
Musical Sound Source Identi�cation Based on

Frequency Component Adaptation

Tomoyoshi Kinoshita and Shuichi Sakai and Hidehiko Tanaka

Graduate School of Information Engineering, The University of Tokyo

7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8656, JAPAN

E-mail: {kino,sakai,tanaka}@mtl.t.u-tokyo.ac.jp

TEL: +81-3-5841-7413, FAX: +81-3-5800-6922

Abstract

In auditory scene analysis, sound source identi-
�cation is an essential operation when extract-
ing musical notes from acoustical signals com-
posed of multiple sound sources. We have pre-
viously proposed a processing model OPTIMA
for music scene analysis and implemented its
experimental system. However, the system was
not robust to signals with overlapped frequency
components. In this paper, we present a new
method that improves this problem by using
overlap pattern of frequency components, and
implemented as a processing module in OP-
TIMA. Weighted template-matching method is
applied to identify sound sources repeatedly to
each frequency component cluster. The weight
is evaluated according to the signi�cance of
each feature of the signal. When multiple com-
ponents are overlapped, our system adaptively
modi�es features of an input signal to a combi-
nation of overlapped components. Experimen-
tal results show that the system can identify
sound sources of 66% to 75% of musical notes.
It also showed about 10% improvement in ac-
curacy, compared to the result without the pro-
posed mechanism.

1 Introduction

As we can recognize the surrounding scene from acous-
tic signals received through our ears, human being and
other animals are endowed with this function from birth.
By contrast, it is still unable for computers or other ma-
chinery to realize their acoustic environment. To build
a system that works in the real world, realization of this
function is a large and essential step. In the �eld of
auditory psychology, Bregman's work [Bregman, 1990]

proposed some basic theory on this function | auditory
scene analysis |. However, its realization on a com-
puter is not examined in the work, and has attracted
much interest of researchers.

Accordingly, several works have been done on audi-
tory scene analysis by computers. Lesser et al. presented

IPUS [Lesser et al., 1995] based on blackboard architec-
ture. In this system, agents work following a rule-based
policy, thus exibility and scalability is not achieved so
much. Nakatani et al. employed a residue-driven archi-
tecture for sound segregation [Nakatani et al., 1995]. The
system has multiple agents, and two agents called tracer
and eraser extract acoustic signal from one source. Ellis
proposed a system based on a prediction-driven method
[Ellis, 1996]. This system is sensitive to the context of
the input stream. Our current method does not cope
with context, but after note hypotheses are obtained, in-
formation integration mechanism works to reect other
clues including scene context.

All of these works segregate streams in acoustic signals
and do not identify their sound source. As a system that
identi�es sound sources, Kashino et al.'s work, named
OPTIMA [Kashino et al., 1995] is the basis of the pro-
posed system. OPTIMA has multiple processing mod-
ules that work independently. After the processes, each
result is expressed as probabilistic information and inte-
grated into the �nal result. In OPTIMA, sound source
identi�cation is performed in a similar way as the current
system. It also uses physical features of frequency com-
ponents, such as power ratio of harmonics and sharpness
of onset. However, identi�cation is done in a simple way
based on principle component analysis and discriminant
analysis. Even if multiple components overlap and fea-
tures are a�ected, OPTIMA processes them as they are.
Therefore, OPTIMA cannot identify sound sources with
overlapped components, and this problem has waited for
solutions.

Another Kashino's work [Kashino and Murase, 1997]

uses wave-form template, and through template �ltering
and phase tracking, the template is arranged according
to the input signal. Generally, signals from two indi-
vidual instruments vary signi�cantly even if both are
the same kind of sound source. Kashino pointed that
divergent phase between frequency components causes
this phenomena, and introduced a phase tracking mech-
anism. However, when a template was not prepared as
wave-form data but frequency components, this problem
would be solved, since time-frequency analysis generally
discards phase information of each component.

In this paper, we propose a novel system for sound
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Figure 1: Con�guration of proposed system.

source identi�cation. Our system uses an adaptive
method for component's feature analysis and achieved
much better identi�cation accuracy than OPTIMA.
The system architecture is described in Section 2. And

experimental results are shown in Section 3. Finally,
conclusion is described in Section 4.

