
1

A Thread Partitioning Algorithm

using Structural Analysis

Niko Demus Barli,† Hiroshi Mine,† Shuichi Sakai†

and Hidehiko Tanaka†

Speculative Multithreading has been proposed as a method to increase performance of a
single thread program on a Chip Multiprocessor. To achieve optimal performance, however, an
effective thread partitioning algorithm is required. This paper proposes a thread partitioning
algorithm using Structural Analysis, and describes design rationale behind the algorithm.
Preliminary evaluation shows that a moderate performance can be achieved with a simple
heuristic. However, further refinement is needed in order to achieve more flexibility and
better performance.

1. Introduction

Chip Multiprocessor (CMP) approach has
emerged as a promising approach for future
processor architecture. CMP is constructed
from several relatively simple processing units,
each is capable to maintain single thread con-
trol. Compared to centralized approach such
as found in superscalar, CMP has several ad-
vantages. It offers an effective way to utilize
available silicon space, and at the same time,
simplicity in design eases the requirement for
validation phase, which has been becoming the
most time consuming phase in processor de-
sign. CMP processor can naturally exploit par-
allelism from multithread programs or in a mul-
tiprogram workload, and well fitted to the re-
quirements for server processors.
Despite the advantages described above, how-

ever, for CMP approach to be fully accepted,
it must also be able to give high performance
when executing single thread (sequential) pro-
grams. Sequential applications constitute a ma-
jor portion of software today, so that it is essen-
tial for CMP to be able to execute these pro-
grams at competitive speed.
To accelerate performance of single thread ap-

plications, Speculative Multithreading has been
proposed in some CMP architectures2)3)4)5)6).
These architectures partition a program into
threads and speculatively execute them in par-
allel. These threads are not necessarily inde-

† Graduate School of Engineering, University of
Tokyo

pendent, but may include some sort of depen-
dences (control, register or memory). The pro-
cessors aggressively execute these speculative
threads, and take necessary action when the
speculative execution failed.
To effectively utilize CMP resources and

achieve high performance with speculative mul-
tithreading, an effective thread partitioning
mechanism is required. In this paper, we pro-
pose an algorithm to partition a program into
a speculative threads. The algorithm statically
analyze control flowgraph of a program and par-
tition the flowgraph into subgraphs, which we
will call threads. Observing that it is difficult to
find an algorithm which is optimal to all classes
of applications, we design the algorithm to be
flexible. It uses structural analysis7)8) to find
thread candidates, and uses heuristics to pick
an optimal combination of threads. Structural
analysis provides a common framework, so that
different type of heuristics and thread selection
methods can be applied selectively.
The rest of this paper is organized as follows.

Section 2 describes related work on thread par-
titioning algorithm. Section 3 describes struc-
tural analysis and how we use the result of
structural analysis as a common framework
for thread selection mechanism. Section 4 de-
scribes current implementation of the algorithm
and shows preliminary evaluation results. Fi-
nally, section 5 concludes this paper and de-
scribes future works of our research.

2. Related Works

Many CMP architectures which support some

2

sorts of speculative thread executions have been
proposed. Each architecture has its own way
to partition a single thread program into spec-
ulative threads. Multiscalar architecture use
heuristics based on task size, control depen-
dence and data dependence to statically tra-
verse program’s CFG and form speculative
threads9). SKY architecture employs thread
model that guarantees no control dependence
between threads. A combination of threads
which has maximal estimated gain is selected.
The gain estimation uses fork distance and data
dependence characteristics as parameters10).
Hydra and DMT (Dynamic Multithreading) ar-
chitecture spawn speculative threads on func-
tion invocations or loop iterations. Program-
mer or compiler helps the processor by mark-
ing functions or loops on which the processor
will spawn speculative threads2)12). MUSCAT
architecture does register dependence analysis,
and puts fork instruction where the register de-
pendences between current and next thread are
resolved11).
Our proposal for thread partitioning algo-

rithm differs from previously proposed methods
in that we use structural analysis to find thread
candidates. It also differs in that we use a com-
mon framework provided by structural analysis
to apply different kind of heuristics and thread
selection algorithms, which will be selected to
suit the target application the best.

