
1

Improving Conditional Branch Prediction on

Speculative Multithreading Architectures

Chitaka Iwama,† Niko Demus Barli,† Shuichi Sakai†

and Hidehiko Tanaka†

Dynamic branch prediction is an indispensable technique for increasing performance in
modern processors, and has been actively investigated in the last decade. However, those
methods are not readily applicable to speculative multithreading architectures. In this paper,
we discuss problems that emerge when conventional conditional branch predictions are used
on speculative multithreading architectures, and propose a prediction scheme to improve
the prediction accuracy. Evaluation results show that by using our scheme, the average
of prediction accuracy of SPEC95int applications can be improved from 89.7% to 90.4%,
approaching the accuracy on single threaded execution of 92.9%.

1. Introduction

With the current trend of microprocessor ar-
chitecture toward deeper pipeline and wider is-
sue width, branch prediction has become a crit-
ical part of microprocessor design. Branch pre-
diction addresses two basic problems: predicting
direction of conditional branches and predicting
address from which the next instructions will be
fetched. In this paper, we will concentrate on
the former one, and discuss conditional branch
predictions in the context of speculative multi-
threading architectures.

Many sophisticated conditional branch predic-
tion schemes have been proposed, including two-
level adaptive predictors [2, 3], gshare predic-
tor [4], and hybrid predictors [4, 5]. These pre-
dictors and their variants exploit past history of
the predicted branch, history of recent branches,
and other branch correlations to accurately pre-
dict conditional branches [6, 7]. However, while
these predictors can achieve high accuracy in
current superscalar processors, the situation is
different when they are applied to speculative
multithreading architectures.

Speculative multithreading has been proposed
in some Chip Multiprocessor (CMP) architec-
tures [9–14], to accelerate CMP performance
when executing single-thread programs. These
architectures partition a program into threads
and speculatively execute them in parallel.
These threads are not necessarily independent,
and may include some sort of dependences (con-

† Graduate School of Information Science and Tech-
nology, The University of Tokyo

trol, register, memory or combination of them).
The processors aggressively execute these specu-
lative threads, and take necessary actions when
the speculative execution failed.

Due to distributed nature of CMP’s process-
ing units (PUs) and unordered occurrences of
consecutive branches during speculative threads
execution, conventional conditional branch pre-
diction schemes will not perform as well as in the
case of single threaded execution. This paper
discusses this problem in more details, and pro-
pose a hardware scheme to improve the perfor-
mance of conditional branch prediction on spec-
ulative multithreading architectures.

The following sections are organized as follows.
Section 2 explains the speculative multithread-
ing model assumed in this paper and our sim-
ulation environment. Section 3 shows and dis-
cusses performance degradation of conventional
conditional branch prediction when used on
speculative multithreading architectures. Sec-
tion 4 presents our proposal of branch predic-
tion scheme and explains the rationale behind
it. Section 5 reports evaluation results of the
proposal. Finally, section 6 concludes the pa-
per.

2. Execution Model and Simulation En-
vironment

2.1 Execution Model
This paper assumes a speculative multithread-

ing model similar to Multiscalar architecture
[11]. As illustrated in figure 1, the architecture
has 4 PUs and a centralized thread control unit,
whose job is to schedule threads into PUs. A



2

Thread Control Unit

PU

Memory Disambiguation Unit

Reg.

Memory

PU

Reg.

PU

Reg.

PU

Reg.

Fig. 1 CMP model.

thread in this model can comprise a basic block,
multiple basic blocks, loop iteration, entire loop
or any group of basic block that has exactly
one entry point. In this paper, we partition a
program into threads using a method proposed
in [15]. First, thread candidates are identified
from program’s control flow graph using struc-
tural analysis. Then, thread candidates that
comprise of outermost loop iteration are iden-
tified and marked as threads. Thread bound-
aries are also put at function calls so that a new
thread will be spawned whenever a function is
called. For other parts of control flow graph, the
biggest possible thread candidates are identified
and marked as threads.

Both control and data dependences between
threads are allowed. Control dependences will
be administered and controlled by the thread
control unit. Data dependences will be handled
as follows:
• Register dependences are synchronized. An

instruction that uses a register value pro-
duced by a preceding thread is not allowed
to execute before that value is made avail-
able by the producer.

• Memory dependences are handled specula-
tively. Threads will execute LOADs spec-
ulatively with the expectation that its pre-
decessors will not STORE a value into the
same location at later time. Dedicated hard-
ware is responsible to check this collision. In
case a collision occurs, violating threads are
squashed and restarted.

