A Register Communication Mechanism for
Speculative Multithreading Chip Multiprocessors

Niko DEMUS BARLI," DAISUKE TASHIRO,! CHITAKA IWAMA, 1
SHUICHI SAKAI" and HIDEHIKO TANAKAT

Speculative multithreading on chip multiprocessors has drawn great attention as a technique
for exploiting thread level parallelism from sequential applications. This paper proposes a register
communication mechanism required to handle inter-thread register dependencies during speculative
multithreading execution. The key issues in designing this mechanism are, ensuring the correctness
of execution and tolerating communication latency important to the performance. This paper
first describes a synchronization method for maintaining a consistent architectural view of the
registers. It then presents a design of a ring-topology communication datapath for synchronizing
register values. The communication mechanism we propose tolerates communication latency by
eagerly moving register values closer to the consumer and by employing a simple producer-initiated
communication protocol. It also avoids substantial increase in number of ports of register file and

register rename map.

Evaluation results show that, for a practical configuration the average

performance achieved is within 6% margin compared to an ideal datapath.

1. Introduction

Chip multiprocessor (CMP) architecture is be-
coming increasingly accepted as a platform for high
performance microprocessors [3,7,15]. The CMP
architecture is very suitable for multiprogrammed
or multithreaded workloads generally found in
servers. However, to be fully accepted as a general
purpose platform, it must also deliver competitive
performance for a wide range of sequential applica-
tions usually found in desktops. To exploit thread-
level parallelism from these applications, specula-
tive multithreading is proposed. In a speculative
multithreading execution, the originally sequential
execution stream is partitioned into chunks, exe-
cuted in parallel as distinct threads. These threads
may exhibit some sort of control or data dependen-
cies and a combination of software and hardware
supports is added to ensure the correctness of ex-
ecution [1,5,6,8,10,11,14,16].

In an execution model that allows inter-thread
register dependencies, a register communication
mechanism that maintains a consistent view of reg-
isters during speculative multithreading execution
is required. The implementation of this mechanism
is challenging. First, since the register files in CMP
are physically distributed the implementation is
not straightforward. Second, in a CMP that com-
prises dynamically scheduled superscalar cores, ad-
ditional complication arises from the requirements
to correctly handle register mapping during com-
munication. Finally, the mechanism must be able

t Graduate School of Information Science and Technology,
The University of Tokyo

to tolerate communication latency critical to the
performance.

This paper proposes a solution for these prob-
lems. We specify a register synchronization
method to ensure the correctness of execution. In-
formation on which registers may be redefined in-
side a thread and the timing to safely communicate
their values to succeeding threads is inserted into
binaries using compiler assistance. Then we design
a communication datapath necessary for the syn-
chronization process. Observing that most of the
inter-thread register dependencies exist between
two adjacent threads, we employ a ring-topology
communication datapath. The datapath is opti-
mized to tolerate communication latency by ea-
gerly moving generated register values closer to the
consumer even when it is still uncertain whether
the values are the final values needed for the com-
munication. Here, we employ a producer-initiated
communication protocol in order to simplify the
communication process. Our design also avoids
substantial increase in number of ports of register
file and rename map. For a minimal configuration,
it only requires one additional write port of reg-
ister file, and one additional read port of rename
map. FEvaluation results show that the configu-
ration achieves performance within a 6% margin
relative to an ideal communication datapath.

The rest of this paper is organized as follows.
Related work on the design of register communica-
tion mechanism is summarized in section 2. Reg-
ister synchronization method and the role of com-
piler are described in section 3. Section 4 presents
the communication datapath and discusses choices

and policies made during the design process. The
evaluation results are then presented in section 5.
Finally, section 6 concludes the paper.

2. Related Work

A number of speculative multithreading archi-
tectures whose thread model allows inter-thread
register dependencies have been proposed. Mul-
tiscalar [4,14] employs a ring-topology communi-
cation controlled by six sets of masks. However, it
does not describe how it synchronizes register val-
ues in the presence of register renaming without
introducing significant additional latency.

