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The concept of local testability (LT ) represents an active area of research in the �eld of
formal languages. LT has its roots in the study of pattern recognition. Interest in such a
property springs both from theoretical and applied concerns about parallel parsing of strings
and error detection. This paper focuses on the class of k-locally-testable languages in a strict
sense (LTks:s:) and on a possible decidibility technique for LTks:s: property. We prove a
decidibility algorithm, basing directly on speci�c structural properties of LTks:s: Such a re-
sult enables to ascertain whether a string language is in LTks:s: in a direct manner, without
adopting the elaborated algebraic approach of the syntactic monoid. In addition, our method
strictly relates to the problem of determining the order of a LTks:s: language, being the order
de�ned as the smallest value of the parameter k such that the language is k-locally-testable.
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1. Introduction

The concept of local testability (LT ) has been

broadly investigated in the previous decades, and

it still represents an active area of research in the

�eld of formal languages.

LT has its roots in the study of pattern recogni-

tion. It is possible to identify two main research

threads. One of them is concerned with linear se-

quences of symbols, i.e. string languages, whereas

the other analyzes more articulated structures, such

as, for instance, images and tree languages7),10),11).

In the case of strings the wider class of Aperi-

odic Languages constitutes the formal framework

for LT 2),8). Aperiodicity reveals to be a linguistic

universal, characterized in a variety of ways: gram-

matical inference4), neural networks8) and algebraic

structures2),3),8),12). The importance of LT springs

from its close link to aperiodicity. Requiring lo-

cally testable class (LT ) to be closed w.r.t. con-

catenation leads to aperiodic languages. A hierar-

chy of aperiodic languages was identi�ed2) impos-

ing di�erent constrains on the recognition process

of strings. It comprises De�nite, Reverse De�nite,

Locally Testable in a Strict Sense, Locally Testable

and properly Aperiodic or Non-Counting languages

at the top of the taxonomy.

This paper focuses on the class of k-locally

testable languages in a strict sense (LTks:s:) and on

a possible decidibility algorithm for LTks:s: prop-

erty. Interest in local testability in a strict sense re-

lies on both theoretical and applied concerns about

parallel parsing of strings and error detection.

A systematic characterization of the di�erent sub

families of aperiodic languages was presented in the

past1),3) and decidibility algorithms for them were

formulated1),5). However, the result was quite dif-

�cult and moreover for the speci�c case of Local

Testability in a strict sense (LTs:s:) the decidibility

problem is solved in only an indirect way, through

a modi�cation of a more general and complex pro-

cedure for LT . This paper reports on our e�orts to

prove a di�erent decidibility technique, relaying di-

rectly on speci�c structural properties of LTks:s: A

necessary and su�cient condition is formulated for

LTks:s: By these means it is possible to ascertain

whether a string language is in LTks:s: in a direct

manner, without adopting the elaborated algebraic

approach of the syntactic monoid.

The proposed algorithm employs convenient sets

of k-length strings associated to the nodes of an ac-

cepting automaton for the language L, and through

the analysis of their set-theoretical characteristics

it clari�es those properties required to guarantee

LTks:s: This approach presents some worthwhile

advantages. In addition to its simplicity, it allows

to obtain other interesting results about LTks:s:

in a straightforward way, whereas without it some

more considerations would be needed. Our method

relates directly to the problem of determining the

order of a LTks:s: language, being the order de-

�ned as the smallest value of the parameter k such

that the language is k-locally testable. The order

of an automaton, equivalently of the accepted lan-

guage, clearly emerges to be dependent on intersec-

tion properties of paths that start at di�erent nodes

and are labeled through the same string of symbols.

Hence a topological aspect is directly related to the

set of strings employed for the syntactic analysis of

a testable sentence.

The extension of these considerations to tree lan-

guages is a relevant aspect to investigate. Gener-

ally the di�culties encountered in such an e�ort

are also due to the impossibility of an immediate

extension of the conceptual and formal tools devel-

oped in the string case. As the proposed decidibil-

ity algorithm does not utilize the syntactic monoid

approach and its algebraic properties, it might give

some insights on how to adapt our considerations

to tree languages.

