
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Secure Software Development with Coding
Conventions and Frameworks

Takao Okubo, Hidehiko Tanaka

Abstract—It is difficult to apply existing software development

methods to security concerns. Especially security testing is hard.
We have been concerned with the fact that the restriction of
implementation affects the easiness of testing. In this paper we
propose a decision process of the coding conventions for security,
regardful for testing security. Then, we apply our method to
preventing injection attacks on Web application programs, and
produce coding convention set against injection attacks. However,
these conventions are not enough to prevent all kinds of attacks.
So we also discuss the security frameworks which complement the
conventions.

Index Terms—security, programming, coding conventions,
frameworks

I. INTRODUCTION
XISTING software development methods, such as
waterfall model [1], UML [2] and various testing methods,

have succeeded at maintaining the quality of software products,
except security. Almost everyday SecurityFocus [3] reports
vulnerability of some software products/systems. Incidents like
information disclosure often make headline news because of
software vulnerability. Now, we know what vulnerability is
well. It is a buffer overflow, SQL injection or cross-site
scripting (XSS). But we don’t know how to make software with
no vulnerability. The reason of these failures is that the
uniqueness of security inhibits the direct application of existing
development methods. With regard to the design phase, most of
the security specifications are not functional, so it is not easy to
describe them with usual design model like UML 1 . Same
applies to the testing. Test planners have to care about the
side-effect of the vulnerability, unlike usual software bugs [5],
[6].
The most effective security testing method is the black box

testing [7], [8]. Equivalence partitioning and boundary value
analysis [9], [10] are usual software black box testing methods
for enough coverage of testing data. But they are not useful for
most of security testing because it is difficult to prepare testing

data with enough coverage.
Some programming tips for avoiding vulnerability are known

[11]. Sanitizing is one of the tips for preventing injection
attacks such as XSS. Almost of these tips are ad hoc and ad hoc
implementation often makes some omission. Additionally, they
do not provide the way of testing. We need exhaustive and
easily testable implementation.
ISO/IEC 15408, also known as Common Criteria (CC) [12] is

a standard for building secure software. It provides the
evaluation process of implementation and testing of software
products, as the process of specification. However, CC does not
give practical implementation and testing methods for each
software product.
Existing security technologies and researches are not enough

to control software security through the development lifecycle.
Our goal is let the security requirement be achieved and
verified like other software requirements, at the each phase of
software development. We adopt secure software engineering
approach for our goal. We start this approach by trying to apply
using current software engineering methods to security
concerns. Current methods might turn out to be insufficient.
Then we would consider something new methods to
complement them.

Focus of this paper is on the implementation phase of
development lifecycle. We propose a coding convention
decision process for security, considering testability. Next we
apply our process to decide the proper coding conventions to
prevent three types of injection attacks –SQL injection, OS
command injection and XSS–, known as famous security
threats at Web applications. Actually, even with the coding
conventions and existing frameworks are not enough to avoid
threats completely. We discuss what these frameworks should
be, and propose some new security frameworks.

II. DECIDING CODING CONVENTIONS FOR SECURITY

A. Effect of Coding Conventions on Security
Coding conventions are some rules for writing program

source codes [13]. They have been used at the programming
phase for years. Most of currently used conventions are about
coding style (indentation, naming, etc.) and mainly aim at
readability and maintainability. With regard to security, coding
conventions have hardly been adopted in the software
development fields. We would like to insist that coding
conventions are also useful for security, but they should play

E

Manuscript received December 17, 2006.
Takao Okubo is with Fujitsu Laboratories ltd., Kawasaki, Japan

(corresponding author to provide phone: +81-44-754-2683; fax:
+81-44-754-2666; e-mail: okubo@jp.fujitsu.com). He is also with Institute of
Information Security, Yokohama, Japan.

Hidehiko Tanaka is with Institute of Information Security, Yokohama, Japan
(e-mail: tanaka@iisec.ac.jp).