2.2 Simulation Environment
We used eight applications from SPEC95int

suite as benchmarks. First we analyzed source
programs and partitioned them into threads.
Thread boundaries are indicated by a special in-
struction implemented for this purpose. After

building the binaries, we took execution traces
using an instruction level simulator. Execution
parameters for each program are adjusted so
that the program will finish the execution in 180-
370 million instructions.

The traces were then simulated using a specu-
lative multithreading simulator. Each PU is im-
plemented as an out-of-order superscalar proces-
sor. A 16-entry speculative store buffer is used
to support speculative multithreading. Regis-
ter communication latency between a producer
thread and a consumer thread is assumed to be
1 cycle. It is also assumed that a register value
can be sent to another thread as soon as the last
instruction which writes into the register retires.
In case a memory data dependence violation is
detected, the execution of the violating thread
and all of its successors will be restarted after
1 cycle of restart delay. Currently, we assume a
perfect cache for the simulation. All accesses to
memory are assumed to finish in 2 cycles. We
also assume a perfect next-thread prediction by
the thread control unit.

3. Conditional Branch Prediction and
Speculative Multithreading

3.1 Characterization of Conditional
Branch Predictions

Among many available conditional branch pre-
diction schemes, we limited our investigation to
four representative prediction schemes: bimodal
predictor, global predictor, per-address predic-
tor, and hybrid predictor such as the one found
in Alpha 21264 processor. Figure 2 illustrates
the structures of these predictors.

Bimodal predictor [1] is the most simple pre-
dictor among the four predictors. It uses a table
of saturating counters, usually 2 or 3 bits long,
indexed by the low-order bits of the branch ad-
dress. The appropriate counter is incremented
for each taken branch and decremented for each
non-taken branch. Thus bimodal predictor dis-
tinguishes repeatedly taken branches from re-
peatedly not-taken branches. Repeatedly taken
branches will be predicted to be taken, and re-
peatedly not-taken branches will be predicted to
be not-taken.

To achieve a higher prediction accuracy, pre-
dictors that use two levels of branch history have
been proposed [2, 3]. Global predictor and per-
address predictor are the two representative ver-
sions of them.



3

Table 1 Branch prediction unit parameters.

predictor size history history counter counter
length table ent. length table ent.

bimodal 4KB - - 2 bits 16K
global 4KB 14 bits 1 2 bits 16K
per-address 3.3KB 11 bits 2K 2 bits 2K

hybrid 3.6KB
global 1KB 12 bits 1 2 bits 4K
per-address 1.6KB 10 bits 1K 3 bits 1K
selector 1KB - - 2 bits 4K

PC

PC

per-address
history 

global history

counter

counter

counter

(a) Bimodal Predictor

(c) Per-address Predictor

(b) Global Predictor

Selector

Global

PC
Per-address

global history

(d) Hybrid Predictor

... ...

... ...

m
n

m

m

n

nn

Fig. 2 Conditional branch predictors.

Global predictor is designed to predict cur-
rent branch direction using behaviors of recent
branches. It typically consists of a global his-
tory register and a table of saturating counters,
as illustrated in figure 2(b). The history reg-
ister records directions taken by the most re-
cent branches, and is used to index the table
of counters. For a given global history pattern,
an appropriate counter is incremented or decre-
mented, and is used to predict branch direction
in the same way as the bimodal scheme. Since in
most cases the current branch has some kind of
relation with recent branches, the use of global
history register enables the global predictor to
be more accurate than the bimodal predictor.

Per-address predictor exploits repetitive pat-
terns of branches. The most common example of
this behavior is loop control branches. Instead
of a single global history register, per-address
predictor maintains histories of each branch in-
dependently. As shown in figure 2(c), there are
typically two tables used in the predictor. The
first one is a history table indexed by the low-
order bits of the branch address. Each entry
records the most recent branch directions of the

branch mapped to it. The second one is a ta-
ble of saturating counters, indexed by the per-
address history selected from the first table.

Evaluation results show that global and per-
address predictor have a comparable accuracy
in respect of each other [4]. Since each pre-
dictor uses different approaches for predicting
branches, there are classes of branches that can
be predicted better with one predictor, while
other classes of branches can be predicted with
more accuracy using the other predictor. This
leads to the idea of combining the advantages of
both predictors into one prediction scheme.