2. Basic de�nitions

LT has its roots in the study of pattern recog-

nition. Intuitively let x be a string composed by

concatenating letters from an alphabet. The recog-

nition procedure is carried out on x through a win-

dow of �xed arbitrary length to be moved along the

string. The sequences of symbols observed through

the window are annotated in a record, regardless

of the order in which they are met and of the po-

sition they occupy in the string. After moving the

window from one end to the other, x is accepted or

rejected basing on the set of substrings that com-

pose the produced record. Local testing proved to

be a general concept, able to capture many situa-

tions.

The recognition procedure described above can

be modi�ed and generalized to a variety of con-

texts: De�nite, Reverse-De�nite, Generalized-
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De�nite, Locally Testable in a strict sense (LTs:s:),

Locally-Testable (LT ) and Aperiodic languages. In

this section, basing mainly on the work of Mc-

Naughton and Papert8), we will present the def-

inition of k-Locally Testability in a strict sense

(LTks:s:) and some of its properties essential to the

following considerations.

Let � be a �nite alphabet of symbols, and let

�� denote the free monoid over �, including all the

strings obtained by concatenation of alphabet ele-

ments. A subset L of �� is a string language, or

a string event, over �. If L de�nes a regular set,

i.e. it can be characterized through a regular ex-

pression, the language L is a regular language and

it can be recognized by a �nite state automaton M .

Being k a non-negative integer number, it is pos-

sible to de�ne the following operators on a string x

of length greater or equal to k:

x = a1a2 : : : an(ai 2 �; 1 � i � n;n � k)

Lk(x) = fy : x = yw ^ jyj = kg (1)

Rk(x) = fw : x = yw ^ jwj = kg (2)

Ik(x) = fw : x = ywz^y; w; z 6= �^jwj = kg(3)

The operator Lk(x) extracts the k-length pre�x

from input string. Symmetrically, Rk(x) produces

the k-length su�x of word x. Equation (3) de�nes

the set of properly internal k-length sub strings of

x. If the length of x (denoted by jxj) equals k or

(k+1), Ik(x) is the empty set.

Let �k,�k,
k be sub sets of �k: they are sets of

strings over � whose length is k.

The language L is k-locally testable in a strict

sense (L 2LTks:s: ) if sets �k,�k,
k exist such that

for every x 2 �� (jxj � k):

(x 2 L)()

(Lk(x) 2 �k ^ Ik(x) � �k ^ Rk(x) 2 
k) (4)

Basing on relation (4), a k-locally testable lan-

guage in a strict sense has the property that syn-

tactic analysis can be performed locally. On a pro-

cedural level, parsing activity requires to extract

from string x its pre�x (Lk(x)), su�x (Rk(x)) and

the set of internal sub strings (Ik(x)). Recalling

the initial window analogy, x can be parsed by a k-

letters-wide loophole to be moved from left to right

end one symbol at a time. Correctness is evaluated

using only the information collected through such

a decomposition. In particular �k; �k; 
k contain

the recognition patterns to utilize in order to ascer-

tain whether the string belongs to L or not. �k can

be interpreted as the set containing all possible k-

length pre�xes of strings of L. Dually, 
k is the set

of all acceptable k-length su�xes. �k is the set of

all acceptable internal k-length sub strings of words

of L. It should be noted that no information about

order or relative position of occurrence is kept.

Locality property shows a link to parallel pars-

ing of string languages. A word of a local language

has such a syntactical structure that allows to an-

alyze each sub string independently from all the

others. Hence, it is possible to decompose the in-

put sentence among computational units of a par-

allel computer to simultaneously recognize the dif-

ferent parts, substantially improving parsing per-

formance. Moreover, another feature emerges for

LTs:s: languages in relation to error identi�cation.

The presence of a syntax error is easy to detect and

its position is precisely de�ned as well: it is located

within the k-length sub string that does not match

any element of �k; �k; 
k. On the contrary, in the

general case when LTs:s: property does not hold,

error handling is more complex.

De�nition (4) does not consider strings of L con-

sisting of a number of symbols less than k. In this

case the number of possible words is limited, so

parsing can be performed separately in a simple

way.

As an example of LTks:s: language, let us con-

sider the set of words over � = fa; bg such that

every possible occurrence of letter a is immediately

followed by the string bb: abbb, bbb are correct

words; ababb, ba are not. The de�ned language

is in LTks:s: for k=3,4,5,: : : If we de�ne, over the

same alphabet, the language whose words contain

an even number of occurrences of symbol a, local

testability property never holds for any value of k,

because the involved constraint is not local.