1 UMLsec tries to describe security with UML [4].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

different role from existing conventions.
We have pointed out the importance of restriction of

implementation, because it affects the easiness of testing
security requirements. We have proposed the early security
cost estimate method using limited implementation options and
testing methods related with the implementation [14]. Fig. 1.
shows the architecture of the proposed method. Our research
illustrates that coding conventions are useful for building
secure software. Coding conventions for security have
following two characteristics:

 --They aim at security quality directly, rather than
maintainability or readability.

 --Therefore, they require strong restriction, which might
limit not only flexible coding but also some functional
availability.
The latter are supposed to conflict the feasibility of other
software requirements. So we need care to decide conventions
for security. Next we propose the decision process of coding
conventions for each security requirement.

B. Coding Convention Decision Process
Since we regard the verification of security as important, we

prioritize the coding conventions which can be tested more
easily. The decision process of conventions for every security
requirement consists of two parts: system-independent decision
and system-dependent one.

1) System-independent decision: This part is to decide
general set of convention options so as to enable at least one
of them adopted in various application systems. This
process is supposed to be executed once, by persons with
sufficient security literacy. The following is its detailed
procedure.

a) Definition of the Target Security Requirement: The
target Security requirement is defined here. For
example, “The program must prevent SQL
injection.”.

b) Definition of the Security Specification: Security
specification which fulfills the requirement is

defined. This part is important for making
conventions with no omission, so the persons in
charge of this must be carefully. It still requires
some security and programming knowledge.

c) Extraction of Implementation Patterns:
Implementations of security specification, which
are the candidates of conventions, are extracted.
As various as possible implementation patterns
are preferable. At first the direct implementation
of the specification should be extracted. Next,
indirect implementations, which do not aim at
the original specifications directly, but achieve
the specification consequentially, should be
chosen.

d) Selection/ Making order of Precedence: Convention
options are finally fixed here. Extracted
implementation patterns should be selected, and
ordered with the following valuation basis.

--Feasibility of testing observance of the
convention

--Accuracy of testing
--less conflict with other software functions

Fig. 1. Architecture of the proposed method.

2) System-dependent decision: To select convention(s)
from 1) options for each development project/ system. This
process should be available to persons with poor security
literacy. The persons should examine each convention
option with the following viewpoints:
--less conflict with other functions of the target system
--lower cost for testing

III. CODING CONVENTIONS FOR INJECTION ATTACKS
We applied the proposed decision process to some actual

security requirements, and tried to decide the generalized
coding convention options. This paper presents the application
to the prevention of Injection attacks such as SQL injection, OS
command injection and XSS.

A. Definition of the Requirement
An Injection attack is executed with injecting unanticipated

data as input of the target program by an attacker. The target
program sends a command to another module, as a database
management system, OS or a Web browser. The command
includes user input data usually as its parameters. If the
command is changed by the input data to the unanticipated and
harmful which do bad thing like information disclosure or
tampering, the program has vulnerability against injection
attacks. Therefore the security requirement can be defined as:

“The program is required not to generate the unanticipated
command even with any user input data.”

B. Definition of the Specification
Injection attacks can be classified into two types.
 Type A): Attacks using the input data which change the

command syntax. They aim at security quality directly, rather

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

than maintainability or readability. Fig. 2. shows the typical
example of this type. SQL syntax can be changed by the input
“’ OR A=A”, so the attacker can avoid user authentication
without obtaining the password

 Type B): Attacks using the input only act as illegal

parameters, and do not change the command syntax. Input of
unanticipated database table name is an example of this type.

In this paper, we mainly discuss the injection of Type A).
Because most of the known injection attacks belong to Type A),
and Type B) problem can be treated as the current software
specification.

Then, the specification can be defined as the following:
“The syntactical structure of the command should not be

changed by the user input.”