Hybrid predictor shown in figure 2(d) is a
combination of global and per-address predic-
tor, and is currently adopted in Alpha 21264
processor [8]. This predictor comprises a global
predictor, a per-address predictor, and a selec-
tor. The selector is a table of saturating coun-
ters, indexed by a global history register. This
register is the same register used to index the
global predictor. The counters in the selector
hold information on whether the global or the
per-address is more accurate for a given recent
branches history. Using this information, the se-
lector associates a currently predicted branch to
either global or per-address predictor which is
most likely to be more accurate. Using similar
amount of hardware resources, this hybrid ap-
proach is proved to be more accurate than the
stand-alone predictors [4–6].

3.2 Prediction Accuracy on Speculative
Multithreading Architecture

In section 1, it has been briefly discussed that
currently available branch prediction schemes
will suffer when applied to Chip Multiprocessor
which supports speculative multithreading. To
verify this, we compared branch prediction accu-
racy on 4 PU speculative multithreading archi-
tecture described in section 2.1 with that on con-
ventional single threaded execution architecture.
We assumed that each PU has an independent



4

conditional branch prediction unit. We simu-
lated eight applications from SPEC95int and ob-
served prediction accuracy for four branch pre-
diction schemes described in the previous sub-
section. Table 1 shows parameters of branch
prediction schemes used in this experiment.

Fig. 3 Speculative multithreading effect on branch
prediction accuracy.

Figure 3 shows the average of prediction hit
rate. Performance loss is observed for all predic-
tors, although the amounts vary among predic-
tion schemes. Global predictor suffers the most,
losing its accuracy for 6.6%. Per-address and
hybrid predictor suffer moderate performance
degradation of 3.2%, while the accuracy loss of
bimodal predictor is only 0.5%. Overall, our
result shows that when used in the specula-
tive multithreading architecture, global predic-
tor and per-address predictor are less accurate
than a bimodal predictor, and a hybrid predictor
can only maintain a narrow performance margin
to a bimodal predictor.

Analyzing the characteristics of speculative
multithreading execution, we can identify some
reasons for this branch prediction accuracy
degradation.
(1) Increasing time to train counters. This is the

only factor that contributes to the perfor-
mance loss of the bimodal predictor. Since
this loss is almost negligible compared to
those of the other predictors, we can de-
duce that the increased training time is not
the limiting factor for performance in global,
per-address or hybrid predictor.

(2) Increasing time to record repetitive patterns.
For example, to record a repetitive pattern
of a loop control branch, it takes 4 times
more number of iterations for speculative
multithreading 4PUs than for 1PU carry-

ing out single threaded execution. This af-
fects prediction accuracy at the beginning of
execution and increases compulsory mispre-
diction. But, again, it does not contribute
much to the overall accuracy degradation.

(3) Incomplete branch history. The branch his-
tory in each predictor does not contain the
results of branches executed in other PUs.
This prevents a predictor to exploit cor-
rect correlation information and leads to
poor performance, as shown by per-address,
global and hybrid predictor.

(4) Global history inaccessibility. Since we as-
sume a PU does not have access to global
history register of the other PUs, a global
predictor cannot use recent branches’ his-
tory from its directly preceding thread. It
can only use history of branches from pre-
vious thread executed in the same PU. This
explains why a global predictor suffers more
severely than a per-address predictor.

The next section will describe how we can deal
with this accuracy problem by using a scheme we
call per-thread branch predictor.

4. Improving Prediction using Per-thread
Branch Predictor

4.1 Per-thread Branch Predictor Idea
Our experimental result has shown that the

global predictor performs the worst on specula-
tive multithreading architectures. However, if
we can provide the predictor with sufficient in-
formation on branch correlations, it has poten-
tial to perform much better. By modifying the
global predictor and improving its accuracy, it
is also expected that the hybrid predictor will
benefit from it and achieve a better overall per-
formance.

As we have already discussed, there are two
main factors for the poor performance of the
global predictor: incomplete branch history and
inaccessibility of the global history. While the
latter problem can be solved if we can main-
tain a globally accessible history register, the
former problem is much more difficult to con-
front. Since consecutive threads are executed in
parallel on different PUs, there are both spatial
and timing problem to build a complete branch
history. Especially the timing problem prevents
us to use the most recent branches’ directions
at the beginning of each thread execution, i.e.



5

when a thread begins to execute, the history of
branches from a preceding thread is not avail-
able unless all the branches in the thread have
executed.

