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This paper studies and explores cost-effective executionmechanism for VLDP: a new micro-
processor architecture, which performs multipath execution on a large number of execution
units with distributed registers. Special attention is payed to current development on the
interconnection network for distributed register communication. Trace-driven simulations are
performed to quantitatively evaluate the execution mechanism.

1. Introduction

A lot of researches have been made in the
area of superscalar, which focus on exploiting
Instruction-Level Parallelism(ILP). An impor-
tant point is whether there is enough paral-
lelism to exploit. S.Jourdan [9] stated this prob-
lem that with infinite issue size and instruction
window size of 256, instruction per cycle(IPC)
could reach 10. Considering usual IPC from 1
to 2 in current even state-of-the-art micropro-
cessor, there is still large space to extend the
ILP by scaling the issue width and implement-
ing very large instruction window.
However, the performance of processor is lim-

ited by the branch misprediction penalty. Once
a branch prediction missed, it takes many cycles
before the program recovers the right branch
path. One approach, multipath speculative ex-
ecution, helps to solve this problem.
Our Very Large Data Path(VLDP) architec-

ture is a novel microprocessor combining wide
instruction issue in large instruction window
and multipath speculative execution together to
heavily exploit the instruction level parallelism.
We provide 16 on-chip execution units(EU)
with register files distributed in them and make
research on the method for fast communica-
tion among them. Each EU performs the wide
issue out-of-order superscalar policy. Multi-
path speculative execution on the whole multi-
EU implements the huge instruction window as
large as around 200.
VLDP is constructed by control section [2],

execution section [1] and memory section [3].
Former research on execution mechanism of
VLDP is presented in detail by Y.Ajima [1].
This paper further describes the current devel-
opment on register communication via intercon-
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nection network and quantitatively evaluates
the execution mechanism.
The next section focuses on the execution

mechanism to exploit the parallelism both in
a single EU and among multiple EUs. We
make an inquiry into to the issues of data struc-
ture, distributed registers and instruction win-
dow size. Section 3 debates the on-chip inter-
connection network. Moreover, related research
that addresses speculative execution in different
approaches is described in Section 4, and finally
the summary can be seen in Section 5.

2. Execution mechanism

2.1 Introduction
VLDP performs a multipath execution model

to overcome mis-speculation penalties by simul-
taneously processing instructions from both the
taken and not-taken out-comes of a branch. Be-
cause other paths after additional branches are
likely to be encountered before the first branch
is resolved, speculative execution will lead more
instructions in flight at the same time. That
is, more additional functional units, registers,
cache ports and so on are needed. Our VLDP
compacts maximum 32 instructions into data
structure unit , called instruction block(IB).
The large number of functional units are clus-
tered into execution units(EU), the register files
which are usually centralized in current mi-
croprocessor are distributed into EUs and the
load/store instructions are specially managed
by memory section.
2.1.1 Data structure
Execution model of VLDP is shown in fig-

ure 1. Fetch and decode are done sequentially
at the speed of 1 IB per cycle. Then the de-
coded IB is allocated to one free EU according
to the arrangement of EU management unit.
The IB will not retire from the EU until all
instructions in it complete executing. Regis-
ter communication among EUs and memory ac-
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Fig. 1 Execution model of VLDP: (a) Data path; (b)
Execution pipeline
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Fig. 2 Instruction block(IB) of VLDP, containing
maximum 32 instructions in 4 basic blocks con-
tinuously at the same control flow. Branch in-
struction can only be in Break Point.

cesses are implemented via an interconnection
network. Since multiple EUs execute IBs simul-
taneously, execution is performed in parallel.
To take advantage of instruction parallelism

and improve the throughput of instructions
per cycle, VLDP processes the instruction
block(IB) as the basic unit for execution. The
IB is constructed with instructions up to 4 con-
tinuous basic blocks on the same control flow
statically produced by compiler, and contains
opcode, operands, and data synchronous infor-
mation for each instruction.
As shown in figure 2, an IB has fixed 32 in-

struction slots, which is divided into 4 Basic
Block(BB) fields with 8 instruction slots in each
BB. If it happens that there are more than 8
instructions in one basic block in original pro-
gram, they are scattered into multiple BBs.
The branch instruction can only appear at the
end of the BB field, which is called Break Point.
Each IB is always processed from the head in-
struction. Depending on the result of branch,
the real control flow may divert from the path
of the IB at a certain Break Point. Instructions
after the break point then will be cancelled dy-
namically during execution. By fetching IBs in
multipath [4] and processing multi-IB in paral-
lel, VLDP executes instructions from multiple
paths simultaneously.