C. Extraction of Implementation Patterns
We have examined the specification, and devised the

following patterns of restriction policy:
1) Distinguish dynamic elements of the command such as

parameters, variables, from static elements like reserved
words. When constructing the command string, be sure
that the static elements do not involve data originally from
user input. And before the command is constructed,
dynamic elements of the command must be sanitized, in
other words, even if they include a reserved word, the
string should be escaped or eliminated so that it does not
work as the reserved word.

2) Be sure that the command string must be composed of only
the fixed values like constants.

3) Prohibit the functions/methods which invoke other module
by forwarding the command without sanitizing.

Concrete Implementation patterns based on above policies
vary depending on the programming language. Let us consider
the coding conventions with Java. JDBC provides two types of
class invoking SQL databases. One is
java.sql.PrepaedStatement (and its subclass,
CallableStatement), and the other is java.sql.Statement.
PreparedStatement class [15] distinguishes parameters from
others, and sanitizes the parameter string. So with regard to

PreparedStatement, we only have to take care that the strings
except parameters.

Table I shows the Java coding convention candidates
(implementation patterns) to achieve the specification.

Fig. 2. The Example of Type A) injection. This is a typical SQL injection
pattern. The input value(password) changes the syntactical structure of the
SQL command.

TABLE I
CONVENTION CANDIDATES AGAINST INJECTION ATTACKS

No. Convention Candidates
(a) Prohibit using the value originally from user

input for parameters of the methods setting
SQL statements (*).

(b) Be sure to sanitize the parameters of (*)
methods, if the methods do not sanitize them.

(c) Be sure that the parameters of (*) methods use
the value originally from constants or literal
strings only.

(d) Be sure that the parameters of (*) methods use
the constants or literal strings only.

(e) Prohibit the use of (*) methods
(*) Methods setting SQL statements are:
java.sql.Statement#executeXXX(): first argument,
java.sql.Statement#addBatch(): first argument,
java.sql.Connection#prepareStatement(): first argument,
java.sql.Connection#prepareCall(): first argument.

D. Selection/ Making order of Precedence:
The extracted candidates are examined by the feasibility/

accuracy of testing and less conflict with other functions.
Policy 1), 2) and Java convention (a), (b), (c) requires

dataflow analysis for testing. Policy 3) and (d), (e) requires
syntax analysis. Generally dataflow analysis is feasible, but its
accuracy is lower than syntax analysis. The order by the
probability of conflict is 3) > 2) > 1) and (e) > (d) > (c) > (b) >
(a). Therefore we recommend the Java convention in the order
of (d) > (e) > (a) > (c). Recommendation order of (b) cannot be
determined because its accuracy depends on the validity of the
sanitizing code.

IV. EVALUATION AND DISCUSSION
In this section we evaluate the coding convention options

decided in section III. First, we verify the conventions are
feasible for practical application programs. We clarify a limit of
conventions, and consider another approach with frameworks.

A. SQL Injection:
1) Evaluation of Conventions
We have verified the feasibility of the proposed

conventions with the open source program codes found by
Bugle [16]. Bugle can find the source files with the
suspicion of various bugs, including SQL injection. We
have examined 185 files. In About 84% of the files,
Invocation of the SQL can be written with the fixed String,
or with the parameterized PreparedStatement. So they can
adopt the Java convention (d) (Table I.). 8% files are the
programs like SQL client. These programs permit arbitrary
SQL invocation, which cannot exclude the SQL injection

 source files with the
suspicion of various bugs, including SQL injection. We
have examined 185 files. In About 84% of the files,
Invocation of the SQL can be written with the fixed String,
or with the parameterized PreparedStatement. So they can
adopt the Java convention (d) (Table I.). 8% files are the
programs like SQL client. These programs permit arbitrary
SQL invocation, which cannot exclude the SQL injection

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

by nature. In the rest of the files, the SQL command
changes dynamically by the number of loop iteration or
conditional branch. Fig. 3. shows the example.