CMP architecture proposed in [8] uses a score-
boarding mechanism on a shared-bus datapath. It
requires only small additional area at the expense
of longer communication latency when the commu-
nication is initiated by a consumer. Although the
evaluations showed insignificant impact caused by
this additional latency [9], it is possibly because
the threads are only created at innermost loop it-
erations. In this case, the probability of a thread to
be restarted due to control misspeculation, thus ig-
niting a consumer-initiated communication, is low.
It should also be noted that targeting only inner-
most loops for threads is not sufficient for inte-
ger applications. In these applications, innermost
loops only account for 30% of total executed in-
structions [10] and the average number of iterations
per execution is very low [17].

Speculative Multithreaded processor proposed
in [10] employs an hardware mechanism using a
form of value prediction to handle inter-thread reg-
ister dependencies. Threads are also created only
at loop iterations. The mechanism is tailored heav-
ily to exploit the characteristics of loop iteration
threads. Therefore, it is not applicable to thread
models that include non loop-iteration threads.

Finally, Trace Processor [12], Superthreaded ar-
chitecture [16], and MP98 processor [5] use a
global register file for synchronizing register val-
ues. Although this approach is more straightfor-
ward, the port requirements and the latency of long
wires when accessing this centralized structure are
likely to limit the scalability and the performance
achieved by these architectures.

3. Register Synchronization

Before describing our register synchronization
method, we first explain thread execution model
we used throughout this paper. In this model, a
sequential program is first partitioned into threads
by a compiler. We define thread as a connected
subgraph of a control flow graph with exactly one

entry point. Overlapped regions shared by two or
more threads may not exist. Thread boundaries
are put at function invocations, innermost loop
iterations, and at remaining points necessary to
satisfy the thread definition [2]. During the exe-
cution, threads are scheduled to the CMP’s pro-
cessing units in a round-robin fashion. A thread
control unit is responsible to predict and validate
the execution of the threads. Memory loads are
speculatively executed and a mechanism to detect
memory dependency violation similar to the one
described in [8] is provided. In case a violation oc-
curs, the violating thread and all of its successors
are flushed and restarted. Finally, inter-thread reg-
ister dependencies which is the main focus of this
paper are synchronized.

3.1 Compiler Support

To relax the hardware requirements, compiler
is used to identify inter-thread register depen-
dencies and insert necessary timing information
to safely synchronize values between dependent
threads. Specifically, for each statically defined
thread, the following information is generated by
the compiler:

e create mask : inserted into thread headers;
specifies set of registers possibly redefined by
the thread; depending upon the control flow, a
register in the mask may be released without
modification.

e send flags : a 1-bit extension in instruction
opcode; if set, indicates that the instruction’s
destination register is ready for communication
when the instruction retired.

e send instructions : explicitly encode registers
ready for communication when the instruction
retired.

create mask RS
@ implicit

..... XXX, X O explicit-unpacked
'3= L1 ("3 bitset

N
v

~ 20 | @explicit-packed
S
o 15 §7
o
210
e
0 1 |
o £ Q v = o T x
&5 4835 g
o) O o -~ = F [
88 8 E T 408 ¢
[8 2 <
explicit send b4 g -
instruction - —

(a) (b)

Fig. 1 Static information generation

Figure 1(a) illustrates an example on how this
information is generated. For a static thread shown
in the figure, we first set r3’s entry in the create
mask since r3 is redefined inside the thread. Then,

we identify points to safely send the value of r3. In
case the control flow follows the right path, the safe
point is when the second instruction writing to r3
is retired. Thus, we set the instruction’s send flag.
On the other hand, if the control flow follows the
left path, the safe point is at the beginning of the
left-side basic block. Here, we need to explicitly
insert a send instruction to send the value of r3.