2.1.2 Distributed register files
• Objective
To support the multipath speculative exe-
cution, VLDP executes multiple IBs on EUs
in parallel. Further, every EU performs a
multi-issue superscalar execution and pro-
vides enough functional units to exploit the
ILP of program. However, as described by
S. Palacharla [10], large instruction issue
size will cause comparably complexity and
expensive register rename logic for shared
register files. In order to avoid the high
cost on it, VLDP distributes register files
into separate EUs and manages registers by
register synchronous maps in IB.

• Organization
VLDP provides 64 logical registers with 64-
bit, shared by both integer and floating
point arithmetic processing. Physical reg-
isters are distributed in 16 EUs. In every
EU, there are 8 register banks with 32 reg-
ister entries, that is, 256 physical registers
in each EU and overall 4096 physical regis-
ters.

• Register communication
Instead of register rename logic, result of
instruction in IB is written into fixed regis-
ter entry of allocated register bank for the
IB directly on the EU. So, VLDP only need
to communicate for register reading, when
an IB need values from other EUs. Al-
though the distributed registers avoid the
large cost of register rename logic for con-
centrated register file, it brings additional
cost of register communication.

2.1.3 Instruction window
Instruction window size refers to all the in-

structions simultaneously held in the execution
pipeline. Benefit from low cost of register access
to distributed register files, VLDP introduces
as large as 16 EUs to process maximum up to
512 instructions in parallel in order to support
the multipath speculative execution. Because
new IB can not enter an EU until old IB retires
from it, the real instruction window size in ex-
ecution is less than the maximum value, which
is examined in simulation.
2.2 Evaluation
2.2.1 Simulation environment
• Simulator
We developed cycle-level multi-EU super-
scalar simulator on the data structure of IB.
This simulator achieves the most aggres-
sive instruction issue policy inside of an EU:
out-of-order issue using reservation station
and forwarding mechanism. Further it per-
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Table 1 Benchmark summary, including the number of IBs and instructions
executed on the seven SpecInt 95 benchmarks, in the unit of mil-
lion(M).

go m88ksim compress li ijpeg perl vortex
IB 9.1M 9.6M 9.1M 18.3M 8.4M 12.7M 11.2M

Inst 165.0M 151.5M 174.0M 255.5M 211.0M 206.3M 210.3M

Table 2 Instruction window size of VLDP, referring to the instruction
number simultaneously active in the execution pipeline.

go m88ksim compress li ijpeg perl vortex
198.4 201.6 192.0 139.2 304.0 188.8 148.8

forms the multipath execution across EUs:
IBs in poly data paths can speculatively ex-
ecute on multiple EUs simultaneously. In
order to focus on investigation of the per-
formance purely on execution mechanism,
we assume:
– ideal instruction-fetch mechanism: one

IB per cycle;
– perfect cache;
– perfect branch predictor;
– wide issue size of 32 in an EU;
– 1 cycle for non-memory instruction exe-

cution and 2 cycles for memory instruc-
tion execution.

• Benchmarks
In this paper, we evaluate our scheme using
seven applications in the SPECint95 bench-
mark summarized in Table 1.

2.2.2 Result and discussion

Av e rage  instructions pe r IB

0.0
5.0

10.0
15.0

20.0
25.0

30.0

go
m88k

comp li
ijp

eg
perl

vort
aveg

n
um

b
er

 o
f i

n
st

ru
ct

io
ns

int_add logic load store branch

Fig. 3 Instructions per IB for benchmarks, showing
the number of non-nop instruction per IB.

• Instruction block(IB)
Upon the definition of IB in VLDP, we
examine its organization on benchmarks,
summarized in figure 3. As it indicates, av-
erage non-nop instructions per IB is around
19, which is heavily limited by the return
instruction.

