L BE 22 255 0[] (I RI604E BT) 2 F A2 1115

COMMUNICATION MONITOR OF SERVICE BASE SYSTEM

1u-7

P. FELLNER, T. FUKAZAWA, H. TANAKA

Department of Engineering, University of Tokyo

INTRODECTION

A Service Base System (SBS) is a
concept for an easy extensible comput-
er network system, which offers to the:
user a convenient interface to access
to all available services of the net-
work [ll.Each node of such network is
regarded as a Service Base (SB
), which holds some of the services of
the whole system. When the user, con-
nected to one of the nodes (fig. 1)
requests a service, his front-end node
will respond, if it can treat the ser-
vice, or, if not, will give another
request to the back-end. Since re-
quests and answers are very frequent
in an SBS, a powerful communication
facility has to be associated, which
handles all desired message exchanges.
Beside that, error - and subcommand
handling (especially for the startup
procedures of the system) is neces-*
sary. All this is performed by the so
called MONITOR, which is associated to
each SB (fig. 2.). Though in previ-~
ous versions of SBS sequential monitor
implementations had been used, in this
paper we introduce a monitor with a
parallel working communication facili-
ty, which means, that the monitor
after writing a request to any of its
interfaces doesn't wait for a respond
on this interface, but continues to
work on other problems. A parallel
monitor is desirable, because the
nodes in a distributed system also
work parallel to each other.

REQUEST AND ANSWER FORMAT

In a SBS, requests and answers from
one node to another occur very fre-
quently. For the co-operation of the
communication facility and the SB and
to have the system easy extensible, a
standardized format for requests and
answers had been chosen: Thus, if a SB
gives a request to another one, it
will do it in the format
r(pn,rn,text)Prompt ;
where 'r' is an indicator, that the
Message ‘is a request, 'pn' is the
number of the SB, where the message
should be sent to, 'rn' is a unique
number‘(request number), given by
the SB to be able to distinguish dif-
ferent requests, 'text' is the request
1tself and 'Prompt' indicates the end
Of the message. An answer, given by
the SB, has the format

a(pn,xrn,text)Prompt
where 'a' is the indicator for answer,
'pn' is the SB, to which the answer is
given to, 'rn' is the request number
of the corresponding request, to which
this answer belongs to, and 'text' is
the answer itself. 1If the answer is
for the user, the SB writes the format
u(@,9,text)Prompt R
where ‘'u' indicates, that this answer
is ‘for the user; a SB also accepts a
request from the user in the format
u(d,9, text)

STRUCTURE OF THE PARALLEL MONITOR

Our implementation is based on UNIX
operating system, which in our case is
running on a VAX 73¢ and a VAX 78¢. By
using UNIX multiprocess facility the
parallel processing environment is
realized. A SB is implemented through
a prolog process with a changed to-
plevel in order to accept the stand-
ardized request and answer formats.
The monitor consists mainly of 2
parts:

A parallel working communication part
performs all message exchanges of all
interfaces of the node (to the user,
to prolog or to other nodes of the
network). To realize this there are
2 approaches: To check, if there is
any message on an interface of the
node, either interrupt or polling
mechanism can be used. Since interrupt
mechanism is extremely depending on
the used UNIX version, polling was
chosen with the disadvantage of over-
head and inefficiency.

The seccnd part handles subcommands
and error conditions. Subcommands are
necessary at startup procedures (to
change the status of the system), to
get control information and to rede-
fine the system after an error oc-
cured. Beside that, a tracefile fa-
cility 1is available, to show the mes-
sage interaction of the system. Impor-
tant for the performance is a table
associated with each monitor, in which
the information about the status of
the monitor and its 1logical 1location
within the network is hold. The per-
formance of the monitor is according
to the contents of this table, so the
monitor of each node is actually quite
the same, only the content of each
table is a different one.

Fig. 3 shows the structure of the
parallel working monitor.

1116

STRUCTURE OF THE COMMUNICATION PART

Fig. 4 shows the structure of the
parallel communication part. The in-
terface to the SB (prolog process)
is accompiished by the UNIX pipe
mechanism. Interfaces to the user or
to other nodes are implemented by
UNIX device drivers., To each inter-
face a read buffer is associated, in
which the contents of the interface is
read. 2 major procedures handle the
message exchange:
rpr :This procedure reads the contents
of a pipe- or a device driver
file descriptor to the associated
buffer.
wpr:These procedures write the con-
tents of a read buffer to any
other file descriptor (to a pro-
log pipe or to any other device
driver).

For the logical function of the SBS it
is necessary, that the communication
part changes the content of a messages
in special cases, which is also per-
formed by those 3 procedures: When the
communication part of node x receives
a request. from SB x for SB y, (in the
format «r(y,rn,text)Prompt), it will
write it to the interface of node Y
and the message will be sent to node
Y. The communication part of node y
will recognize the message as a re-
quest for SB y, coming from node X,
and in order not to loose the informa-
tion about the source of the request,
it has
from

r(y,rn,request) to r(x,rn,request),
and will write it to its interface of
SB y. When after a while the answer
is given by SB y,it will do it in the
format

a(x,rn,answer)Prompt.
The communication part will now write
this message to the interface of node
X, the communication part of node x
will recognize the message as an
answer for SB x, coming from node Y
will change the format from

a(x,rn,answer) to a(y,rn,answer),
and will write it to the SB X . Be-
cause of the combination 'y' and
'rn' SB x will now recognize this mes-
sage as the answer to its previous re-
quest with the same code 'y' and
'‘rn' .

CONCLUSION

Until now an SBS simulator had been
implemented, it is a simulator in re-
gard to the aspect, that the SB's are
simulated on one machine by different
prolog processes. The used parallel
monitor in this model works satisfac-
tory, but it appeared, that some

to change the received format .

further research on prolog's toplevel
is necessary, since it cannot inter-
pret the request number 'rn' in a sa-
tisfactory way. A monitor for a real
distributed computer system is in the
stage of development.

REFERENCES

[1} Fukazawa, Tanaka, Motooka, 'Ser-
vice Base System', Distributed Pro-
cessing System - Symposium, 1984.1¢

[2] Fukazawa, Tanaka, Motooka, 'Ser-
vice Base S§ystem with Logic Pro-
gramming', 29th National Conference
of Information ' Processing
Society,6H-6,1984.9

node 2

node n

interfaces
monttor n to other nodes

Fig. 2

MONITOR

3ubcommand hardling
error handhng

monitor
structure

Fig. 3

; interfaces

CAC 002

" il
COMMUNICATION interfece 1
PART

0 prolog
oo
interface O

o vser interface 2
or other *1 bu 0
nodes

bu 2

interfoce 3 >m_q_ri_v¢r_
intertece 3 |
to other
N du 3 e 3

Fig. 4

Bt

