O is done through streams. Once a stream is set
up, communication can easily be controlled locally by



144

unification. But in order to set up the stream, a local
processor needs help from a monitor. The primitive
which does this is open, which takes three arguments:

open{Descriptor,Result,Stream)

Descriptor is a list [Device|ModeList], where
Device is the name of the peripheral device or file,
and ModeList is an optional list of communication
modes. ModeList can contain keywords such as in and
out, For random access files and devices like terminals,
ModeList can contain both in and out.

A stream contains items, where each item is a
record [Format|ExpressionList] of two parts, a for-
mat specification, and a list of expressions.

Stream = [Item | NewStream]

For output streams, the expressions are output accord-
ing to the format, and for input streams, an expression
1s read according to the format.

The format specification contains formatting key-
words. Examples of formatting options for output
streams are outputting an expression as an Ascit char-
acter, as a term, or as a quoted term. Examples of
formatting options for input streams are inputting the
Ascii code for a character, inputting a token, or a term.

A very important formatting option is stream, which
says that the expression list is again a stream of items.
This option allows a process to reserve a stream for a
consecutive series of outputs.

Input and output is demand driven, so an expression
is not output or input until the user defines its format.
A file is closed by unifying its toplevel stream with the
empty list. End of file can be detected during input if
the ExpressionList becomes the empty list.

4 Exceptions

Errors, interrupts and traps are the possible exceptions
in Flong. In Flong, they are very similar, and are all
implemented in a similar way - they are just calls to
Fleng predicates. This is possible in Fleng since pro-
cesses are very loosely connected, and can be executed
very independently of each other.

In other languages exceptions and common proce-
dures are usually quite different and must interact in
complicated ways to protect registers and stack con-
tents.

All exception handlers are user-redefinable.

By interrupls we mean the asynchronous starting of
processes, not directly under user control. Examples
of interrupts are clock and timer interrupts, garbage-
collection trigged interrupts, and keyboard interrupts.

Some interrupts, like timer interrupts, might need
setting up, in order to be trigged later. This can be
implemented by creating a stream to the timer device,
sending the time interval on the stream to the timer,

and then waiting for the timer to send a ready-message
back.

Keyboard interrupts are executed when a user
pushes a function or control key on his keyboard.

By traps we mean synchronous starting of processes
by the user, or by some program called by the user.
Examples of traps are simulated (user-generated) er-
Tors.

The difference between interrupts and traps is quite
vague, especially in Fleng. Prolog, as a contrast, can-
not allow traps and maintain a logical meaning of ex-
ecution at the same time.

Errors are generated by errors inside system primi-
tives, or by undefined predicate calls.

Error exceptions generate calls of the form

error(Call,Message,Expression)

where Call is the goal in which the error happened,
Message is a symbol giving the error message, and
Expression is the expression which caused the error.

This predicate is user-redefinable, to enable the user
to customize action. Suitable action could be to ignore
the error; print a message to the user; enter a debugger;
or call a spelling-corrector.

5 Results

We have not implemented Flong on PIEEE yet, but we
have implemented a pseudo-parallel version of Flong
for Vax on top of Unix. This system is written in C,
and contains a full implementation of Fleng, although
some system software is not finished at the time of this
writing. The system is available free for those who
would like to experiment with it.

6 References

[KYNT 87] Koike,H.,Yamauchi,T.,Noda,l.,Tanaka,l.:
Parallel Inference Engine Ezxperimental Environment
PIEEE - Total System. In Proc. Logic Progr. Conf.
'86, Tokyo. June 1986.

[NT 86] Nilsson,M.: FLENG Prolog - Turning super-
compulers into Prolog machines. In Proc. Logic Progr.
Conf. ’86, Tokyo. June 1986.