• Instruction window size
Table 2 shows the investigation result on
instruction window size. The upper bound
of 512 for VLDP appears when 16 IBs with
32 instructions enter EUs. Although the

Relative performance of 1 EU and 16 EUs
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Fig. 4 Performance impact of instructionwindow size,
showing instruction window size of around 200
speeds up 1.8-3.0 to that of around 12

EU can not accept new instructions until
the IB on it retired or cancelled, the size
of instruction window is still as large as
around 200 in the simulations. Figure 4
verifies the performance(IPC) impact of the
instruction window size. Compared to IPC
on single EU with instruction window size
around 12, VLDP speeds up from 1.8 to 3.0
on the benchmarks.
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Fig. 5 Functional unit configuration

• Functional unit configuration
On the basis of data structure, IB, we in-
vestigated the performance of IPC for al-
ternative fixed numbers of functional units
in EUs, and compared with that for infi-
nite number of functional units. To sup-
port floating point applications, we assume
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two floating point units in our simulators.
Figure 5 indicates that configuration of 3
simple integer units, 1 integer multiply unit
and 2 floating point units in an EU is a com-
parably effective configuration for VLDP.

3. Interconnection network

3.1 Introduction
In VLDP, via the interconnection network

on-chip, separate EU may communicate either
through the shared memory, or through regis-
ters. Since the data transfered among EUs need
not to leave the chip, communication is fast.
The on-chip cache and shared memory allow
quantities of simultaneous accesses [3]. VLDP
also implements register communication among
EUs, allowing an EU to read register values in
other EUs. This section focus on the register
communication among EUs.
Because results for instructions in an IB are

written into local registers directly on the EU,
VLDP only need transfer register value for read.
To perform fast communication, we perform the
register communication on the register-ready
mechanism driven by sending-side EU. Once
values in the registers are valid and intercon-
nection network is free, they are transfered to
the destination EUs. When data arrives from a
remote register write, any operation waiting on
the register is allowed to issue.
Register request information for an IB is pro-

duced by decode unit and broadcasted to all
related EUs that hold the needed physical reg-
ister. When the IB is allocated into an EU,
through interconnection network, the requested
register values are sent from other EUs, if ready.
It is the time that may be a communication
burst for an EU attempts to be accessed by mul-
tiple other EUs simultaneously. Here, such an
EU is called a hot EU and the phenomenon is
called hot-spot contention. Register communi-
cation at any other time is called regular com-
munication.
3.2 Evaluation
• Simulation environment

This study is made according to the as-
sumptions outlined in section 2.2.1. Fur-
ther, when allocating a new IB into free
EU, the priority of EUs decrease as the EU
number increases from 0 to 15. That is, EU
0 features the highest priority while EU 15
has the lowest one.

• Analysis of Register Communication
Before conversion to the investigation on
interconnection network, we first examine
the register communication traffic among

EUs.
Figure 6-8 illustrate the frequency, traffic
and EU relationship for distributed regis-
ter communication. Focusing on one EU,
HS(d) and HS(s) gives the information at
the cycle when the EU is the destination or
the source for hot-spot contention respec-
tively; R(d) and R(s) shows information
when the EU receives or sends as destina-
tion or source respectively in regular com-
munication; EU traf includes all the com-
munication information for an EU.
The traffic for regular communication on an
EU is around 1.5 registers per cycle with
frequency of 4% among the simulation cy-
cles. At the same time, it is clear that
the traffic for a hot EU is not high, about
2.5 from 2 other EUs with frequency of 1%
among the whole simulation time. Part of
the reason is the instruction parallelism lim-
ited by the data dependence among the IBs
in the same data path. Another reason is
that 100% branch prediction accuracy in
our current simulator lessens the commu-
nication among EUs. We will examine the
impact of the hot-spot contention on per-
formance in the latter section.
In addition, simulation result verifies that
there is no obvious difference in EUs for reg-
ister communication.
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Fig. 6 Register communication frequencyamong EUs.
Cycles for an EU to perform regular communi-
cation are 4 times as many as those for hot-spot
contention.