2 System Overview

The system has seven processing blocks and a
knowledge-base of frequency components' features of
sound sources. In this paper, we call this knowledge-
base, a feature template. Figure 1 shows the overall
diagram.
Frequency components are extracted from input

acoustic signal in the Preprocesses stage. In the
Sound Formation stage, components obtained in the
previous stage are clusterized, where each cluster corre-
sponds to a musical note. Overlap pattern is also ex-
tracted in this stage. The system computes features
from each component in the Feature Extraction stage.
Extracted features are adapted in the Feature Adap-
tation stage in accordance with the overlap pattern. In
theMatching stage, the adapted features and templates
in Feature Template Knowledge-base are compared and
similarity is evaluated. The similarities are applied to
the Hypotheses Creation stage, where note hypothe-
ses are created. When all the clusters' sources are not
identi�ed, the process is restored to the Feature Adap-

Feature Feature Feature
Source #1 #2 #3 � � �
Piano 0.724 23.48 5.901 � � �
Piano 0.271 18.22 3.725 � � �
...

...
...

... � � �
Clarinet 0.513 49.11 7.224 � � �
...

...
...

...
. . .

Table 1: Example of a feature template.
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Figure 2: Clusterize into notes and obtain overlap pat-
tern.

tation stage. Finally, note data or scores are created
in the Postprocesses stage. Details of each stage are
described in the following subsections.

Feature Template has a set of records of features.
Each record consists of a sound source name and a list
of feature values (Table 1).

2.1 Preprocesses and Sound Formation

The system �rst performs time frequency analysis to ob-
tain a sound spectrogram from the input and tone model
signals. Then frequency components are extracted. In
this process, we chose the IIR �lter-bank method and
the pinching planes method[Kashino et al., 1995].

In the second stage, sound formation is performed.
Through this process, frequency components are clus-
terized into musical notes. We used Kashino's
method[Kashino et al., 1995] for the task. In this
method, distortion of harmony and common onset be-
tween two frequency components are extracted, and clus-
tering is performed using the result. Additionally, we ex-
tracted patterns of frequency components' overlap. Here
\overlap pattern" is de�ned as a set of combinations of
components shared by multiple clusters (Figure 2).



� Power of each component

� Center frequency (power-weighted average of
frequency)

Here, center frequency is de�ned as follows:X
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where p and f is the power and frequency of each
frequency component in a power-spectrogram.

� Skewness and kurtosis of each component's power
envelope
Here, skewness is de�ned as follows:
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and kurtosis is de�ned as follows:
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where p is the power at each sample point of fre-
quency components and � is the mean of p.

Table 2: List of frequency component features (excerpt).

2.2 Feature Extraction

Next, the system extracts features of frequency compo-
nents. Here, feature is de�ned as physical parameters
such as a shape of power envelope, a strength of an at-
tack, or a power ratio of each component. Table 2 shows
the list of the adopted features.
When the power of some harmonics is too small, fea-

tures extracted from it is invalidated and would not be
used to obtain similarity in the Matching stage.

2.3 Feature Adaptation

In real music, multiple notes are usually presented simul-
taneously and several frequency components are over-
lapped. This causes transformation of frequency compo-
nents and their features. Therefore, we cannot immedi-
ately use the extracted features.
In this stage, features are arranged in accordance with

the features' characteristics and the components' overlap
pattern (Figure 3).

Categorize Features

We categorized features by their characteristics into
three types as listed below:

1. Additive features

When a frequency component overlaps with others,
its feature is generally the sum of each component's
feature.
(eg. power of component)

2. Preferential features

The feature becomes the maximum or minimum
value of overlapping components.
(eg. strength of attack)
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Figure 3: Adaptation mechanism.

3. Fragile features

If multiple components overlap, the feature value is
not signi�cant any longer.
(eg. skewness of component's envelope)

Adaptation

When multiple components overlap, the system recalcu-
lates each feature according to the feature's type, follow-
ing the algorithms described below. In case a component
is not shared by other clusters, nothing is done.

1. Additive features

Adaptation is performed in the following algorithm:

If the sound source of a cluster which shares this
component is already determined

Then

Feature value is considered to be the sum of
multiple feature values, and is subtracted by
the mean of the sharing component's feature
value in the template.

Else

The system cannot estimate the added feature
value. Therefore, nothing is done.