The remainder of this paper will focus on the prob-

lem of deciding whether a language L is in LTks:s:

or not. We will assume L to be de�ned through a

deterministic �nite state automaton (DFA)M . Af-

ter establishing the decidibility result for LTks:s:

property, we will also be able to obtain a procedure

to determine the order of the language.

Before concluding this section, a theorem is

stated expressing an upper bound to parameter
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k value for LTks:s: property. It is a direct con-

sequence of what was proved by Brzozowski and

Simon1), adapted to our framework. Such a re-

sult will allow us to show in the next section how

LTks:s: decidibility leads to an algorithm for LTs:s:

decidibility and for language order identi�cation.

Theorem1 Let M be a DFA accepting a lan-

guage L in LTs:s: , and let k = n+ 1, being n the

number of states of M . Then M is LTk+1s:s:

3. Notations

Let M = (Q;�; �; q0; F ) be a DFA accepting L:

Q is the set of states, � the input alphabet, � the

transition function, q0 2 Q the initial state and

F � Q a non empty set of �nal states. For any

q 2 Q and x 2 ��, �(q; x) denotes the resulting

state when input string x is applied to M in state

q.

Let G = (V;�; P;< q0 >) be the linear right-

derivative context-free grammar associated univo-

cally to M as follows:

( 1 ) the set V of non terminals contains a symbol

for every state of M:

V = f< q >: q 2 Qg

( 2 ) the terminal alphabet � of G equals the in-

put alphabet � of M

( 3 ) the set P of linear productions of G is:

P = f< q1 >! a < q2 >: q1; q2 2 Q ^

^a 2 � ^ �(q1; a) = q2g [

[f< qf >! � : qf 2 Fg

( 4 ) the axiom of the grammar < q0 > corre-

sponds to the initial state q0 of M.

Let � be the omomorphism whose domain and

image are respectively (� [ V )�, ��:

�(a) = a;8a 2 (� [ f�g)

�(< qj >) = �;8qj 2 Q

�(xy) = �(x)�(y); 8x; y 2 (� [ V )
�

For any state qi of M and for any integer k, the

following set of strings is de�ned:

Vk(qi) = f�(!) :< qi >
k

=) !g (5)

Vk(qi) is the set of all words obtained through

the application of �(:) to derivations of length k

starting from the non terminal < qi >. If the last

derivation to produce ! is not terminal j�(!)j = k,

otherwise j�(!)j = (k � 1).

For every qi 2 Q and for every x 2 Vk(qi) , let us

de�ne the set Dk(qi; x) :

Dk(qi; x) = fy = xu 2 Vk+1(qi) :

u 2 � [ f�gg; if jxj = k (6)

Dk(qi; x) = ;; if jxj = (k � 1) (7)

Dk(qi; x) consists of the strings whose k-pre�x

equals x and that are produced by a chain of (k+1)

derivations from < qi >.

Lemma1 x 2 Dk(qi; x) i� �(qi; x) 2 F

Proof

x belongs to Vk(qi) , hence its length can be either

(k-1) or k.

A generic string inDk(qi; x) consists necessary of

k or (k+1) symbols. By hypothesis, x 2 Dk(qi; x),

therefore jxj = k. In de�nition (6), the symbol u

must equal �: thus x 2 Vk+1(qi) . The unique way

to obtain a string of k letters by (k+1) derivations

in G is to require that the last derivation is termi-

nal: < qi >
k

=) x < qj >
1

=) x, where < qj >! �.

If the rule < qj >! � is included in the set of pro-

ductions of G, then qj 2 F : �(qi; x) = qj 2 F .

2

4. Decidibility procedure for LTks:s:

In this section we will propose a possible algo-

rithm to decide if a regular language L is in LTks:s:

for a �xed value of k. The adopted approach will

allow us to answer (with \yes" or \not") to the

question: \Is L k-locally testable in a strict sense

in the case k equals a speci�c number
�

k?". Such

a formulation corresponds to the decision-problem

derived from the optimization-problem about the

order of L.