3. Thread Partitioning using Struc-
tural Analysis

To run an application on a speculative multi-
threading architecture, we first need to identify
threads. This may be achieved in software by
performing a compilation step, or in hardware
that support dynamic thread identification. To
keep the CMP hardware simple, we choose the
first approach and propose a thread partition-
ing algorithm described below.

3.1 Design Considerations
There are some important points to be con-

sidered when designing the algorithm. First,
the algorithm should not take unreasonable
long time. A brute effort to find all possibilites
of thread partitioning, for example, will result
in an algorithm that requires a huge amount of
time to do the analysis.

Second, we need some flexibility to choose
which thread selection method to use for a par-
ticular class of application. Performance gained
by speculative thread execution is largely influ-
enced by characteristics of application. Multi-
media application, for example tends to have
large parallelism and can be exploit with large
threads. Language processing programs, on the
other hand, tends to have little parallelism and
may suffer from misspeculation if partitioned
into large threads. While we can optimize the
algorithm, to meet requirements of one class of
application, the result will likely not always be
suitable for all other types of applications.
Another consideration is harmony with cur-

rently available analysis algorithms. Data de-
pendence analysis such as live register analysis,
will be used extensively inside the algorithm.
These types of analysis have already reached a
matured point, so that it is preferable if the
partitioning algorithm can use them directly.
Considering the above points, we propose a

partitioning algorithm using structural analy-
sis. The algorithm mainly consists of 2 phases.
First, the algorithm analyze program’s control
flowgraph using structural analysis and find
thread candidates. This phase reduce the num-
ber of candidates significantly, compare to a
brute approach. Thread candidates are in the
form of extended basic block with single entry
node. This will make data dependence anal-
ysis easier since many analysis algorithms are
directly applicable.
The next phase of algorithm is applying

heuristics to select optimal thread combination.
We will show that structural analysis provide a
common framework, on which we can apply dif-
ferent type of heuristics in a flexible way. This
will allow us to select optimal approach for dif-
ferent class of applications.

3.2 Thread Model
We define thread as a connected subgraph of a

static control flowgraph with single entry node.
A thread can be described as G <Nodes, Edges,
entry> where Nodes, Edges and entry denote
set of nodes included in the thread, set of edges
included in the thread, and entry node of the
thread, respectively.
According to this definition, a thread may

comprise a basic block, multiple basic blocks,

3

loop body, entire loop, or entire function. Also,
logically, a thread may also comprise one or
more threads. This hierarchical property of our
thread model will be exploited when we use
structural analysis described in the next sub-
section.
For our thread model, we allow control and

data dependence (both register and memory)
between threads. We assume a CMP hardware
similar to Multiscalar3) to execute speculative
threads generated by our algorithm.

3.3 Structural Analysis
Structural analysis is originally proposed by

Sharir7) to make syntax directed method of
data-flow analysis applicable to lower level in-
termediate code. It can discover control flow
structures from arbitrary flow graph. Thus, for
example, it can take up a loop and discover that
it has a form of a while or repeat/self loop, even
though there is no syntactical information avail-
able.
One important concept in structural analysis

is that every region it identifies has exactly one
entry point. The definition of region used in
structural analysis is identical to the definition
we used to define our thread model, so that
we are able to directly treat regions found by
structural analysis as thread candidates.
Figure 1 and 2 shows typical acyclic control

structures (regions which do not contain any
back edges) and cyclic control structures (re-
gions which contain back edges), respectively,
that can be recognized by structural analysis.
The regions shown here represent the most com-
mon control structure found in program written
in C language.