2. Preferential features

Adaptation is performed in the following algorithm:

If the sound source of a cluster which shares this
component is already determined

Then

If feature value is close to the sound source's
feature value in the template



Then

The feature value is considered to belong to
the processing note, and nothing is done.

Else

The feature value is considered not to belong
to the processing note, and the component is
invalidated.

Else

The system cannot decide whether the feature
value belongs to the processing note or not.
Therefore, nothing is done.

3. Fragile features

In this case, the feature value is considered to be
corrupted, and the component is invalidated.

If sound sources of some components are already de-
termined, the recalculation is performed applying their
feature templates.

2.4 Matching

Source identi�cation is performed by weighted-matching
method between sound source feature templates and
adapted features.

Weight calculation

The system computes the mean and standard deviation
from feature templates of each source in advance.
Then, the weight of each feature is obtained by the

following equation; in this paper, we use superscript as
the feature id and subscript as the sound source id:
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where S denotes the set of sound sources (=fPiano,
Clarinet, � � �g) and s denotes each sound source (s 2 S).
P is a probabiluty value in normal distribution (P (jXj �
z) =

R z

�z
(1=

p
2) exp(�x2=2)dx).

Here, we de�ne D
i
s as the distribution of the s-th

source's i-th feature. Using the equation above, W i
s

becomes larger when D
i
s is isolated from other sound

sources. For example, when Di
s is su�ciently apart from

other sources' Di
s, the weight W

i
s becomes 1, and when

all Di
s have equivalent mean values, the weight becomes

0. Therefore, the i-th feature value with large W i
s is as-

sumed to be signi�cant in the s-th source's identi�cation
(Figure 4). W i

s is applied to similarity evaluation in the
next stage.

Similarity Calculation

The system evaluates the similarity between features of
the input signal and each template. The similarity rep-
resents the con�dence of source identi�cation.

Case 1: Large weight

Case 2: Small weight

Feature value

Feature value

Distriburion of source A Distriburion of source B

Case1: If the feature value distributions of two sound
sources are su�ciently apart, the feature is
considered appropriate as a clue to identify
sources.

Case2: When distributions are close, the feature is
considered inappropriate.

Figure 4: Weighting based on the distribution of feature
values.

Before the similarity evaluation, distance between the
target input signal and features in the template database
is calculated. The distance is obtained as follows:

d
i
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where dis, f
i, �i

t and �
i
t denote the distance of the i-th

feature between the input and the s-th source's template,
the i-th feature value of the input signal, average and
standard deviation of the i-th feature of the s-th source's
template, respectively. P is a probability function as
previously denoted.
Then, the similarity is calculated by the following

equation:
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where W i
s and dis are obtained beforehand.

In this equation, i represents each feature, but when
a feature value is invalidated, the summation is skipped.
The following list describes the case when a feature be-
comes invalid:

1. A frequency component is not extracted because its
power is too small. The feature value is invalidated
during the Frequency Component Extraction stage.



Source
Name Feature Name
Piano temporal symmetry of �rst harmonics

temporal symmetry of third harmonics
skewness of �rst harmonics

Clarinet kurtosis of �rst harmonics
temporal symmetry of third harmonics
power of second harmonics

Violin attack strength of �rst harmonics
attack strength of second harmonics
kurtosis of �rst harmonics

Table 3: Top three large weighted features.

2. A component overlaps with another one and the fea-
ture is fragile.

2.5 Hypotheses Creation

After the matching process is performed, the system �xes
the source name of the note with the lowest pitch among
the clusters, and feeds it back to the Feature Adaptation
stage. In the Feature Adaptation stage, adaptation is
performed again. At this time, one cluster's source name
is determined and its template is used in calculation.
When all clusters' sources are identi�ed, the system

creates note hypotheses. Each hypothesis has multiple
notes, and each note has metrics such as onset time,
duration time, pitch and source name.

2.6 Postprocesses

In OPTIMA architecture, note hypotheses obtained in
the last stage and other probabilistic information are in-
tegrated afterwards[Kashino et al., 1995]. Through this
process, errors included in the hypotheses are expected
to be corrected.

3 Evaluation

We evaluated the proposed system in two ways. First,
feature's weight value is calculated and its validity is
evaluated. Next, source identi�cation accuracy for ran-
dom note pattern is evaluated. In this paper, the e�ec-
tiveness of the proposed method is proved by comparing
results of recognition with and without feature adapta-
tion and weight calculation.