We assume that the language L is given through

an automaton accepting it. A regular language can

generally be recognized by di�erent automata: only

its minimal accepting automaton is unique, neglect-

ing isomorphisms that rename its states. An inter-

esting aspect will emerge from the remainder. Our

procedure works correctly regardless of the partic-

ular representation of the accepting automaton M ,

allowing us to speak of a LTks:s: language L or

equivalently of LTks:s: property of an arbitrary au-

tomaton accepting L. In particular we will not re-

quire M to be reduced, whereas many results avail-

able in literature focus on the minimal automaton

accepting L.

More precisely, let the language L be de�ned

through a DFA, that does not contain unreachable

states from the initial node q0 or states from which
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it is not possible to reach a �nal state qf 2 F . Un-

der these assumptions, the transition function � will

generally be a partial function over Q ��.

Before proceeding, the following sets are intro-

duced for language L:

�k = fx : w = xy^jxj = k^w 2 L g(8)

�k = fv : w = uvz^u; z 6= �^jvj = k^w 2 Lg(9)


k = fy : w = xy^jyj = k^w 2 L g(10)

It is clear that, if L 2 LTks:s:, through �k; �k; 
k

syntactical analysis can be correctly carried out.

On the contrary, if L =2 LTks:s:, the language rec-

ognized through such sets is a super set of L.

Theorem2 Let L be LTks:s:, then every DFA

M accepting L is such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any qi; qh 2 Q, for any x 2 Vk�1(qi)\ Vk�1(qh).

Proof

For convenience reasons, a new non �nal state P

(=2 Q) is introduced in order to let � become a total

function over (Q [ fP g) � �. From a state qi 2 Q

now transitions are de�ned in correspondence of ev-

ery a 2 �: �(qi; a) = P if previously there was no

edge leaving qi with label a. P is an adsorbing state

in the sense that �(P; a) = P for any a 2 �, and

being P not �nal, if it is reached, it means that

the input x contains a syntactic error, causing the

rejection of the string. The introduction of P does

not alter the generality of the considerations below.

It will be proved that L =2 LTks:s: if there exist

two distinct states qi; qh and a string x such that:

x 2 Vk�1(qi) \ Vk�1(qh) (11)

Dk�1(qi; x) 6= Dk�1(qh; x) (12)

If jxj = (k�2), thenDk�1(qi; x) = Dk�1(qh; x) =

; because of de�nition (7). Hence, necessarily

jxj = k � 1.

Let x have the form: x = t1t2 : : : tk�1; 1 � i �

k � 1; ti 2 �. Condition (12) implies that qi 6= qh

and that at least one of the sets (Dk�1(qi; x) �

Dk�1(qh; x)); (Dk�1(qh; x) � Dk�1(qi; x)) is not

empty. For instance, let y belong to Dk�1(qi; x) �

Dk�1(qh; x) : y = xtk(jyj = k). As y =2

Dk�1(qh; x), �(qh; y) = P . Being M determinis-

tic, and qi 6= qh, there must be two di�erent strings

w1; w2 that lead from q0 to qi and qh respectively:

�(q0; w1) = �(q0; a1a2 : : : am) = qi; �(q0; w2) =

�(q0; b1b2 : : : bn) = qh, where m;n � 0, but not

both of them can equal zero, and w1 6= w2. Let

us consider the following states:
�

qi= �(qi; x);
�

qh=

�(qh; x);
�

qi0= �(
�

qi; tk); P = �(
�

qh; tk). Basing on

the characteristic of M , that is without useless

states when evaluatingDk�1(qi; x) and Dk�1(qh; x)

(P is not added in that context), from
�

qi0 a �-

nal state qf is reachable through the string z =

c1c2 : : : cs; (s � 0) : �(
�

qi; z) = qf 2 F . Now, let us

consider the word w = w2yz, where the length of

w is greater or equal to k. �(q0; w2y) = P implies

�(q0; w2yz) = �(q0; w) = P , hence w =2 L.

Let us consider Lk(w), two cases are possible:

(a)if n � k, Lk(w) = b1b2 : : : bk, (b)if 0 � n < k,

Lk(w) = b1b2 : : : bnt1t2 : : : tl, where n + l = k; 1 �

l � k.

(Case a) �(q0; w2) = qh, and from qh a �nal

state qf 0 is reachable, hence from �(q0; b1; b2 : : : bk)

the same node qf 0 is reachable. As a consequence,

b1b2 : : : bk is the pre�x of a string in L, hence be-

cause of (8) Lk(w) 2 �k(n � k).