Proper region shown in Figure 1 is an arbi-
trary acyclic structure that failed to be identi-
fied by other simple acyclic cases. Since a con-
trol flow graph of program can take any possible
form, it is difficult to set the algorithm to rec-
ognize all the possibilities of control structures.
For this reason, the algorithm will recognize an
acyclic region as a proper region if the region
cannot be further reduced by any of the simple
acyclic cases. Similarly, natural loop shown in
figure 2 is a special case of cyclic region which
includes loop structure that is natural but can-
not be further reduced. Loop that is not natu-
ral, such as the one in figure 2 will be identified

as improper region.
Structural analysis proceeds by examining

control flow graph’s nodes in postorder and try
to find instances of the various region types de-
scribed above. Postorder traversal is a traversal
in which each node is processed after its succes-
sors. For example, if node A have two succes-
sors, B and C, in postorder traversal node A
will not be processed until node B and C are
processed.
After identifying a region of nodes, struc-

tural analysis will collapse and replace the re-
gion with an abstract node, reconstructing flow-
graph for further analysis. This steps are re-
peated until the entire flowgraph collapsed into
a single node.

B1

B2

B1

B2

B1

B2 B3

B1

B3 B4B2 B5

B1

B2 B3

B4 B5

continuous
block

if-then if-then-else

switch-case

proper region

Fig. 1 Acyclic regions

self-loop

B1
B1

B2

B1

B2

B1

B2 B3

while-loop natural-loop improper-loop

Fig. 2 Cyclic regions

 0

1

2

3

4

6

5

 0

1

2

B

6

A

 D

C

6

 E

Fig. 3 Example of structural analysis

Figure 3 illustrates an example of structural
analysis. Following the postorder traversal, first
the analysis algorithm examines node 6 but fails
to find any identifiable region. Next, it exam-
ines node 5 and finds a self-loop region. It

4

then collapses the region into node A and re-
constructs the flow graph. Successively, it finds
continuous-block region formed by node 3 and
4, and collapses it into node B. In the same
manner, if-then-else region formed by node 2,
A, and B, is identified and collapsed into node
C. if-then region formed by node 0 and 1 is col-
lapsed into node D. And lastly continuous-block
region formed by D, C, and 6, is collapsed into
node E.
As shown in the example above, structural

analysis gradually collapse a control flow graph
of a program into a single node. During the pro-
cess, the algorithm constructs corresponding
control tree, which defines inclusion relation be-
tween identified regions. Since we treat the re-
gions identified by structural analysis as thread
candidates, the control tree also defines inclu-
sion relation between the thread candidates.
Figure 4 shows the control tree of our previous

example. From the figure we are able to identify
that, for example, thread candidate E, includes
thread candidates D, C, and 6 in it.

E

D 6C

0 21 B A

4 3 5

Fig. 4 Control Tree of previous example

3.4 Heuristics and Tree Coloring Rules
After identifying thread candidates using

structural analysis, we can then select a com-
bination of threads that is the most likely to
give best performance. In general, since it is
hard for the compiler to know precisely what
will happen during execution (e.g. cache stall,
branch misprediction, TLB miss etc), a com-
piler can at best predict and use some heuristic
approaches to find the most promising threads
combination.
There are some possible ways to apply heuris-

tics to our control tree.
• Find all combination possibilities, define a
heuristic function and then apply the func-
tion to find the “best” combination.

• Apply some types of heuristic in sequence,
and identify one or more threads in each

step.
• Combination of the above two approaches.
Regardless of what type of approach used in

applying heuristic, the process of finding the
right combination should guarantee that the
combination found covers the original control
flow graph entirely. It must also guarantee that
there is no overlaps between threads. To full-
fil this requirement, we defined some rules that
must be obeyed when identifying thread from
a control tree. We call this rules Tree Coloring
Rules.
(1) If node X is identified as a thread, then

all of X’s predecessors and all of X’s suc-
cessors cannot exist as threads.

(2) If node X is identified as not-a-thread (i.e.
there is no possibility that the node will
be identified as thread), then all of X’s
direct successors that have no successor
must be set as a thread.

(3) Tree coloring is finished when all nodes
are checked (i.e. identified as thread or
as not-a-thread).