• Requirement of register communication for
data network
In this section, we examine VLDP require-
ment to interconnection network on regis-
ter communication. Figure 9 shows the
heavy performance impact of communica-
tion latency with infinite bandwidth. IPC
increases 30% when latency decreases from
4 cycles to 1 cycle. Figure 10 summa-
rized the impact of communication band-
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Fig. 7 Register communication traffic among EUs. A
hot EU receives average 2.5 registers per cycle,
which is larger than that of 1.5 per cycle for a
regular EU.
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Fig. 8 Communication relationship among EUs.
HS(d)s eu shows that a hot EU as communica-
tion destination receives from average 2 EUs;
R(d) s eu or R(s) d eu indicates that an EU in
regular communication receives from or send to
around 1 EU.

width with ideal latency zero on perfor-
mance IPC. Here, Crossbar means the point
to point crossbar. To examine the influence
of the hot-spot contention, in the Cross-
bar 3 Rport, we added 2 receive ports es-
pecially for the hot EU. No obvious perfor-
mance improvement can be seen while the
bandwidth increases. Also, hot-spot con-
tention has low impact on performance. So,
we focus on small latency interconnection
network in future research.

• Analysis of 3 typical data networks
Considering the latency and hardware cost
of different kind of the data network, we ex-
amine the following typical data networks.
– Simple Bus

Its advantage is low cost. However, la-
tency for communication on bus is usu-
ally 3 cycles. Furthermore, bandwidth
is limited to 1 messages per cycle.

– Multistage Interconnection Network
Cost of multistage interconnection net-
work is more than bus but less than
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Fig. 9 Application IPC as a function of communica-
tion latency with infinite wide bandwidth.
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Fig. 10 Application IPC as a function of communica-
tion bandwidth with latency zero.
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Fig. 11 Performance comparison with bus and cross-
bar. Comparing to crossbar with latency of 1,
bus with latency of 3 decreases IPC of 26%.

crossbar. By 2x2 crossbar, there are at
least 4-cycle latency for register com-
munication among 16 EUs. Further,
message contention will cause high la-
tency.

– Crossbar
16x16 Crossbar is the most expensive
data network among the 3 data net-
works, but with lowest latency. So we
choose the crossbar as our baseline per-
formance for evaluation of interconnec-
tion network in VLDP.

Figure 11 demonstrates the performance
difference among bus and crossbar. Here,



the simulator did not implement pipeline
for bus communication. With larger la-
tency, performance of bus is 26% less than
that of crossbar.

3.3 Future work
Upon the examination above, we consider

to use multi-bus interconnection network with
links shown in figure 12. The bus and link net-
work combines the simple low cost bus and the
low latency link together. As described in the
section 3.2, the IB allocation mechanism in our
simulator puts the nearest IBs in the same path
into the close near two EUs. Since the register
communication happens frequently between the
nearest two IBs in the same path, communica-
tion among the close two EUs is expected to
be high. So we add low latency links among
the near EUs like illustrated in figure 12. De-
tailed research on it will be held in future and
we intend to find a cost-effective interconnec-
tion network for VLDP.

IB
EU0

IB
EU2

IB
EU1

IB
EU15

Interconnection Network

Fig. 12 Interconnection network with link among
EUs.

4. Related research

Numerous researches have made on multi-
path speculative execution to reduce the mis-
prediction cost in different approaches. Selec-
tive eager execution [5] executed both paths
after branches in an extension of an aggres-
sive superscalar, out-of-order architecture. Y-
pipe [6] duplicated the early pipeline stages to
eliminate the penalty of branch misprediction.
TME [7] attempts to combines simultaneous
multithreading(SMT [8]) with multipath exe-
cution.

5. Summary

This paper introduced the execution mecha-
nism of Very Large Data Path(VLDP) archi-
tecture. We investigated the basic data struc-
ture of IB, the large instruction window size
and functional unit configuration for VLDP.
Furthermore, we present current development
in on-chip interconnection network and ana-

lyzed requirement for distributed register com-
munication. Upon the simulations on several
SpecInt95 benchmarks, quantitative evaluation
on performance of IPC shows that comparing
to a single EU, the large instruction window
of 16 EUs in VLDP speeds up to 1.8 to 3.0.
Performance impacts on interconnection net-
work of several basic data network models are
also examined. Considering the heavy influence
of latency and the hardware cost, we intend
to extend our research on multi-bus with links
among EUs in the future.
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