(Case b)The condition x = t1t2 : : : tk 2

Vk�1(qh) guarantees that for any state: ql =

�(q0; w2t1t2 : : : tl); 1 � l � k, a path exists leading

to a �nal state of M from ql. Hence, it is possible

to conclude again that Lk(w) 2 �k(0 � n � k).

Let us consider Rk(w). (a)if s � k, Rk(w) =

cs+1�kcs+2�k : : : cs; (b)if 0 � s < k, Rk(w) =

tltl+1 : : : tkc1c2 : : : cs; 1 � l � k. Both in case (a)

and (b) we can prove that Rk(w) 2 
k in a fashion

similar to the one used for Lk(w).

Finally it is also possible to verify that Ik(w) �

�k.

Hence if conditions (11), (12) simultaneously

hold, a string w exists such that x =2 L, but for

which: Lk(w) 2 �k; Ik(w) � �k; Rk(w) 2 
k. Thus

we conclude L =2 LTks:s.

2

In order to prove theorem 2, a preliminary lemma

is required.

Lemma2 Let M be a DFA such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any qi; qh 2 Q and for any x 2 Vk�1(qi) \

Vk�1(qh). Then the state �(qi; x) is equivalent to

�(qh; x).

Proof

Also in this case, it can be convenient to introduce
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the state P (see proof of theorem 2), in order not

to distinguish tedious particular cases in the con-

siderations below.

Let x = a1a2 : : : ak 2 Vk�1(qi) \ Vk�1(qh), and

let us assume that
�

qi= �(qi; x) is not equivalent to
�

qh= �(qh; x). This implies the existence of a string

y = b1b2 : : : bm(m � 0) such that �(
�

qi; y) 2 F and

�(
�

qh; y) =2 F or �(
�

qi; y) =2 F and �(
�

qh; y) 2 F .

Considering for instance the �rst possible case, let

z = xy(jzj � k), and �i (resp. �h) be the path com-

prising the edges of M used by the involved transi-

tions from qi (resp.qh) to �(qi; z) (resp. �(qh; z)):

�i = (qi; �(qi; a1))(�(qi; a1); �(�(qi; a1); a2)) : : :

(�(qi; a1a2 : : : akb1b2 : : : bm�1); bm)

(resp:�h = (qh; �(qh; a1))(�(qh; a1); �(�(qh; a1);

a2)) : : : (�(qh; a1a2 : : : akb1b2 : : : bm�1); bm))

With
�

qi0 (resp.
�

qh0) we designate the node at a

distance of (k-1) edges from �(qi; z) (resp. �(qh; z))

along the path �i (resp. �h). As jzj � k,
�

qi0 (resp.
�

qh0) exists, and
�

x is the (k-1)-su�x of z such that:

�(
�

qi0;
�

x) = �(
�

qi; y) (resp. �(
�

qh0;
�

x) = �(
�

qh; y)). We

notice that
�

x2 Vk�1(
�

qi0) \ Vk�1(
�

qh0), however the

set equality Dk�1(
�

qi0;
�

x) = Dk�1(
�

qh0;
�

x) does not

hold. �(
�

qi0;
�

x) = �(
�

qi; y) 2 F , hence lemma 1 guar-

antees that
�

x2 Dk�1(
�

qi0;
�

x). On the other hand,

being �(
�

qh0;
�

x) = �(
�

qh; y) =2 F;
�

x=2 Dk�1(
�

qh0;
�

x)

(lemma 1). This represents a contradiction: nec-

essarily �(qi; x) is equivalent to �(qh; x).

2

We can derive the following result as immediate

consequence of previous lemma:

Corollary1 Let M be a reduced DFA such

that:

Dk�1(qi; x) = Dk�1(qh; x)

for any qi; qh 2 Q and for any x 2 Vk�1(qi) \

Vk�1(qh). Then �(qi; x) equals �(qh; x)

It is now possible to proceed to theorem 3: it

proves the validity of exchanging hypothesis and

thesis in theorem 2.

Theorem3 Let M be a DFA such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any qi; qh 2 Q and for any x 2 Vk�1(qi) \

Vk�1(qh). Then the language accepted by M is

LTks:s: w.r.t. �k; �k; 
k.