Explicitly inserted send instructions may sub-
stantially increase the total number of instruc-
tions fetched. Figure 1(b) shows: the percentage
of executed instructions that have their send flag
set (implicit), the percentage of send instructions
when only one register can be specified in an in-
struction (explicit-unpacked), and the percentage of
send instructions when we can pack some registers
into one instruction (explicit-packed). For explicit-
packed we provide four new opcodes, each can pack
int register 0 to 15, int register 16 to 31, fp register
0 to 15, and fp register 16 to 31, respectively.

The figure shows that more than half of the in-
formation takes the form of send flags which incur
no additional overhead. However, it also suggests
the necessity to encode more than one registers
into one send instruction otherwise the overhead
becomes significantly large. The four new opcodes
we adopted helped to suppress the overhead to less
than 6%. It might not be an optimal solution, but
is acceptable for our research purpose and used
throughout this paper.

3.2 Synchronization

Instructions whose operand value is produced by
a predecessor thread must be stalled in order to
maintain correct execution semantics. We accom-
plish this by maintaining wait and redefined masks
of logical registers. Wait mask is created by OR-
ing create masks of predecessor threads. Thread
control unit, which maintains create masks of cur-
rently active threads, creates the wait mask at the
beginning of a thread execution. If wait bit of a
register in the mask is set, it indicates that the
register may be produced by one or more of the
predecessor threads. Consequently, the execution
of instructions that use the register value should
be stalled.

However, not all instructions whose operand reg-
ister has its wait bit set need to be stalled. If the
register is redefined by another instruction, suc-
ceeding instructions from the same thread that use
the register are not necessarily be stalled. To iden-
tify which registers have been redefined inside a
thread, we accommodate each thread with a rede-
fined mask. At the beginning of execution, all of

the bits are cleared. When an instruction is de-
coded the corresponding redefined bit of its des-
tination register is set. If redefine bit of a reg-
ister is set, successive instructions that use the
same register as source operands, do not need to
wait for the values from predecessor threads even
if the wait bit of the register is set. In other
words, a source register of an instruction needs
to be synchronized only if the following condition,
wait(regid) & !redefined(reg-id), is asserted.

wait mask
1110 |

previous
threads
create masks

entry for RO (leftmost)
to R3 (rightmost)
is shown for each mask

[1100

use-def sequence
(program order)

use RO 0000 Do—an
""" R1 not synced
def R1 —

N—
use R1—{—|_ 0100 |—{>0—(@nD l@m

redefined mask sync mask

RO synced

i

Fig. 2 Synchronization method

Figure 2 illustrates an example of synchroniza-
tion process in our design. Entries for RO to R3
are shown from left to right for each mask. Sup-
pose the previous three predecessor threads have
create masks of 0010, 1100, and 1000 respectively,
then by bitwise OR-ing these masks, a wait mask of
1110 is created. This bit pattern indicates that the
previous threads produced RO, R1, and R2. Sup-
pose the first instruction in the current thread uses
RO. At this point, the corresponding redefined bit
of RO is 0, thus sync bit of RO is set to 1. Then we
know that the instruction should be stalled until
RO is made available by the latest producer among
the predecessor threads. Now suppose the other in-
struction in the current thread use R1. This time,
also suppose one of preceding instructions has re-
defined R1. In this case, since the redefined bit of
R1 was set to 1, sync bit of R1 is 0. Consequently,
we do not need to synchronize R1 value for this
instruction.

4. Datapath Design

In this section, we present datapath design for
implementing synchronization method described in
the previous section. The design includes extension
of existing datapath and integration of a register
communication datapath. The extension of exist-
ing datapath includes:

e Redefined mask in rename table: the status of
this mask must be correctly rolled-back in case
of branch mispredictions.