E

D 6C

0 21 B A

4 3 5

E

D 6C

0 21 B A

4 3 5

Fig. 5 Tree Coloring Rule 1

E

D 6C

0 21 B A

4 3 5

E

D 6C

0 21 B A

4 3 5

Fig. 6 Tree Coloring Rule 2

E

D 6C

0 21 B A

4 3 5

Fig. 7 Tree Coloring Rule 3

Figure 5, 6, and 7 illustrates an example of
Tree Coloring Rules when applied to our con-
trol tree in figure 4. Suppose that node B is
identified as thread. Then following rule no. 1,

5

all of B’s successors (3 and 4) and predecessors
(C and E) cannot possibly exists as threads,
so that we put cross marks on them (figure 5).
Next, we discover that node 6 whose direct pre-
decessor already marked as not-a-thread, has no
successor. Applying rule no. 2, we mark node
6 as a thread. In similar fashion, we also mark
node 2 as a thread (figure 6). Suppose suc-
cessively we identify node D and A as threads
and apply rule no.1, the resulted control tree is
shown in figure 7. Following rule no. 3 then we
know that the process of finding threads com-
bination is finished.

4. Implementation and Preliminary
Evaluation

We implemented the partitioning algorithm
as a binary annotation tool for Alpha-AXP bi-
nary. First, we build control-flow graph from
the binary, then we perform structural analysis
on function per function basis. For preliminary
evaluation, a simple heuristic is incorporated
to the annotation tool. The heuristic first find
innermost loops in control tree and mark the
iterations as threads. Then, for the rest parts
of control tree, it finds and marks the biggest
possible regions as threads.
Annotation informations generated by the

analysis are used to generate execution traces,
to be then analyzed by a CMP trace simulation
tool. Table 1 shows the simulation parameters.
Currently, we do not simulate pipeline in de-
tail. Fetched instruction is executed as soon as
its dependences are resolved and there is exe-
cution unit available.

Table 1 Trace simulation tool parameter

No of. PUs 4 Processing Units
PU Out-of-Order Superscalar
parameters 4 functional units

2 load/store units
4 instruction fetch width
64 entry instruction window
1 cycle execution for all insts.

Delay 1 cycle thread spawn delay
1 cycle comm. latency
1 cycle restart delay

Ideliazed Perfect cache
conditions Perfect branch prediction

Perfect speculative store buffer

We simulated 8 programs from SPECint95
benchmark suites. The result is shown in fig-
ure 8. The evaluation shows a moderate per-
formance, ranging from 3 to 5 IPC, can be
achieved for each application. This is about
1.5 - 2 times of the IPC achieved by an out-
of-order superscalar processor which has same
capability as one PU (Processing Unit) of CMP.

0

1

2

3

4

5

6

0
9

9
.g

o

1
2

4
.m

8
8k

si
m

1
2

6
.g

cc

1
2

9
.c

o
m

p
re

ss

1
3

0
.l

i

1
3

2
.i

jp
e

g

1
3

4
.p

e
rl

1
4

7
.v

o
rt

e
x

IP
C SS-OOO

CM P

Fig. 8 Performance estimation

Figure 9 shows size distribution of threads
created with our algorithm. Except for ijpeg,
most of the threads created in each apllication
have size of less than 20 instructions. We found
that the overall thread size is small then we ex-
pected. Small threads are not only sensitive to
increasing delay, but they also limit the poten-
tial of parallelism that may be exploited. For
example, a 4 PUs CMP running 4 threads of 10
instructions each, will have an effective instruc-
tion window stretched for only 40 instructions,
which is relatively small even when compared to
window size of currently available superscalar
processors.

0%

20%

40%

60%

80%

100%

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ij
pe

g

13
4.

pe
rl

14
7.

vo
rt

ex

> 100

<= 100

<= 50

<= 20

<= 10

Fig. 9 Thread size distribution

Investigating problem of small threads in our
algorithm, we found that it is mainly caused
by restrictions imposed by function calls. Since

6

our algorithm and thread model assume that
new thread will always be created at function
boundaries, we must put thread partition when-
ever a function call encountered. This strictly
limits possible combination of threads, resulted
in many small threads created. There are how-
ever some possible solutions to the problem.
• Selectively inline functions so that bigger
threads, spanning accross function calls,
can be created.

• Incorporate function calls recognition into
structural analysis, so that even when we
must put partition at function calls, there
is still enough freedom to create bigger
threads.

