TH RSB = 20 38 30l (HEAI604E B 1) & [E k&

3Q-6

A Note on Another Structure Sharing Method

K.Hirata, H.Tanaka and T.Moto-oka

Faculty of Engineering, University of Tokyo

1. Introduction

Some machine architectures have been
developed so far, on which logic program—
ming language can be executed. Also the

more wunification mechanisms and internal
data representation methods have been pro-
posed. Especially we concern a fast execu—
tion mechanism for logic
language on MIMD machine, and developed an
efficient execution model suitable for the
highly parallel processing.

In this paper, we will introduce yet
another structure sharing method on MIMD-
type inference machine and explain its con-
cepts.

2. Unification and Reduction
in Parallel Machine

For the later discussions, in this
section, we will simply review the unifica~
tion algorithm. A successful wunification
between a goal and a definition produces
the intermediate results in general. The
results consist of some goal clauses and
their environments of bindings. Environ-
ment is the substitutions of terms for
variables created by unification.

, For ‘distributed processing in MIMD
machine, as processing element (PE for
short) transfers goals to the other PEs

frequently, it is better that PE makes a
complete and compact goal. So such a form
‘for goal 1is desirable. To achieve these
requirements, reduction what we call must
be performed. In fact, reduction is to
copy the reachable data structures and 4o
/dereference wuntil getting real values for
‘variables.

‘3. Concept of Structure Sharing/Copying

The first choice point for representa-
tion of goal is whether +the structures
should be shared or copied. The basic idea
of structure sharing is to push the tuple
‘of the pointers for every unification onto
the stack. One of the pointers refers to
environment and another to the structure in

definition clause (called skeleton), i.e.
program. Hence-the referred structure in
definition clause is shared, so that when

constituting new goal, the redundancy in
the representation of different instances
with the same skeleton can be avoided. On
the other hand, structure copy is to copy
the necessary skeleton into private field,
and to substitute the actual values for
:variables whenever wunification completes.
‘S0 - the newly created structures are not
shared at that time. Up %o now a lot of

programming

methods have been cdnsidered, corresponding
to what level +the structure is ~share

(copied) to.

4. Concept of Environment Sharing/Copying

The second choice point is whether the
environment of the parent goal should he
shared or copied when it will be commonly
inherited by son goals (resolvents). This
concept is important when we consider +that
more ‘than one son goals are processed in
parallel. In environment sharing, it is
sufficient that only new informations are

added, while if son goal needs +the actual
value for variable, dereference will take
place in all of +the parent environments.

In environment
environments for

copying, to make new whole
each son goal, copying

. operation is required, then only the neces-

sary environment for each is copied, and
practically it can make independency and
locality among goals enhanced.

5. Parallelism

The parallelisms which logic program-
ming Jlanguage involves are classified into
AND/OR-parallelism. OR-parallelism is
easier to implement generally. In conven-
tional implementations of sequential pro-
log, the following two points have been
mainly considered :

(1) an efficient structure for the
lution mechanism;
(2) a space saving
memory. :
Moreover, to get and realize high perfor-
mance and flexible control strategies in
highly parallel machine, the third point is
re%uired :

reso-

structure for the

3) independency and locality of the
run-time structures,
this is the most significant.
The sharing mechanism saves memory
space and copying overhead, while it makes

the unification algorithm and data struc-
ture complicated. In addition, it de-
creagses independency and locality of goals
drastically. Accordingly in the processing
concepts which have been proposed for
inference machines so far, the various
compromise of copying and sharing were
chosen.

6. Yet Another Structure Sharing Method

In our method, the internal represen-
tation of goal is shown in Fig.1, in which
vari-sized cells are used.

414

Variable

Table Literal0O Literalt

[- ® > >t
Var#0 LitO Lit1
Var#i Arg0 Arg0
Var#?2 Argl

B —
Environment | Skeleton

Fig.1 Internal Representation of

Goal
The first 1linked cell contains variable
bindings and the pointer to the whole
skeleton of a goal. This part is called
variable table cell (VT for short), which

plays a role of environment. Index1ng with
variable number, the substitutions for
variables are stored into VT with the same
size as variables involved in the skeleton.
In the case of initial goal, therefore, all
of the binding informations are undefined.
The rest part of goal is the goal's skele-

- app(l4, 3, 2], [1], %), pr(x).

VT
: -
PE
Pig.2(a) !
?- app([3, 2], [1], ¥), pr([4 | Y]).
VT |
N N — SM
-— app | pr
Y -] 0
h— Il!i|
PE = 2]
[
2| 1
Pig.2(b) : 2Lt
VT
e M SM
Y app pr
[0

Fig.2(c)

|

T

|

l *>—

PE I "‘—],{

v Lo | eIz
|

l

l

Fig.2 The Exampie of

Unification and Reduction

Reference

ton, which includes some variables and
structure as a frame. If a variable exists -
within a skeleton and some instance is
found in the corresponding field of VT,
then the variable is regarded as the in-
stance (may be the other variable).

We will show how wunification and..
reduction are performed (Fig.2). In this °
example, the data necessary for the unifi- .
cation 1s placed in PE and the rest in -
structure memory (SM for short). Fig.2(a)
depicts initial goal formation. After the -
unification, VI grows by the number of new-
ly introduced variables, which are con-

tained in the definition . clauses
(Pig.2(b)). If binding information is-
structure data, it should be stored into |

SM. When a data in SM is required for :
later unification, an operation to get it -
should be done. Moreover, the reduction is
carried out to eliminate the wunnecessary -
part of the goal (Pig.2(c)). 1In this exam- -
ple the reduction takes place .in SM, and
goal becomes compact. Practically, this -
operation should be done without a side ef- :
fect employing copying and it is not neces- -
sary whenever unifying. As we see above, .
the VI and the skeleton are dynamically -
created and reduced.

7. Consideration

In. our method, as every goal has its:
VI, goals are 1logically independent each™
other, but physically may be not. The .
reduction can make goals physically in- .
dependent, too. An implementation of AND
parallelism may require some techniques.
We can implement OR parallel processing on
MIMD machine efficiently. E

As it is sufficient that the top parts;
(VT and the 1st literal) are transferred .
among PEs for unification, the transferred
data gize through the network must be small :
enough. To issue the reduction command to
SM frequently may be able to keep the size -
of the top part of goal small. It is not
necessary for only PEs to bear the copying-
overhead. However, +the locality is de-_
creased and the load of SM is increased a
little, because the skeleton of geal 1is
spread over the Sis. :

8. Conclusion

We oproposed yet another structure:
sharing method which is suitable for MIMD.
machine. We are now constructing the simu-_
lator adopting this method. The estimation -
of its performance is one of future works. '

[1] Hirata,K., Tanaka,H. and Moto-oka,T:)
"The Architecture of The Structure Memory
of PIE", 29th National Conference of IPSJ
(In Japanese). i