This kind of coding is appeared in the programs which have
to build complicated search conditions. In this case,
PreparedStatement with fixed String cannot be used. So Project
Managers of such system have to adopt convention (b) or (c).

2) Discussion of Frameworks
.Net, Perl and some programming languages provide the

prepared statement mechanism like PreparedStatement. A
distinct advantage of this mechanism is that programmers do
not have to take care of sanitizing: what are the dangerous

characters and how to process them. However some application
programs cannot use the prepared statement if the SQL
command strings have to be changed dynamically. The
programmers have to code sanitizing routines by themselves,
and testers have to use more complicated and inaccurate
testing.
We consider that the secure framework should provide all the

sanitizing methods for all invocation, so that the sanitizing
algorithm is hidden from the programmers. So we propose the
classes shown in Fig. 4. for the parts of the secure framework.
Although the classes are written with Java 5, they can be
migrated to other languages.
PreparedStatement is usually a fixed string, but

SecureStatement (Fig. 4. (a)) constructs the SQL query string
of PreparedStatement at each query execution. Programmers
add the string using the add() method, but the method
distinguishes parameters from the fixed values internally. Even
if the attackers input the data like “‘ OR A=A”, the string is not
defined as the fixed value, so it is treated as a parameter, and
then sanitized inside PreparedStatement class. ReservedSQL
class (Fig. 4. (b)) is used to identify the reserved words.
Programmers may define the fixed parameter such as table
name as enum, like ReservedSQL. It is also useful for
preventing Type B) injection.
 If these classes are included into the framework, the coding
conventions will become simpler. The coding convention (d)
will be enough for all programs.

B. OS Command Injection
1) Evaluation of Conventions

A method for execution of external OS command,
Runtime#exec() [17] does not invoke shell. So the injection

attacks adding the shell scripts to the command do not work.2
Furthermore, java provides Runtime#exec() which uses the
string array as its argument. So attackers cannot change the
number of syntax element. The mechanism makes the program
considerably safe, but not completely. Attackers may input the
attack command which consists of the same number of
elements. Runtime#exec() with string array cannot prevent this
kind of attack.

import java.sql.*
import java.util.*;

public class SecureStatement {
 static final PLACE_HOLDER "?";
 private StringBuffer stmnt;
 private ArrayList params;
 private Connector conn;

 SecureStatement(Connector conn) {
 stmnt = new StringBuffer();
 params = new ArrayList;
 }

 public void add(Object arg) {
 if(arg instanceof enum) {
 stmnt.append(arg.toString());
 } else if(arg instanceof String) {
 params.add(arg);
 stmnt.append(PLACE_HOLDER);
 } else {
 throw new IllegalTypeException();
 }
 }

 public void execute() {
 PreparedStatement pstmnt =
conn.prepareStatement(stmnt);
 for (int i = 0; i < params.size(); i++) {
 setObject(params.get(i));
 }
 pstmnt.executeQuery();
 }
};

Fig. 4. (a) SecureStatement class. It constructs the
temporal prepared statement internally.

Statement stmnt;
Srting query = "SELECT *

FROM table=xxtbl
WHERE id="
 + request.getParameter("ID");

for int (i=1; i< keys.length; i++) {
query+= " AND "keys[i] + "=" + values[i];

}
stmnt.executeQuery(query);

}

Fig. 3. The code example in which the SQL command
changes dynamically.

2) Discussion of Frameworks
In order to make the program secure against OS command

injection, a mechanism which distinguish parameters from
static elements is necessary. The ideal framework is supposed
to analyze the syntax of input data, and identify parameters like
SecureStatement. However, analyzing all the syntax of OS and
user command is not realistic. If the program can limit the kinds
of commands, the reserved words which are allowed to use, can
be defined as constants like ReservedSQL.

2 If you invoke “/bin/sh”, “-exec” you can execute the shell script including

pipe and redirection.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Above approach is also useful for other languages which
invoke OS shell directly.