The difficulty to build a complete branch his-
tory in a global predictor originates from the
characteristic that the global predictor tries to
maintain a history of branches within a global
scope, i.e. the whole program. This leads us to
the idea of narrowing the scope of the history to
a single thread rather than the whole program.
Threads in speculative multithreading are usu-
ally created at loop boundaries and function call
boundaries, so that we can expect enough cor-
relation locality to predict a branch correctly.
During the execution of a thread, the history of
branch directions are recorded in a register local
to the PU, and is used to predict branches in
an identical way to the global prediction. When
the execution is finished, we save this history to
a table accessible by all PUs. This saved his-
tory will be used to initialize the history register
when the same thread is executed again in the
future.

Using the above scheme, we still have to face
the timing problem, because when a PU starts
to execute a thread and tries to retrieve initial
history value, the preceding copy of the same
thread may still be in execution on the other
PU. We solve this problem by letting the PU re-
trieve the history value from the last committed
thread. Although we cannot use the most up-
to-date version of the thread’s history, we could
expect that most threads would behave in the
same way most of the time. Thus, there should
be little performance loss.

Since the proposed prediction scheme exploits
the locality of branch correlation inside a thread,
we call this scheme per-thread branch prediction.

4.2 Implementation of Per-thread
Branch Predictor

Figure 4 illustrates the structure of a per-
thread branch predictor. Each PU has a pre-
dictor unit whose structure is identical to that
of a global predictor. In addition, there is a
globally visible per-thread history table, indexed
by thread identifier. Each entry of this table
records branch histories of the thread associated
with it. When a PU starts executing a thread, it
will retrieve branch history from the table, and
initialize its history register with the retrieved
history. During the execution of the thread, pre-

dictions are carried out locally in the PU in the
same way as the global prediction scheme. Af-
ter the execution is finished, current value of the
PU’s history register is written back to the per-
thread history table.

Per-thread
History Table

thread-id

PU1
counter

history register

PUn
counter

history register

...

Fig. 4 Per-thread branch predictor.

In case a memory violation occurs and a
thread needs to be restarted, the PU will reini-
tialized its history register with the value cur-
rently written in the per-thread history table.
In this way, the history register is not contami-
nated by misspeculated executions.

Per-thread branch predictor has some benefi-
cial features as follows:
(1) Simple to implement. It only needs an ex-

tra table to hold per-thread branch histories.
This table can be implemented as a direct
mapped table to reduce the amount of hard-
ware required. It will also be shown later
that this table only needs a size of about 3
KBytes to achieve an optimum performance.

(2) No additional delay added to branch predic-
tor’s critical path. Although a PU needs to
retrieve history from the per-thread history
table at the beginning of each thread execu-
tion, it predicts branches locally in a manner
identical to a global predictor. Thus, our
per-thread prediction scheme should have
similar critical path as a global predictor and
should be feasible enough to implement.

5. Evaluations

In this section, we first evaluate prediction
accuracy of a per-thread branch predictor and
compare it with that of a global predictor. Then,
we combine a per-thread predictor and a per-
address predictor to form a hybrid predictor and



6

compare its performance with the original hy-
brid predictor of global and per-address predic-
tor. Finally, we investigate how the prediction
accuracy changes when the number of entries in
the per-thread history table is varied, and dis-
cuss some implementation aspects for the per-
thread history table. The detail of the simula-
tion approach is described in section 2.

5.1 Comparison of Per-thread Predictor
with Global Predictor

We investigated the performance of a per-
thread predictor and a global predictor on spec-
ulative multithreading architectures. In both
cases, each PU has a structure identical to the
4KByte global predictor previously described in
table 1. Per-thread predictor uses an additional
3.5KByte per-thread history table (14 bit his-
tory × 2048 entries). The table is indexed by
low-order address bits of the first instruction in
the thread.

Figure 5 shows the simulation results for eight
applications from SPEC95int benchmark suite.
It also shows prediction accuracy of the global
predictor in single threaded execution for com-
parison. The per-thread predictor significantly
improved the performance of the global predic-
tor, 4.9% in average. Only m88ksim suffered a
slight performance degradation. It is because,
in m88ksim, most of the threads were too small
for the per-thread predictor to exploit enough
branch correlations. But in most cases, the per-
thread predictor could effectively exploit locality
of branch correlations within threads. The aver-
age hit rate is 89.0%. Comparing with the result
shown in figure 3, it can also be seen that this hit
rate is higher than that of the bimodal and the
per-address predictor when used in speculative
multithreading execution.