Proof

Recalling the de�nition of LTks:s: language (4), two

implications must be veri�ed, being w 2 ��; jwj �

k:

w 2 L) Lk(w) 2 �k^Ik(w) � �k^Rk(w) 2 
k

Lk(w) 2 �k^Ik(w) � �k^Rk(w) 2 
k ) w 2 L

Because of (8), (9), (10) the �rst of them holds in

a straightforward manner, whereas the second one

requires additional considerations.

Let w be a string of this form: w =

a1a2 : : : am(m � k), with the property that

Lk(w) 2 �k; Ik(w) � �k; Rk(w) 2 
k. Our aim

is to show that w is syntactically correct. Let qr be

the state of M reached from q0 through a1a2 : : : ar,

r-pre�x of w: qr = �(q0; a1a2 : : : ar)(1 � r � m).

In the general case � is not a total function over

Q � �, and w is a sentence of L i� the following

conditions hold:

� transition

�(qr; ar+1) (13)

is de�ned for any 0 � r � m � 1,

� and

qm 2 F (14)

As a �rst step, condition (13) will be proved by

complete induction on r.

Extending the terminology from one letter input

to a i-letters string (i > 1), we will say that

�(qr; ar+1ar+2 : : : ar+i�1) is de�ned if all the fol-

lowing transitions are de�ned: �(qr+j ; ar+1+j);0 �

j � i� 2.

(Base of induction: r=0)

Lk(w) = a1a2 : : : ak 2 �k. Recalling the de�nition

of �k (8), a string y exists such that y is in L and

its k-pre�x is a1a2 : : : ak, hence �(q0; a1) is de�ned,

being y correct.

(Inductive assumption)

Let us assume that �(qj ; aj+1) is de�ned for 1 �

j � r � 1, where 1 � r �m � 1.

(Inductive step)

Now it is required to show that the inductive as-

sumption holds also for j = r. Two di�erent cases

are considered.

(Case a: 1 � r � k�1) Lk(w) = a1a2 : : : ak 2 �k.

Basing on the same considerations expressed previ-

ously (Base of induction), it is possible to conclude

that �(qj ; aj+1) is de�ned for any 1 � j � k � 1.

(Case b: k � r � m � 1) Let u be the string

of (k-1) symbols: ar�k+2ar�k+3 : : :ar, and let v

be uar+1. v is a k-length sub string of the in-
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put string w. It belongs to (�k [ 
k), its initial

character ar�k+2 is at least the second one: it oc-

curs in position number (r-k+2) from left, which

is greater or equal to 2. Hence a string y in L

exists such that v 2 Ik(y) or v = Rk(y). In both

cases, we can consider two states
�

q and
�

q0 such that:

u 2 Vk�1(
�

q);
�

q0= �(
�

q; u). From
�

q0 the output tran-

sition �(
�

q0; ar+1) is necessarily de�ned because all

the transitions in the sequence �(
�

q; v) are de�ned

(v 2 Ik(y) or v = Rk(y)) and �(
�

q0; ar) = �(
�

q; v). In-

ductive assumption assures that �(qr�k+1; u) is cor-

rectly de�ned, hence it is possible to guarantee that

u 2 Vk�1(
�

q) \ Vk�1(qr�k+1), being
�

q and qr�k+1

possibly equal. Nonetheless, the hypothesis im-

poses the equality: Dk�1(
�

q; u) = Dk�1(qr�k+1; u).

We know that v is in Dk�1(
�

q; u), hence v belongs

also to Dk�1(qr�k+1; u), therefore �(qr�k+1; v) is

de�ned and we �nally get that �(qr; ar+1) is de-

�ned.

It remains to prove condition (14): �(q0; w) =

qm 2 F . Rk(w) = am�k+1am�k+2 : : : am 2 
k. Let

us consider the states: qm�k+1 =�(q0;a1a2: : :am�k+1)

and qm =�(qm�k+1; am�k+2am�k+3: : :am). The

string am�k+1am�k+2 : : : am is in 
k, therefore a

string y of L exists such that am�k+1am�k+2 : : : am

is its k-length su�x. Being y in L, a state
�

q exists: �(
�

q ; am�k+2am�k+3 : : : am) = qf 2

F . In particular: am�k+2am�k+3 : : : am 2

Vk�1(qm�k+1) \ Vk�1(
�

q). Basing on lemma 2, the

state �(qm�k+1; am�k+2am�k+3 : : : am) is equiva-

lent to �(
�

q; am�k+2am�k+3 : : : am). Therefore, qm

is equivalent to qf : qm belongs to F .