. 0.5 [Javerage

3 —&-099.g0

< 04 | —- 124.m88ksim

‘{_) N 126.gcc

29 —<—129.compress

£S5 o3l [= - 130

°g —@- 132.ijpeg

o< —— 134.perl

{-:, L 02t — 147.vortex
(]

Lo

E’ 01 f

(=}

=z

thread distance

Fig. 3 Thread distance statistics of inter-thread register

dependencies

e Additional bank of registers: required to re-
cover register state to its initial value when a
thread misprediction or a memory violation oc-
curs.

e Logical id fields for source registers in reserva-
tion station: necessary to track the status of
synchronized registers. When a register value
is received from a predecessor thread, its logi-
cal identifier is broadcasted to the reservation
station. Instructions waiting for the register
clear their corresponding synchronization bits
and become dispatchable.

e Physical and logical id field for destination reg-
ister in reorder buffer: necessary to map back
physical id to logical id when sending the reg-
ister.

Although implementation issues of the above ex-
tension are not less important, due to the limita-
tion of space, for the rest of this section we focus
our discussion on the design and implementation
issues of the communication datapath.

4.1 Preliminary Analysis

We performed an analysis to find thread distance
characteristics of inter-thread register dependen-
cies. The results for eight integer applications from
spec95 benchmark are shown in figure 3. The num-
ber of inter-thread register dependencies in the fig-
ure is taken by counting the number of producer-
consumer instruction pairs for every synchronized
register. This number is normalized to the num-
ber of intra-thread register dependencies. An im-
portant characteristic to be noted here is that the
largest part of inter-thread register dependencies
exists between two adjacent threads (i.e. when
thread distance = 1). Consequently, it is very im-
portant to provide fast communication datapath
between neighboring PUs to benefit from this char-
acteristics.

We also estimated latency and bandwidth re-
quirements for communication datapath. For each
consumer thread we assumed a datapath as shown

producers

consumer

latency

pipelined datapath

Fig. 4 Datapath used for studying latency and bandwidth
requirements

FZ:mmin

¥ | Taverage
0.9 I | —*099.g0 i
-#-124.m88ksim
HoH 126.gcc
——129.compress
0.8 H | —+130.li
—e—132.ijpeg

M [—+134.perl

— 147.vortex

09 r

Normalized IPC

08

0.7

. . 0.7
1 2 3 4 5 1 2 3 4 5
bandwidth [words]

latency [cycles]

Fig. 5 Latency and bandwidth sensitivity

in figure 4. We assumed an ideal FIFO (zero la-
tency, unlimited capacity, no insertion congestion)
for the analysis. Figure 5 shows how the perfor-
mance (IPC) is affected when we varied the latency
and bandwidth of the datapath for a 4-PU CMP
configuration. The IPC is normalized to the IPC
when the latency is zero and the bandwidth is un-
limited. The results indicate that the performance
is particularly sensitive to the increase in commu-
nication latency. A one cycle increase in latency
leads to a 2.6% decrease in performance. On the
other hand, the bandwidth requirement is moder-
ate. A bandwidth of one word per cycle achieved
97% of performance achieved when the bandwidth
is unlimited.
4.2 Communication Datapath

The results of preliminary analysis suggested
that it is important to provide low latency commu-
nication, especially between two adjacent threads
which contribute to most of the inter-thread reg-
ister dependencies. Therefore, we chose to employ
a ring-topology datapath with a simple producer-
initiated communication protocol. The organiza-
tion of the datapath is shown in figure 6. We in-
tegrated and replicated the following datapath el-
ements into each processing unit (PU):

e Intermediate Register Buffer (IRB) : indexed by
physical register ID; holds speculative (not yet
committed) register values produced by the
PU.

PUO PU3
1 l 1 RF Register File
- EU Execution Unit
EU EU
RF] RF RE N IRB | Intermediate
Register Buffer
t CRB | Communication
y RB | i, L p RB | Register Buffer
g CRE CRE CRB > 6| CSC | Communication
> — -]
E [3} L 5 =>> | c Scoreboard
- ez >

Fig. 6 A ring-topology datapath and an example of communication process

o Communication Register Buffer (CRB) : indexed
by logical register ID; holds register values ei-
ther committed or propagated by previous PU.

e Communication Scoreboard (CSC) : indexed by
logical register ID; holds status of registers in
communication.

