TR S8 32 (BRI 14E R) £ E K& 11

Detection of Cyclic Tree Structures

4C-6

Martin Nilsson, Hidehiko Tanaka, Tohru Moto-oka
Information Engineering Course, The University of Tokyo

Abstract: Programs which process tree
structures usually cannot handle cyclic trees.
This paper describes some new, very simple, and
efficient algorithms for detecting cyclic trees.
Traversed structures do not have to be modified.
Tail recursion optimisation can be used. The
overhead for non-cyclic structures is very small.
Unification is discussed as an application.

The Basic Method

Safe algorithms for cyclic trees are important
and have received much attention, especially
relating to Prolog unification. These algorithms
are often complicated and specialised for
particular applications.

Our methods for cycle detection are based on
cycle detecting algorithms for lists (Knu 81),
which we generalise to handle trees. The main
idea is the following:

Suppose we traverse trees in left-to-right,
depth-first order. If we are walking down a
path from the root of the tree, and encounter a
node g/ready seen before on this path we have

found a cycle. Thus we can use a list detection
algorithm on this path. Termination follows

from the termination of the list algorithm.

Note that the if the traversal is implemented by a
recursive procedure, such as the one below, the
path is available in the procedure argument
stack during execution. As an example, we will
generalise Floyd's cycle detection algorithm for
lists (Knu 81). Floyd's algorithm keeps two
pointers into the list. They are initially the
same, but on every iteration, one of them moves
one step forward, while the other one moves two
steps forward. If the pointers become equal, a
cycle has been found. A cycle will be found on
the first repetition of the cycle.

Let us assume that the procedure argument stack
can be referred to as an array, szack with the
stack pointer represented by a variable, /gp.
This stack starts from position one. when
traverse is first called. We also assume that data
other than arguments (return addresses. frame
pointers, etc) are made “invisible” by some
method, e.g. address calculation.

Instead of letting Floyd's slow pointer step one
step. and the fast pointer two steps on every
iteration, we let them step a half, and one step,
respectively. Then, the fast pointer will be the
current argument to traverse. The slow pointer
will be just in the midd/e of the argument stack.
Floyd's algorithm for cyclic trees becomes

traverse(x)
{ if leaf(x) then process(x)
else if x = stack[top/2]
then cycle_detected;
else {
traverse(left(x));
traverse(right(x));
} .
}

Fig. | Cyde detector

Variations

The other algorithms in (Knu 81) can also be
impiemented in a slightly more complicated way.
Brent's algorithm is very similar to Floyd's
algorithm, but allows easier tail recursion
optimisation. In this way, very little stack space
(logarithmic in the depth) will be consumed
when we walk down a r/ght branch This is
practical, since tree structures in many
computer languages (e.g. Lisp and Prolog) branch
more deeply to the right than to the left.

If most trees are shallow, one way to increase the
efficiency for non-cyclic structures is to delay
detection tests until a certain depth is reached.
Another method is to use a fast procedure with a
simplified heuristic detection algorithm. If it

detects something which could be a cycle, 2
non-heuristic, slower procedure takes over.

The procedures in fig. 2 implement a generalised
version of Brent's algorithm: The procedures
optimise tail recursion, and use a fast heuristic
test to find cycles. This algorithm does not use
cyclic list detection on the pa7/, but on the
sequence of tree nodes in the order they are seen
during traversal. In rare cases, some shared
subtrees may falsely be “detected” as a cycle, so
a second cycle check is necessary. The main idea
behind Brent's algorithm is to number the nodes

12

traverse(x)

{ check :=EMPTY;
d:=1,
traverse 1(x);

}

traverse 1(x)
{LOOP:
if terminal(x) then process(x)

else if x = check then
slow_traverse_instead

else {
d=d+1;
if power_of_2(d) then

check = x;

traverse 1(left(x));
% := right(x);
goto LOOP;

}

}

Fig. 2 Heuristic cycle detector

in the order they are seen. Every new node of
order d is compared with the last node of order
L(d). where L(d) is the least power of two, less
than or equal to ¢. It can be shown that the
algorithm terminates within 3n steps, where n is
the number of nodes in the tree. The test
power_of _2(d) can be computed very easily: It is
equivalent to & & (d-//) = 0. where & denotes
bitwise AND.

Application: Unification
The unification procedure in fig 3 is typical for

Prolog impiementations. The two arguments to

r

unify(x,y)
[x :=dereference(x);
y := dereference(y);
if variable(x) then {
bind(x,y); return(true);
}else if variable(y) then {
bind(y,x); return(true);
}else if constant(x) or constant(y) then {
return(x = y);
} else if x = stack[top/2] and
y = stack[top/2 + 11 then {
cycle_detected;
Yelse {
return(unify(left(x),left(y)) and
unify(right(x),right(y)));

]

Fig. 3 Cycle detecting unification

unify are the two structures to match. The
procedures dereference bind variablfe and
constant are subroutines which: looks up a
variable binding; binds a variable; tests if its
argument is a pointer; and tests if its argument

- is a constant, respectively. (Here, it is assumed

that the second argument is stored in the stack
position above the first argument.)

Related work and Concluding discussion

Published algorithms for cycle detection in trees
are usually specialised for unification. Their
disadvantages are mainly that they require
substantial memory or time overhead. even when
cycles are rare. Also, they often temporarily
change the traversed tree, which thus cannot be a
read-only structure. It is usually hard to
optimise tail recursion for these algorithms.

From the same points of view, the described
algorithms are quite efficient. By tail recursion,
the memory complexity can be made logarithmic
in the length of left branches in a path, compared
to usually linear for the other algorithms. A
disadvantage with our algorithms is that they
usually do not detect cycles at the eariiest
possible moment.

Our algorithms can be generalised to not only
detect, but also traverse cyclic trees. Traversal
of cyclic tree structures is described ina
forthcoming paper.

Acknowledgments

We are grateful for comments by Keiji Hirata
and Hanpei Koike. The ideas reported were
partly studied in Sweden at UPMAIL, under
sponsorship by the Swedish National Board for
Technical Development. This research was
possible thanks to a generous scholarship given
by the Japanese Ministry of Education.

References

(Knu 81)

Knuth. D.E.: "The Art of Computer Programming,”
vol. 2, Seminumerical Algorithms, 2nd ed.,
problems 3.1.6-7. p. 7, 517-518.
Addison-Wesley, 1981.