• Add some architectural features to prevent
performance degradation caused by small
threads. For example, the processor can
be made to switch from speculative mul-
tithreading mode to normal mode when
it executes parts of programs with small
threads.

5. Conclusion

We proposed an algorithm to partition a pro-
gram into threads using structural analysis.
Observing that it is difficult to find an algo-
rithm which is optimal to all classes of applica-
tions, we design the algorithm to be flexible to
let different types of thread selection heuristics
applicable. Structural analysis used in the al-
gorithm, combined with Tree Coloring Rules,
provide a common framework for identifying
threads using different types of heuristics.
Currently we develop the algorithm as a bi-

nary annotation tool targeted for Alpha-AXP
binaries. Simple heuristic to identify innermost
loop iterations is incorporated. Preliminary
evaluation shows that, for a given parameter,
moderate performance can be achieved. How-
ever, we also found that the restriction imposed
by function calls, reduced freedom to create dif-
ferent combination of threads significantly and
resulted in many small threads created.
To cope with the problem, we plan to investi-

gate solutions as described in previous section.
We also plan to develop and incorporate some
more sophisticated heuristics, involving control-
flow and data-flow analysis into our algorithm.

References

[1] Kunle Olukotun, Basem A. Nayfeh, Lance
Hammond, Ken Wilson and Kunyung Chang,
The Case for a Single Chip Multiprocessor,
Proceedings of the 7th International Sympo-
sium Architectural Support for Programming
Languages and Operating Systems (ASPLOS
VII), Cambridge MA, October 1996

[2] Lance Hammond, Mark Willey, and Kunle
Olukotun, Data Speculation Support for a Chip
Multiprocessor, Proceedings of the 8th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems, pp. 58-69, San Jose CA, 1998

[3] Gurindar S. Sohi, Scott E. Breach, and T. N.
Vijaykumar, Multiscalar Processors, Proceed-
ings of the 22nd Annual International Sympo-
sium on Computer Architecture, pp. 414-425,
1995

[4] 小林 良太郎, 岩田 充晃, 安藤 秀樹, 島田 俊夫,
非数値計算プログラムのスレッド間命令レベル並
列を利用するプロセッサ・アーキテクチャSKY,
並列処理シンポジウム JSPP’98, pp.87-94, Jun
1998

[5] 鳥居 淳, 近藤 真己, 本村 真人, 西 直樹, 小長
谷 明彦, On Chip Multiprocessor 指向 制御並列
アーキテクチャMUSCATの提案, 並列処理シン
ポジウム JSPP’97, pp.229-236, 1997

[6] Venkata Krishnan, Josep Torellas, A Chip-
Multiprocessor Architecture with Speculative
Multithreading, IEEE Transactions on Com-
puters, Vol. 48, No. 9, September 1999

[7] Micha Sharir, Structural Analysis : A New Ap-
proach to Flow Analysis in Optimizing Com-
pilers, Computer Languages, Vol. 5, Nos. 3/4,
1980, pp. 141-153

[8] Steven S. Muchnick, Advanced Compiler De-
sign and Implementation, Morgan Kauffmann,
1997

[9] T.N. Vijaykumar and Gurindar S. Sohi, Task
Selection for a Multiscalar Processor, Proceed-
ings of the 31st International Symposium on
Microarchitecture (MICRO-31), Nov-Dec 1998

[10] 岩田充晃, 小林良太郎,安藤秀樹, 島田俊夫, 制
御等価を利用したスレッド分割技法, 情報処理学
会研究報告 97-ARC-128 pp.127-132, Mar 1998

[11] 堺 淳嗣, 鳥居 淳, 近藤 真己, 市川 成浩, 大俣 仁
美, 西 直樹, 枝広 正人, 制御並列アーキテクチャ
向け自動並列化コンパイラ手法, 並列処理シンポ
ジウム JSPP’98, pp.383-390, 1998

[12] Haitham Akkary, Michael A. Driscoll, A Dy-
namic Multithreading Architecture, Proceed-
ings of the 31st International Symposium on
Microarchitecture (MICRO-31), Nov-Dec 1998