The organization and access control of IRB and
CRB are similar to renamed register file and archi-
tectural register file in split rename register file ar-
chitecture [13]. IRB holds speculative register val-
ues whereas CRB holds committed register values.
However, in our design IRB and CRB are used for
different purpose, that is to provide buffers when
register values moved closer to the consumer.

Communication control is implemented by mon-
itoring the status of registers in Communication
Scoreboard (CSC). Each entry in the scoreboard
holds the following information:

o Producer ID (PID) : ID of a producer PU that
initially generated or released the register; re-
quired to determine when to terminate propa-
gation.

o Ready-CRB (RC) bit : if set, indicates the reg-
ister value generated by a producer thread is
ready in CRB.

o Ready-Released (RR) bit : if set, indicates the
register value is released; A released register
means that no new value is generated and the
waiting instructing may proceed the execution
using the locally available register value.

e Updated (UPD) bit : if set, indicates the regis-
ter value and status has been updated to local
register file.

e Propagated (PRO) bit : if set, indicates the reg-
ister value has been processed for propagation
to the next PU; Only registers whose entry in
the create mask not set (i.e. not redefined in-
side the thread) are propagated.

Figure 6 also illustrates the communication pro-
cess occurs on the datapath. Suppose PU 1 gener-
ates a register value and sends it to the rest of the
PUs. The communication process can be described
as follows:

(1) PU 1’s Execution Unit (EU) executes an in-
struction and generates a value for the instruc-
tion’s destination register. When the value is
written back to Register File (RF), it is also
written to Intermediate Register Buffer (IRB).

(2) When the instruction is retired, the generated
register value is copied from the IRB to PU 2’s
Communication Register Buffer (CRB). Logi-
cal id stored in reorder buffer (see discussion
at the beginning of section 4) is used to map
back physical id to logical id during the pro-
cess. Storing logical id in reorder buffer is use-
ful to avoid accessing rename map which is al-
ready heavily ported and probably far in dis-
tance.

(3) Let us assume that the instruction has its
send flag set. When it retired, we set Ready-
CRB (RC) bit of the corresponding register in
PU 2’s Communication Scoreboard (CSC).

(4) Update logic of PU 2 is monitoring the CSC.
When it sees the RC bit of the register is set, it
knows that the value has been made available
in its CRB. It then reads the corresponding
value from CRB and updates its local register
file. It also forwards the values to execution
units. We define the datapath from CRB to
register file and forwarding path as update dat-
apath. Finally, PU 2 also sets Updated (UPD)
bit of the register in its scoreboard, indicating
that the local register file has been updated.

(5) PU 2 also propagates the value to PU 3. The
propagation logic checks the register entry in
create mask and if not set (i.e. PU 2 does not
redefine the register), moves the register value

from its own CRB to PU 3’s CRB. We define
this datapath as propagate datapath. PU 2 also
sets Ready-CRB (RC) bit of PU 3’s CSC. Con-
sequently, PU 3 knows the value is now avail-
able in its CRB. Finally, PU 2 sets the Prop-
agated (PRO) bit of the register in its score-
board.

In the above example, we did not describe the
procedure to handle explicit send instructions. If
the register is redefined inside a thread, the proce-
dure is basically identical. It differs in that, it is
not necessary to copy register values from IRB to
CRB since the values have already resided in CRB
(the values were copied when the instructions that
created them retired). The control logic then only
needs to set the RC bit of the register in next PU’s
CSC.