C. XSS
1) Evaluation of Conventions

XSS have the same characteristics with other injection attacks.
All you need to do is consider the HTML structure of the
response, in spite of SQL command/ OS command.
Basic idea of the proposed conventions is also useful for XSS,

but we have to be careful for sanitizing, since the sanitizing
manners must vary depending on the context. If the target data
are output in the text area like body text, you should escape
three characters. <, >, &. If they are output as the tag attribute
value of HTML, you should escape <, >, &, “, ‘. If URL
attribute, the data must be URL-formed, and so on.
The right output method/ function must be used according to

the context.

2) Discussion of Frameworks

TABLE II
HTML OUTPUT METHODS WITH JAVA (PART)

Method function Argument Sanitizing rule
outputText() output text String text escape < > &
outputURL output url attribute String tagname

String url
tagname should be a fixed value
 url should be a fixed value

outputAttribute() output attribute String tagname
String attribute

tagname should be a fixed value
 attribute should be a fixed value

outputEvent() output event attribute String tagname
String attribute

tagname should be a fixed value
 attribute should be a fixed value

outputScript() output javascript String script/
parameter

script should be a fixed value
parameter should be a fixed value

If there is no framework, the solution is rather simpler,
because programmers can manipulate all the construction of
response HTML. Secure Framework is desired to prepare a
method / function for each output context. Table. II. shows the
example of the Java output methods.

Some frameworks make the situation a little more
complicated. Frameworks like Struts [18] prepares the response
JavaServer Pages (JSP) [19] file, so the programmer cannot
know directly on which part of the JSP file they are trying to
output data. Syntax Analysis of JSP is necessary to know the
context of the writing data.

JSP has some other problems:
--Expression Language directly outputs the value. You’d

better prohibit the use of EL.
--You’d better prohibit the use of the scriptlet , because of

the same reason as EL.
public enum ReservedSQL {
 SELECT("SELECT"),
 INSERT("INSERT"),
 UPDATE("UPDATE"),
 DELETE("DELETE"),
 CREATE("CREARE"),
 DROP("DROP"),
 WHERE("WHERE"),
 AND("AND"),
 OR("OR"),
 BLANK(" ");
 QUOTE("\'");
.....

 private String name;
 private ReservedSQL (String name) {
 this.name = name;
 }

 public String toString() {
 return name;
 }
}

Fig. 4. (b) ReservedSQL class. It is used to identify the
reserved words.

--May be you should not allow the use of custom tags until
its safety is guaranteed.

V. CONCLUSION
The importance of coding conventions for security has

hardly insisted ever. In this paper we showed it is useful for
secure software development, and proposed the convention
decision process considering the testability and functional
conflict. Then, we developed general coding convention
options for injection attacks based on the proposed decision
process. Next, we evaluated the feasibility of the coding
conventions. Because of their common characteristics, the
proposed convention options are basically useful, but they must
be customized a little. We also proposed the desired security
function of framework which complements the flaw of the
conventions. Please notice that our secure framework proposal
is not only the programming tips like others. Framework has
close connection with the coding conventions. They
complement each other. So when you have to get the program
secure you have to consider both of them. Furthermore,
framework and conventions are useful not only for
implementing the security, but also for easy testing.

We have noticed that the existing frameworks with security
function do not always contribute to the security quality. The

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

reason is the framework design lacks the concept of testability.
We hope the designers of the secure framework take this

concept into consideration.
As the future work, we are going to develop another

conventions set for other software requirements. And we are
also planning to do the empirical evaluation of the proposed
coding conventions and frameworks.

REFERENCES
[1] W. Royce, “Managing the Development of Large Software Systems”,

Proceedings of the IEEE WESCON, IEEE Press & Proceedings of the
Ninth International Conference on Software Engineering, IEEE Press,
1970.