2

Theorems 2 and 3 lead us to directly obtain the

main result of this section, characterizing LTks:s:

Theorem4 A language L, accepted by a DFA

M , is LTks:s: i� Dk�1(qi; x) = Dk�1(qh; x) for any

qi; qh 2 Q and for any x 2 Vk�1(qi) \ Vk�1(qh).

The following corollary is a straightforward con-

sequence of theorem 3 and corollary 1:

Corollary2 A language L, accepted by the re-

duced DFA M , is LTks:s: i� �(qi; x) = �(qh; x) for

any qi; qh 2 Q and for any x 2 Vk�1(qi)\Vk�1(qh).

5. Order of a LTks:s: language

If L is in LTks:s:, clearly it is also in LTk0s:s:,

with k0 > k. However, in general it is not true that

L is in LTk00s:s: where k00 < k. The order of a

language is de�ned as the minimum value of the

parameter k such that L is in LTk
min

s:s: In the

more general case of Locally Testable class (LT ),

it is known that the analogous problems is NP-

Hard5). As concerns LTs:s: languages, no explicit

result is available in literature about the complex-

ity class of the problem. Our approach consists in

�xing the parameter k and in formulating the de-

cision problem corresponding to the question: \Is

L in LTks:s:?". In previous section, a decidibil-

ity procedure was proved. Hence it is possible to

immediately obtain a decidibility algorithm for the

di�erent problem: \Is L in LTs:s:?". Such a result

bases on theorem 1, that expresses an upper bound

to use when ascertaining local testability.

The approach we adopted presents the advantage

that the same procedure can be employed for two

di�erent problems, respectively a decidibility and

an optimization one. It allows us to decide if L is

in LTs:s:, basing on theorem 1, and secondly to

evaluate kmin, such that L is in LTk
min

s:s: , i.e.

the order of L.

Let us consider a language L and one of its ac-

cepting automata, comprising n states. If L is in

LTs:s:, then it necessarily is in LTn+2s:s: (the-

orem 1). It is possible to test whether such a

condition holds by applying the result we proved

about LTks:s: decidibility (theorem 4) considering

k = n+2. If the response is negative, then it means

L is not LTks:s: for any value of k. In case the re-

sponse is a�rmative, this proves L is LTs:s:, thus

it is possible to proceed to determine the order of

L. By iterating the test expressed in theorem 4,

and decreasing each time the value of parameter k

by unit, the minimal value kmin is produced such

that L 2 LTk
min

, as illustrated in the fragment of

pseudo code below.

int order(automaton M=(N,E))

{

int upper_bound =|N|+2;

int k =upper_bound;

boolean is_k_testable=TRUE;

for(;k>0;--k)

{

is_k_testable=test_condition(M,k);

/* verify condition of theorem 4*/

if((!is_k_testable)&&(k==upper_bound))
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return(-1);/*M in not in LTs.s.

for any value of k*/

else if(!is_k_testable)

/*M is in LTs.s., hence the

order will be evaluated*/

return(k+1);/*Not possible to

decrease k further*/

};

return(1);/*M is 1-testable: M is the whole

free monoid*/

}

6. Conclusions

After introducing the concept of local testability

in a general context, the paper focused directly on

the speci�c case of locally testable string languages

in a strict sense. Interest in such a class of formal

languages is motivated not only on a theoretical but

also on an applied level, because of links to parallel

parsing and error handling.

Through the formulation of a set of lemmata

and theorems, a decidibility result was obtained for

LTks:s: property. On an operative level it provides

a constructive algorithm to utilize on an accepting

automaton M of language L. The analyzed proce-

dure tries to frame the extensively studied concept

of local testability in a di�erent perspective. It aims

at capturing LTks:s: in a direct and general man-

ner without employing the algebraic properties of

the syntactic monoid. Moreover, it does not impose

minimality constraints on M .

As a direct consequence of the developed algo-

rithm, it was possible to easily relate LTks:s: de-

cidibility to LTs:s: decidibility and to the problem

of �nding the order of LTs:s: language.

The adopted approach does not rely on algebraic

concepts. Hence, this aspect could be of help to

investigate the extension of the exposed considera-

tions to the case of tree languages.
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