EE B S g s (BASTERI 2E KRS 81
2F-6 HRANIBENFT -4 70—V EFOIT 15— a R

®BE En A ¥E i 2
(BEAF¥ LT##)

1. Introduction

- Knowledge information processing, especially inference processing, will
pe a main requirement of computer ability in near future. In this paper, we
describe a basic architecture of highly parallel inference system based on
parallel processing of Prolog.

2. Prolog and Proof Diagram’

- A Prolog program is a set of definite clauses (Horn clauses). For a
given program D and a goal statement G, a derivation is a sequence of goal
statements Notice that often a given derivation can be extended 1in several
different ways. The set of all derivations starting at G can be arranged in the

form of a tree of goal statements and called. a "search tree". A "proof tree
(PT)" is a data structure which stores the derivating sequence from a root node
to one node in a search tree.

(1) Proof Diagram We introduce Proof Diagram (PD). PD is analogous to

Ferguson Diagram [Emd8la] but PD can more clearly represent a construction of PT
in problem-solving.

[example 1] Dl appl nil,*x,*x] <-.
D2 appl (*u.*x),*y, (*u.*z)] <- appl[*x,*y,*z].
D3 subl[*x,*y] <= appl *u,*x,*v 1 appl *v,*w,*y]
G <- subl[(a.*x),(*y.nil)]

A goal and each definition clause of example 1 is represented by a template.
Fig.l shows an active PT consisting of four templates. A unification is
represented by an upper half circle meeting a lower half circle. (U1l~U3 in

Fig.l1) This diagram shows explicitly the wunifications and the structures
borrowed from the program. .)
Program execution in Prolog is to <construct PTs. Major distinction

between Prolog and ordinary languages is that the sequence of problem-solving is
given in a deterministic way or not. 1In Prolog, each procedure call 1is non-
deterministic and a lot of PTs are tried, many of them fail and some succeed.

(2) Unification If alternatives of PTs are derived in parallel, each PT
can be reduced. Fig.2 shows a reduced PT of Fig.l. Therefore each unification
has two roles, one is pattern matching between a call and a heading and the
other is reducing a derived PT. This unification is rather complicated, but can
be done in parallel if variables are linear. ‘

o XX g nil 1 a *x x4 nil
cons %zgns cons cons
subl
e Ul 1 cons cons
D3)
e *4 Y
app
* *v opp il
- y2—24 Dodd\ y3— {v}
nil xx v e a—xd
*x x nil
D1 opp] | D2 0P

Fig.l Proof Tree represented by Proof diagram Fig.2 Reduced Proof Tree

82

3. Parallel Processing and its Control in Prototype Machine
As seen before there are three parallelisms in the execution of Prolog.

Pl. Parallelism on deriving alternatives of PTs (OR-parallelism)
P2. Parallelism on unifying active calls in a PT (AND-parallelism)
P3. Parallelism on unifying arguments

Prototype Machine (Fig.3) is based on Pl and P3 parallelism. Processing
elements are Unify Processors (UP). Each UP inputs a PT, unifies one call with

all alternatives of its definition clauses and outputs several new PTs. Other
components of this machine are Goal Pool (GP) and Activity Controller (AC).
(1) Processor allocation & inactivation of active PTs It is natural to

suppose that the number of active PTs is larger than the number of UPs, because
Pl parallelism is so enormous. In this machine, active PTs are allocated to the
UPs according to not only the specification in a program but the priority of
PTs. The priority of a PT is higher if the number of calls is fewer than others
or just decreased.

When one of PTs succeeds and other alternatives become needless, it is
necessary to inactivate those PTs. For this reason, each active PT has PT-name
representing the relationship among active PTs. ’

The entities of active PTs are stored in Goal Pool but their control
information (priority and PT-name)are represented by tokens. Tokens are
managed by Activity Controller and used for allocating and inactivating PTs.

Tokens flow out from Activity Controller to Token Loop. Each token

carries a pointer to the entity of a PT. A UP catches one token, and starts
unification processing. This UP outputs the entities of new PTs to Goal Pool
and simultaneously outputs the corresponding tokens to Token Loop.
(2) Selection of calls in UPs If there are no explicit control of active
calls 1in an allocated PT (ex. mode declaration of variables, evaluable
predicates, etc.), each UP can select a unified call to minimize the output
PTs. Therefore, a call whose definitions are facts or deterministic (no bodies
) is selected first in each UP.

4. Future Research

The next step in our research is
to build simulators for this model. We
are planning to wuse the data flow TN
machine TOPSTAR [Aid82a] for simulation. ‘

References

Emd8la. M.H. van Emden, "An Algorithm
for Interpreting PROLOG Programs,"
RRCS, (Sept. 1981).

Aid82a. HI f . TWHMPROI OG¥ 4, L

“Paralog” OPREMILE . B2 dialiEit e

Fig.3 Prototype Machine