These results shows that the per-thread pre-
dictor makes effective use of branch correlations
within threads and improves prediction accuracy
of the global predictor.

5.2 Combining Per-thread Predictor with
Per-address Predictor

In the previous evaluation, the per-thread pre-
dictor did not perform better than the hybrid of
global and per-address predictor. However, we
can expect a better accuracy if we combine the
per-thread predictor with a per-address predic-
tor and form a new hybrid predictor.

To verify this, we compared the accuracy of
the new hybrid predictor with that of the orig-
inal hybrid predictor. We assumed that each
PU has a 4KByte global and per-address hybrid
predictor shown in table 1, and added a 3KByte
per-thread history table (12 bit history × 2048
entries) to use it as a per-thread and per-address
hybrid predictor.

The simulation results are shown in figure 6.
The prediction accuracy of the global and per-
address hybrid predictor in single threaded exe-
cution is also shown for comparison. As we ex-
pected, the hybrid of per-thread and per-address
predictor was more effective than a per-thread
predictor of the same size. It outperformed the
original hybrid of global and per-address predic-
tor for many applications. By using the per-
thread prediction scheme, the prediction accu-
racy for go, gcc, ijpeg, and vortex was improved
by 1.7%-2.9%. The improvement covers more
than 30% of the performance loss caused by
speculative multithreading. In average, the hy-
brid of per-thread and per-address predictor was
the best performing predictor for the speculative
multithreading architecture, outperforming the
original hybrid predictor by 0.7%.

However, the new hybrid predictor was less
accurate than the original hybrid predictor for
m88ksim and li. This can be explained by the
fact that the characteristic of the per-thread pre-
dictor is closer to a per-address predictor when
the sizes of threads are small. Compared with
the other applications, m88ksim and li comprise
of small threads so that little benefit was gained
by combining a per-thread predictor with a per-
address predictor.

Figure 7 shows how often an element predictor
is selected inside the hybrid predictors. Global
predictor is selected 37.8% of the times in av-
erage when the programs are executed in single
threaded environment, but this number is down
to 26.9% in speculative multithreading execu-
tion. This proves that the performance degra-
dation of the hybrid predictor is caused mainly
by the poor accuracy of the global predictor.
But when the global predictor is replaced with
a per-thread predictor, the per-thread predictor
is selected for as much as 54.9% of the branch
executions, because it is more accurate than a
global predictor.



7

Fig. 5 Hit rate of per-thread and global predictor. Fig. 6 Hit rate of (per-thread+per-address) hybrid pre-
dictor and (global+per-address) hybrid predictor.

Fig. 7 Fraction of no. of predictions made by a
particular predictor inside a hybrid predictor.

Fig. 8 Prediction accuracy with varying
per-thread history table size.

5.3 Varying the Size of Per-thread His-
tory Table

Figure 8 shows how the accuracy of the
per-thread and per-address hybrid predictor
changed when the size of the per-thread history
table was varied. We fixed the history register
length to 12 bits, and varied the number of en-
tries in the per-thread history table. All other
parameters are the same with those we used in
the previous section.

According to figure 8, a table size of 3 KBytes,
which has 2048 entries of 12 bit history, will
give an optimum accuracy while keeping the
hardware small. It should be noted, however,
that the SPEC95int benchmark we used in this
evaluation consists of relatively small applica-
tions compared to current real world applica-
tions. Bigger programs will be partitioned into
larger number of threads, and tend to use more
entries in the per-thread history table. But since
there is principle of time locality that should also
apply to threads, i.e. a thread that is being ex-
ecuted now is likely to be executed again in the

near future, we could expect that the need for
the per-thread table size will grow in slower pace
compared to the growth rate of real world appli-
cations sizes. Moreover, in case a big and fast
table is required, we can adopt certain imple-
mentation techniques available, such as the ones
used to implement hierarchical caches in modern
processors.

6. Concluding Remarks

This paper first pointed out and verified
that the performance of conventional conditional
branch predictors is degraded when used on
speculative multithreading architectures. We in-
vestigated and classified problems for four types
of branch prediction schemes: bimodal predic-
tor, global predictor, per-address predictor, and
hybrid of global and per-address predictor.

Having analyzed the problems, we proposed a
branch prediction scheme to improve prediction
accuracy in speculative multithreading execu-
tion. This prediction scheme is based on a global
predictor, but exploits locality of branch corre-



8

lations within a thread rather than the whole
program. We called the scheme per-thread pre-
diction. A per-thread predictor consists of local
prediction units within each PU that are simi-
lar to global predictors, and a globally accessible
per-thread history table. Each entry of this ta-
ble holds history for a thread associated with it.
This history is used to initialize the history reg-
ister in a PU before the execution of the thread
begins, and is updated when the execution is
finished.

