
Information Dissemination using Network Streams

Harry Behrens Hidehiko Tanaka

Dept. of Information Engineering Dept. of Information Engineering

University of Tokyo University of Tokyo

Abstract

Network Streams are a generic means by which distributed applications can exchange information. Using

Network Streams information, irrelevant of its type, can be exchanged using a generic interface. Information

is encapsulated into classes, that are self-descriptive and partially reective. Network streams act as generic

container channels through which such objects are passed. Filter Agents are independent applications using

Network Streams as their I/O paradigm. Because they are autonomous, they can travel to a remote site,

connect to one of its applications and send �ltered output to the agent's owner.

1 Introduction

The last years have brought dramatic development in the �eld of network based applications. More and more

corporations, research institutions and individuals rely on network technology to manage their information

ow.

Simple client/server applications, where clients retrieve data or use resources through a dedicated server

machine have become to simplistic a model to model modern information based organizations.

The Internet with the underlying TCP/IP protocol suite inherently implies a peer-to-peer topology, where

independent machines act as clients or servers depending on the context.

Based on these premises it has been our aim to de�ne an architecture of distributed intelligent systems,

that carry out intelligent information processing tasks. Assuming that these systems can be constructed, they

would be immensely helpful in

� automatic information distribution,

� semantic search tasks,

� automatic SW execution and update,

� intelligent network management etc.

In order to facilitate the de�nition and implementation of such large scale distributed intelligent systems, a

programming environment needs to be de�ned that lends itself to the construction of distributed intelligent

agents and distributed knowledge bases.

This was the main motivation in creating the programming environment presented in this paper.

2 Basic Architecture

2.1 Motivation and Background

The main concept behind network streams is that it should be possible for applications running on di�erent

host machines on di�erent networks to communicate and be used as building blocks to create large distributed

systems.

On a lower level BSD sockets o�er a sort of standard generic interface. In fact most of modern application

level network protocols (SMTP, ftp, HTTP etc.) are based on sockets, allowing applications on di�erent

computer platforms to communicate through one standard interface.

i



The main drawback of this very powerful programming interface, is that it is relatively low level. Sockets

are essentially handled like �le handles and o�er only simple read() or write() functionality.

Network streams - which are based on sockets, btw. - bring the level of abstraction higher while trying to

keep the system as open and platform-independent as possible.

2.2 From Multimedia to Multiclass

One of the main reasons for the success of the WWW is that it handles multimedia in an intuitive and

transparent way. What exactly does this mean on a more technical level? Well: �les that get transferred

from an HTTP server [1] to an HTML client [2] are sent with MIME [3] information, specifying the type of

data transmitted. These MIME types are described using a two-level hierarchy specifying type and subtype

(e.g. text/html or application/ms-word). Modern WWW browsers either handle these type directly (such as

image/gif) or can be con�gured to invoke helper applications or pass the data to plug-ins that can process

them.

It seemed a logical step to us to extend this very simple yet powerful mechanism to the programming task at

hand. Instead of simply tagging data with a standardized type descriptor, we decided to use an object-oriented

approach, where all data is transmitted through Component Objects. Component objects contain

� a descriptor, containing information about the class itself,

� data where applicable,

� method handlers

The descriptor component is standardized across all di�erent classes. This means an application receiving an

object can access at least the descriptor to determine whether it wants to handle the object or discard it.

2.3 Combining streams and objects

Combining the two basic ideas described in section 2.1 and section 2.2 resulted in the following model:

Any application that is to participate in the network stream environment needs to expose a set of input

or output streams to the world. These streams are named and therefor accessible on a symbolic level. Each

application also exposes a minimum set of externally callable management routines that allow third party

scripting applications to create connections between stream endpoints.

sample 

application

name=source_1

sample 

application

name=sink_1 input stream

name=in_2

output stream

input stream

name=out_2

name=in_1

Sample 

application

name=filter_1

output stream
name=out_1

Figure 1: Individual applications with interfaces

ii



The previous sketch shows three applications - all possibly residing on di�erent sites - and their stream

interfaces.

sample 

application

name=source_1

Sample 

application

name=filter_1

sa
m

pl
e 

ap
pl

ic
at

io
n

na
m

e=
si

nk
_1

Figure 2: Connected System

This is a fully connected system with the shaded circles depicting objects being transferred.

3 Implementational issues

One of the main points in the system is, that applications need to expose an interface that allows the scripting

components to dynamically interconnect the streams of various applications.

This has been achieved by encapsulating the remote con�guration API in a library, which all applications

need to link in. Through this API, an applications announces its presence and its interface description to a

site manager upon startup. The site manager has a corresponding API library linked in, that allows it to

access the stream interface of the applications it manages.

All requests for connection with an application thus have to go through the site manager.

Site managers and their locations are managed through a global name resolution system.

As far as the whole system is concerned an application only exists through its interfaces. Local input/output

or other side e�ects (e.g. for logging purposes) may exist, but are the responsibility of the applications owner

and are invisible to the system.

iii



3.1 System architecture and components

The main components of the system are:

� Remote con�guration libraries: these encapsulate the intrinsics of the remote invocations involved

in remotely con�guring a running application's I/O interface.

� Site manager: The site manager acts as a gateway between the network and a set of centrally admin-

istered applications. It is responsible for the servicing of requests and for the execution of the actual

remote con�guration.

� Name Resolution Services: NRSs exist on two levels:

1. Site level: Sites need to be able to �nd each other's locations.

2. Class level: All implementation information for the Component Object Classes can be retrieved

over the network. This is important to allow transparent dynamic update of object behavior and

implementation.

� Scripting Environment: The scripting environment reads in script �les containing directives to cre-

ate networked applications. It queries the system to verify the existence of the applications and sites

addressed and then sends the necessary con�guration messages to the site managers involved.

4 Discussion

The system introduced constitutes the programming environment upon which we hope to implement a high-

level knowledge sharing system. Various such systems are at the moment topics of active research, the most

notable being the DARPA Knowledge Sharing e�ort [4].

The actual implementation introduced in this paper tries to combine ease of use with platform independence

and high level of abstraction. In the �eld of object oriented programming the Common Object Broker Request

Architecture [5] tries to tackle the issue by making objects accessible over a network of ORBs. This approach

thus tackles the issue at the object rather than the application level.

We believe that the system described is very easy to use and intuitive. Based on the reective components

of the Component Objects we will add semantic information in the future which will allow the system to

systematically query site managers about the capabilities of its applications on a more semantic level.

The role of the site managers which is that of a passive switchboard at the moment, will be expanded to

handle mobile applications (aka agents) in the future.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol { HTTP/1.0. IETF Internet

Draft <draft-ietf-http-v10-spec-04.html>, October 1995.

[2] T. Berners-Lee and D. Connoly. Hypertext markup language - 2.0. IETF RFC 1866, November 1995.

[3] Borenstein N and Freed N. MIME (multipurpose internet mail extensions) part one:mechanisms for spec-

ifying and describing the format of internet message bodies. IETF RFC 1521, September 1993.

[4] Patil R., Fikes R., Patel-Schneider P., McKay D., Finin T., Gruber T., and Neches R. The DARPA

knowledge sharing e�ort: Progress report. In Charles Rich and Bernhard Nebel, editors, Principles of

Knowledge Representation and Reasoning: Proceedings of the Third International Conference. Morgan

Kaufmann, 1992.

[5] The Object Management Group. The Common Object Request Broker: Architecture and Speci�cation.

Revision 1.1, December 1991.

iv