[2] Unified Modeling Language, Object Management Group,
http://www.uml.org/.

[3] SecurityFocus, http://securityfocus.org/.
[4] J. Jürjens, Secure Systems Development with UML, Springer, 2004.
[5] B. Potter and G. McGraw, "Software security testing", Security & Privacy

Magazine, IEEE Volume: 2 Issue: 5 Sept.-Oct, 2004, pp. 81- 85.
[6] H. H. Thompson, "Why security testing is hard", Security & Privacy

Magazine, IEEE Volume: 1 Issue: 4 July-Aug. 2003, pp. 83- 86.
[7] G. McGraw, "Testing for security during development: Why we should

scrap penetrate-and-patch", IEEE Aerospace and Electronic Systems,
1998.

[8] C. Weissman, "Penetration Testing, Information security: an integrated
collection of essays, IEEE Computer Society Press, Silver Springs, MD,
1995.

[9] C. Karner, J. Falk and H. Q. Nguyen, Testing Computer Software Second
Edition, International Thomson Computer Press, 1993.

[10] B. Beizer, Software Testing Techniques, 2nd Edition, Van Nostrand
Reinhold, 1990.

[11] Secure Programming.com, http://secureprogramming.com/
[12] Common Criteria for Information Technology Security Evaluation v2.3,

http://www.commoncriteriaportal.org/public/developer/index.php?menu
=2, 2005.

[13] Code Conventions for the Java Programming Language, Sun
Microsystems, http://java.sun.com/docs/codeconv/.

[14] T. Okubo, N. Nakayama, Y. Wataguchi and H. Tanaka, "A Study on
Software Development Method which Fulfills Specified Security
Requirements" Computer Security Symposium 2006, pp.387-392.

[15] java.sql.PreparedStatement, Sun Microsystems,
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html.

[16] Bugle , http://www.cipher.org.uk/index.php?p=projects/bugle.project.
[17] java.lang.Runtime, Sun Microsystems,

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runtime.html.
[18] Struts, the Apache Software Foundation, http://jakarta.jp/struts/.
[19] JavaServer Pages, Sun Microsystems, http://java.sun.com/products/jsp/.

	I. INTRODUCTION
	II. Deciding Coding Conventions for Security
	A. Effect of Coding Conventions on Security
	B. Coding Convention Decision Process
	1) System-independent decision: This part is to decide general set of convention options so as to enable at least one of them adopted in various application systems. This process is supposed to be executed once, by persons with sufficient security literacy. The following is its detailed procedure.
	a) Definition of the Target Security Requirement: The target Security requirement is defined here. For example, “The program must prevent SQL injection.”.
	b) Definition of the Security Specification: Security specification which fulfills the requirement is defined. This part is important for making conventions with no omission, so the persons in charge of this must be carefully. It still requires some security and programming knowledge.
	c) Extraction of Implementation Patterns: Implementations of security specification, which are the candidates of conventions, are extracted. As various as possible implementation patterns are preferable. At first the direct implementation of the specification should be extracted. Next, indirect implementations, which do not aim at the original specifications directly, but achieve the specification consequentially, should be chosen.
	d) Selection/ Making order of Precedence: Convention options are finally fixed here. Extracted implementation patterns should be selected, and ordered with the following valuation basis.

	2) System-dependent decision: To select convention(s) from 1) options for each development project/ system. This process should be available to persons with poor security literacy. The persons should examine each convention option with the following viewpoints:--less conflict with other functions of the target system--lower cost for testing

	III. Coding Conventions for Injection Attacks
	A. Definition of the Requirement
	B. Definition of the Specification
	C. Extraction of Implementation Patterns

	IV. Evaluation and Discussion
	A. SQL Injection:
	2) Discussion of Frameworks

	B. OS Command Injection
	1) Evaluation of Conventions
	2) Discussion of Frameworks

	C. XSS
	Discussion of Frameworks

	V. Conclusion