Complication arises when a register that initially
has its create bit set, happens not to be redefined
inside the thread. The register is then released by a
send instruction. In this case, we should propagate
value generated from a preceding PU, if any, or let
the consumer use locally available value. This can
be done as follows. If wait bit for the correspond-
ing register is set, then we know the register may
be generated by a preceding PU. In this case, we
clear the register entry in create mask and let the
propagation logic handles the rest. If the wait bit
is not set, then we set the Ready-Released (RR) bit
in the next PU’s CSC. When the next PU’s update
logic sees RR bit is set, it sets UPD bit and broad-
cast the register ID to reservation so that waiting
instructions may be dispatched and acquires regis-
ter values from local register file. Subsequently, the
propagation logic checks the PU’s create mask and
if not set, propagate the release status by setting
RR bit of CSC in the succeeding PU.

A distinctive feature of our communication dat-
apath is that register values are moved closer to
the consumer as soon as they become available.
At the time we know the values are ready to con-
sume, they are already residing in the consumer’s
CRB. This technique considerably reduces latency
compared to if we have to reread the value from
the producer’s register file. Our design also re-
lieves pressure on number of ports of register file
and rename map. In a minimal configuration, it
only add one write port to the register file and one
read port to rename map.

4.3 Update Pipeline

Figure 7 depicts a pipeline view of the update
process. The process involves a scheduling stage,

in which, the selected register ID is broadcasted to
reservation station so that waiting instructions, if
any, can be dispatched. Then, if RC is set, the reg-
ister map is read and the register file is updated.
At the same time, the register value is forwarded to
execution units, so that an immediately dispatched
instruction can receive the value. Assuming a min-
imum one cycle latency for scheduling, using this
datapath, there is a two-cycle minimum latency
after a producing instruction retired until a con-
sumer can retrieve the register value.

Set RC/RR

Read map ‘ RF update ‘

Forward

Dispatch ‘ Reg Read ‘ Execute

Fig. 7 Pipeline view of communication process

4.4 Misspeculation Recovery

A question may arise on how the mechanism
deals with misspeculation, either initiated by
thread misspeculation or by memory dependency
violation. Since in case of a misspeculation, the
local register file in the PU and the CRB in the
succeeding PUs may have been corrupted, we must
reset the status of communication and re-initiate
the process of updating and propagating register
values. Specifically, for each PU whose execution
must be restarted, it has to clear UPD and PRO
bits in its scoreboard. It also has to clear RC and
RR bits in its succeeding PU’s scoreboard. The
resetting mechanism is however simple since it can
be accomplished locally without any handshaking
process among the PUs.

5. Evaluations

To evaluate the efficiency of the design, we per-
formed simulations using a trace-based speculative
multithreading CMP simulator whose configura-
tion is shown in table 1. It simulates a 4-PU CMP
with an ideal thread prediction. Each PU is a 4-
issue 10-stage out-of-order superscalar core with a
32-kB L1 data and instruction cache (2-cycle la-
tency). An infinite size L2 cache (always hit, 6-
cycle latency) shared by all the PUs is assumed.
Eight integer applications from spec95 benchmark
are used for the simulations. The input parameters
are adjusted so that the execution finishes between
100-300 million instructions.

We collected data on three communication data-
path configurations shown in table 2. static-bwl is
the most simple configuration with one cycle up-
date latency, two cycles propagate latency, and one

Table 1 Simulation parameters

No. of Proc. Units 4 PUs
Thread Prediction ideal
Pipeline stages 10 stages
Fetch/Decode/Rename/Retire | 4 insts/cycle

No. of ALUs 2
No. of Address Units 2
No. of ROB entries 64
No. of LSQ entries 20
L1 ICache (2-way assoc.) 32 KB
L1 DCache (2-way assoc.) 32 KB
L1 cache access latency 2 cycles
L2 cache access latency 6 cycles
L2 Unified Cache ideal

Table 2 Datapath configurations

Comm. Params | static-bwl | static-bw?2 | stall-first
Update Lat 1 1 1
Update BW 1 2 1
Propagate Lat 2 2 2
Propagate BW 1 1 1
Scheduling static static stall-first

word per cycle update and propagate bandwidth.
static-bw?2 increases the update bandwidth to two
words per cycle. This implies a total of additional
two write ports in register file and two read ports
in rename map. Both configurations employ a stat-
ically assigned priority for scheduling update and
propagation. In contrast, the third configuration,
stall-first, employs a more sophisticated schedul-
ing in which registers whose consumer has already
waiting in the reservation station are scheduled
first.