The evaluation results showed that the per-
thread predictor is more accurate than a global
predictor by 4.9%, and when combined with a
per-address predictor, outperforms the hybrid
of global and per-address predictor by 0.7%. We
also argued that our per-thread predictor is sim-
ple and cost effective, and should be feasible
enough to implement.

We believe that the per-thread prediction ap-
proach has a good potential to improve the
branch prediction on speculative multithreading
architectures. However, further investigations
are needed to evaluate how its prediction accu-
racy depends on the thread partitioning algo-
rithm, and how it contributes to the overall per-
formance of the processor. We also plan to char-
acterize the performance degradation of conven-
tional branch predictors in more detail and refine
the prediction scheme.

References

[1] James E. Smith, A Study of Branch Prediction
Strategies, Proceedings of the 8th Annual Inter-
national Symposium on Computer Architecture,
pp. 135-148, 1981

[2] Tse-Yu Yeh and Yale N. Patt, Alternative im-
plementations of two-level adaptive branch pre-
diction, Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture,
pp. 124-134, 1992

[3] Tse-Yu Yeh and Yale N. Patt, A Comparison of
Dynamic Branch Predictors that use Two Lev-
els of Branch History, Proceedings of the 20th
Annual International Symposium on Computer
Architecture, pp. 257-266, 1993

[4] Scott McFarling, Combining Branch Predic-
tors, Technical Report TN-36, Digital Western
Research Laboratory, 1993

[5] Po-Yung Chang, Eric Hao, Tse-Yu Yeh and
Yale N. Patt, Branch Classification: A New
Mechanism for Improving Branch Predictor
Performance, Proceedings of the 27th Annual

International Symposium on Microarchitecture,
pp. 22-31, 1994

[6] Marius Evers, Sanjay J. Patel, Robert S. Chap-
pell and Yale N. Patt, An Analysis of Cor-
relation and Predictability: What Makes Two-
Level Branch Predictors Work, Proceedings of
the 25th Annual International symposium on
Computer Architecture, pp. 52-61, 1998

[7] Cliff Young, Nicolas Gloy, and Michael D.
Smith, A Comparative Analysis of Schemes for
Correlated Branch Prediction, Proceedings of
the 22nd Annual International Symposium on
Computer Architecture, pp. 276-286, 1995

[8] Richard E. Kessler, The Alpha 21264 Micro-
processor, IEEE Micro, pp. 24-36, March-April
1999

[9] Kunle Olukotun, Basem A. Nayfeh, Lance
Hammond, Ken Wilson and Kunyung Chang,
The Case for a Single Chip Multiprocessor, Pro-
ceedings of the 7th International Symposium
Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VII),
pp. 2-11, 1996

[10] Lance Hammond, Mark Willey, and Kunle
Olukotun, Data Speculation Support for a Chip
Multiprocessor, Proceedings of the 8th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems, pp. 48-69, 1998

[11] Gurindar S. Sohi, Scott E. Breach, and T. N.
Vijaykumar, Multiscalar Processors, Proceed-
ings of the 22nd Annual International Sympo-
sium on Computer Architecture, 1995

[12] Venkata Krishnan, Josep Torellas, A Chip-
Multiprocessor Architecture with Speculative
Multithreading, IEEE Transactions on Comput-
ers, Vol. 48, No. 9, September 1999

[13] 小林 良太郎, 岩田 充晃, 安藤 秀樹, 島田 俊夫, 非
数値計算プログラムのスレッド間命令レベル並列
を利用するプロセッサ・アーキテクチャSKY, 並列
処理シンポジウム JSPP’98, pp.87-94, Jun 1998

[14] 鳥居 淳, 近藤 真己, 本村 真人, 西 直樹, 小長谷
明彦, On Chip Multiprocessor 指向 制御並列アー
キテクチャMUSCATの提案, 並列処理シンポジウ
ム JSPP’97, pp.229-236, 1997

[15] Niko D. Barli, Hiroshi Mine, Shuichi Sakai, and
Hidehiko Tanaka, A Thread Partitioning Algo-
rithm using Structural Analysis, 情報処理学会計
算機アーキテクチャ研究会, ARC-2000-139 Vol.
2000, No. 24, pp. 37-42, Aug 2000