3.1 Weight Calculation

First, Table 3 shows the experimental result of W i
s cal-

culation in the Matching Stage.
This result matches our intuition quite well. Piano's

power has a sharp attack and a calm decline, and most
of its power is distributed at the beginning of the enve-
lope. Low value of Temporal symmetry or large skewness
reects asymmetry of Piano's power envelope. Clarinet
has little power in even harmonics and each component
has trapezoidal power distribution. Therefore, kurtosis
and power of the second harmonics becomes lower than
other sources, and temporal symmetry becomes larger.

Frequency

Time

Time

Time

Power

Power

Power

Frequency

Frequency

Piano

Clarinet

Violin

Figure 5: Typical shapes of sound source's frequency
component.

Violin's onset is relatively gentle in the sources we used.
Hence attack strength is a signi�cant clue to identify
whether a source is a violin or not. (Figure 5)

3.2 Experiment to Random Note Pattern

We prepared a random note pattern in advance to the
evaluation. The random note pattern consists of pairs
of notes. The sound source and pitch of each note are
chosen at random. Random notes are categorized into
three classes:

Class 1: The second harmonics of a note overlaps with
the base component of another note. In this class,
all components of the note overlaps with compo-
nents of other notes. This is the most di�cult case
among the three classes.

Class 2: The second harmonics of a note and the third
harmonics of another note overlap. These two notes
have an interval of perfect �fth; frequencies of the
notes' base components are 2 : 3.

Class 3: Patterns categorized into neither Class 1 nor
2. Overlap of components rarely occurs.

Here, each class has 300 patterns, and a total of 900
note patterns were processed in the system. In this ex-
periment, we used signal from di�erent instruments for
input and feature templates.
Figure 6 shows the result of the note creation. This is

the recognition accuracy when source name misrecogni-
tion is ignored, which shows the upper-boundary of the
source identi�cation accuracy.
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Figure 6: Result of note creation for random note pat-
terns.

Figure 7 shows the source identi�cation accuracy.
These bars indicate the percentage of correctly-identi�ed
notes. Each bar shows the result when feature adap-
tation and weight calculation are performed or not, as
follows:

Bar Title Weight Feature
Calculation Adaptation

Both Performed Performed

Without adaptation Performed Not
performed

Without weight Not Performed
performed

None Not Not
performed performed

Note that accuracy stands for the average of recall and
precision.
This result includes failures in the note creation stage,

and does not show independent accuracies of source iden-
ti�cation. Figure 8 shows the result when the pitch of
each note is given before source identi�cation is per-
formed.

4 Conclusions

We have presented a new method for musical sound
source identi�cation, which enables the identi�cation for
component-overlapped signals by feature adaptation.
The experimental result showed the e�ectiveness of

this method. In the case of random note pattern, the
recognition accuracy has improved from 70% to 81% in
the most e�ective case; Class 2.
In real music, multiple notes have frequencies of in-

tegral ratio to express �ne harmony, and component-
overlaps like Classes 1 and 2 in this paper appear often.
Therefore, the proposed method is e�ective also to the
source identi�cation of musical signals.
For practical use, the accuracy of the proposed system

is insu�cient and more improvement is waited for. In the



����

������

���	��



�	��

������

�	����


�����


�����


�����

������



����


�����

	� �	� �	� 
	� �	� �		�

������

������

������

����

���������������

��������������

����

Figure 7: Result of whole process for random note pat-
terns.

����	�

������

������

������

������

������


�����

������

�
����


��		�

�	��	�

���		�

	� �	� �	� 
	� �	� �		�

������

������

������

����

���������������

��������������

����

Figure 8: Result of source identi�cation when the pitch
is given beforehand.

adaptation stage, we used a simple algorithm for over-
lapped components, such as \Do nothing" and \Mark as
invalid". We are going to examine more sophisticated
ways which consider other informations like the di�er-
ence between types of instruments.
We used data from di�erent individual of the same

instrument for input and feature templates of the ex-
periment. Most of the inuence is avoided through the
calculation of mean of feature value, but in some cases
the system failed to identify the source name because of
this inuence. Therefore, this problem should be solved.
Some errors appeared in the evaluation result are

caused by component extraction failure. Its improve-
ment is also our future work.
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