Figure 8 shows the performance achieved nor-
malized to when the datapath is ideal. Ideal dat-
apath here is the datapath previously shown in
figure 4, with zero latency and unlimited band-
width. For the most simple configuration (static-
bwl), our design achieved a fairly high perfor-
mance, degraded only by 6% in average compared
to the ideal datapath. Looking into the applica-
tions individually, vortex and /i suffer a larger im-
pact in performance. This is mainly because the
number of inter-thread register dependencies and
the latency and bandwidth requirements in these
two applications are substantially larger (see fig. 3
and fig. 5). Increasing update datapath bandwidth
(static-bw2) or providing a better scheduling (stall-
first) achieved similar amount of improvement over
static-bwl configuration. Considering that increas-
ing update bandwidth requires additional ports in
register file and rename map, implementing a bet-
ter scheduling might be a better approach.

Figure 9 shows sensitivity of performance to vari-
ation in latency and bandwidth of update and
propagate datapath. The base configuration is

0.95

0.90

M static-bw1
[static-bw2
[stall-first

Normalized IPC

0.85

0.80

134.perl

Q

o

o
©
~
—

099.go
124.m88ksim
129.compress
130.li
132.ijpeg
147.vortex
average

Fig. 8 Performance relative to when the communication
datapath is idealized

1.00 4.=.*7.\. 1.00 .?/P.—._.*
o 095 0.95 -
5
o
(]
S 090 r 0.90
18]
£
S
Z 085 f 0.85
0.80 0.80 . k . .
1 2 3 4 5 1 2 3 4 5
Latency [cycle] Bandwidth [words]

Fig. 9 Latency and bandwidth sensitivity of update and
propagate datapath

identical as static-bwl. For each evaluation, we
varied the parameter in consideration and set the
other parameters to their ideal values (zero for la-
tency and unlimited for bandwidth). The results
show that the performance is more sensitive to la-
tency and bandwidth of update datapath than to
latency and bandwidth of propagate datapath. In
particular, it is very sensitive to the latency of up-
date path. These results are consistent with the
analysis results previously described in section 4.
Since most of inter-thread register dependencies
exist between two adjacent threads, the perfor-
mance is particularly sensitive to the latency of
update datapath.

Finally, from the fact that the performance is in-
sensitive to latency and bandwidth of propagate
datapath, it can be implied that ring-topology is
sufficient for handling inter-thread register commu-
nication. The advantages of ring network is that
the communication protocol is simpler and the dat-
apath is easier to optimize to tolerate communica-
tion latency. In our case, we can focus the de-
sign and optimization effort to reduce the latency
of update datapath, and make trade-off with the
propagate datapath when necessary.

6. Conclusions

This paper proposed a register communication
mechanism for speculative multithreading chip
multiprocessors. The elements of the mechanism
are a register synchronization method and a com-
munication datapath necessary for the synchro-
nization process. Compiler assistance is used to re-
lax hardware requirements for the synchronization
process. The compiler identifies inter-thread reg-
ister dependencies and determines timing to safely
communicate register values.

Observing that most of inter-thread register de-
pendencies exist between two adjacent threads, we
designed a ring-topology communication datapath.
Our design tolerates communication latency by ea-
gerly moving register values generated by a pro-
ducer closer to the consumer even when it is still
uncertain whether the values are the final values
needed for the communication. Furthermore, we
employed a producer-initiated communication pro-
tocol to simplify the communication process and
minimize communication latency. Finally, our de-
sign also avoids substantial increase in number of
ports of the register file and rename map. A mini-
mal configuration requires an additional write port
to register file and an additional read port to re-
name map. Evaluation results showed that for the
configuration, our design achieved performance de-
graded only by 6% compared to an ideal datapath.

Acknowledgements

This research is partially supported by Grant-in-Aid
for Fundamental Scientific Research B(2) #13480077
from Ministry of Education, Culture, Sports, Science
and Technology Japan, Semiconductor Technology
Academic Research Center (STARC) Japan, CREST
project of Japan Science and Technology Corpora-
tion, and by 21st century COE project of Japan So-
ciety for the Promotion of Science.

We are also thankful for anonymous reviewers for
their constructive critics and suggestions.

References

[1] H. Akkary and M. A. Driscoll. A Dynamic Multi-
threading Processor. In Proc. of the 31st Interna-
tional Symposium on Microarchitecture, 1998.

[2] N. D. Barli, H. Mine, S. Sakai, and H. Tanaka. A
Thread Partitioning Algorithm using Structural Anal-
ysis. ARC-2000-139, 2000(24):37-42, 2000.

[3] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing. In Proc. of
the 27th International Symposium on Computer Ar-

chitecture, pages 282-293, 2000.

[4] S.E. Breach, T.N. Vijaykumar, and G.S. Sohi. The
Anatomy of the Register File in a Multiscalar Proces-
sor. In Proc. of the 27th International Symposium on
Microarchitecture, pages 181-190, 1994.

[6] M. Edahiro, S. Matsushita, M. Yamashina, and
N. Nishi. A Single-Chip Multiprocessor for Smart
Terminals. IEEE Micro, 20(4):12-20, 2000.

[6] L. Hammond, M. Willey, and K. Olukotun. Data
Speculation Support for a Chip Multiprocessor. In
Proc. of the 8th International Symposium on Archi-
tectural Support for Parallel Languages and Operat-
ing Systems, pages 58—69, 1998.

[7] J. Kahle. Power4: A Dual-CPU Processor Chip. In
Proc. Microprocessor Forum '99, 1999.

[8] V. Krishnan and J. Torrellas. A Chip-Multiprocessor
Architecture with Speculative Multithreading. IEEE
Transactions on Computers, 48(9):866—880, 1999.

[9] V.Krishnan and J.Torrellas. The Need for Fast Com-
munication in Hardware-Based Speculative Chip Mul-
tiprocessors. International Journal of Parallel Pro-
gramming, 29(1):3-33, 2001.

[10] P. Marcuello, A. Gonzalez, and J. Tubella. Specula-
tive Multithreaded Processors. In Proc. of the 12th
International Conference on Supercomputing, pages
77-84, 1998.

[11] K. Olukotun, L. Hammond, and M. Willey. Improv-
ing The Performance of Speculatively Parallel Appli-
cations on the Hydra CMP. In Proc. of the 13th
International Conference on Supercomputing, pages
21-30, 1999.

[12] E. Rotenberg, S. Bennett, and J. E. Smith. Trace
Cache: A Low Latency Approach to High Bandwidth
Instruction Fetching. In Proc. of the 29th Interna-
tional Symposium on Microarchitecture, pages 24—
35, 1996.

[13] D. Sima. The Design Space of Register Renaming
Techniques. IEEE Micro, 20(5):70-83, 2000.

[14] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar.
Multiscalar Processors. In Proc. of the 22nd Interna-
tional Symposium on Computer Architecture, pages
414-425, 1995.

[15] M.Tremblay. MAJC-5200: A VLIW Convergent MP-
SOC. In Proc. Microprocessor Forum '99, 1999.
[16] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C.
Yew. A Chip-Multiprocessor Architecture with Spec-
ulative Multithreading. IEEE Transactions on Com-

puters, 48(9):881-902, 1999.

[17] J. Tubella and A. Gonzales. Control Speculation
in Multithreaded Processors through Dynamic Loop
Detection. In Proc. of the 4th International Sympo-
sium on High-Performance Computer Architecture,
pages 14-23, 1998.

