Evaluation of a Type-Inference Framework for Java Applications
Antonio Magnaghi, Shuichi Sakai and Hidehiko Tanaka

Information Science Department, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
{magnaghi,sakai,tanaka}@mtl.t.u-tokyo.ac jp

1. Introduction

The popularity of Java has increased remarkably over the last few years and the utilization of Java
programming language has flourished both in academic and industrial projects. The demand for high-
performance Java applications is, however, stressing the necessity of appropriate compilation
techniques and aggressive optimization procedures [MH98].
In this paper we introduce a framework to enhance static analysis of Java applications by exploitation
of type-inference [A95, CCZ97, Mi78]. And we experimentally evaluate how such a framework can
be utilized to improve interprocedural analysis for source code level optimizations.
Our approach is related to the work of [CCZ97]. In [CCZ97] the authors propose a type-inference
algorithm for Eiffel and mention the possibility of applying it to the Java language. But they do not
identify limitations to their definition of living classes that arise in the case of Java programs. Instead,
the framework we develop consists of new operative definitions that address Java-specific semantic
features. In particular, Application Taxonomy (AT) and application Living Classes Set (LCS) are key-
concepts that lead us to propose a practical type-inference algorithm for Java applications based on
Living Classes Analysis (LCA). In addition, we take advantage of the byte-code based execution
model that allows byte-code files to be decompiled [Ja]. This enables us to investigate a new
perspective for performing more aggressive analysis which we extend also, by decompilation, to those
programs available only in byte-code format (for instance third-party class libraries). Hence we
achieve a more complete and precise program representation. In the typical case of compiled
languages source level optimizers have to assume the worst case hypothesis when performing
interprocedural analysis in the correspondence of library routine invocations because of source code
unavailability.

In addition, this paper evaluates the impact of our type-inference framework (LCA) on a
benchmark suite of five programs. LCA is employed to optimize call-graph construction. Most
consolidated call-graph construction techniques [GDD97] utilize interprocedural data-flow analysis,
but we instead investigate the possibility and convenience of LCA type-inference. Compared to data-
flow analysis, LCA has the advantage of simplicity, yet it has an effective impact on call-graph
optimizations. Obtained results show that LCA produces a worthwhile reduction (up to 20%) in the
number of methods (constructors) in application call-graphs. We also evaluate the efficiency of LCA
for eliminating late binding in correspondence of call-graph call-sites. Our results seem encouraging:
LCA reveals that 92.7% of late binding occurrences can be replaced by static bindings. If we compare
the value we obtained (92.7%) with the data reported in [CCZ97] (80%), LCA appears to be a more
efficient type-inference method.

Exposition is organized as follows. First, (section 2) the concept of Application Taxonomy (AT) is
introduced to conveniently represent Java applications. Second, we provide the definition of AT living
classes and the algorithm to compute them for a given Java application (section 3). In section 4, we
outline the type-inference algorithm based on Living Classes Analysis (LCA). Through LCA we show
that it is possible to effectively refine type information about program expressions; section 5 offers a
quantitative evaluation of our techniques for the specific case of call-graph construction. AT and LCA
are used to optimize call-graphs of five real Java applications. The utilization of LCA produces an

appreciable improvement in the quality of constructed call-graphs compared to the case where LCA is
not utilized. Qur conclusions are then presented in section 6.

2. Program Representation: the Application Taxonomy

The program to analyze is represented through the Application Taxonomy (AT). AT statically
groups all classes (interfaces) that are involved by any possible execution of the application. Based on
input data to the application, the execution path can utilize or generate instances of different classes.
AT collects, in a control-flow insensitive manner, all possible reference types needed during
application execution. A partial order relationship is naturally defined on AT elements based on
inheritance (extends and implements keywords). For instance, if class B extends class A, then Bis a
son of A.
Throughout the remainder of the paper, the term “reference type” will identify, based on the context,
cither a class or an interface.

Let the AT generator be the class of the application program from which execution begins,
namely the class containing the main method. Upon AT instantiation, the generator is added to the
taxonomy.

Inserting a reference type 7 in AT triggers the following actions:

* ¢ is parsed (after decompilation, if necessary) and from its members (fields, constructors and
methods) information is collected about utilized reference types. Some of the principal reference
type attributes of 7 are summarized by the following sets:

1.) extended r t: reference types of which 7 is a direct descendant;

2.) implemented r t: reference types implemented by #;

3.) thrown r t: reference types thrown as exceptions by member constructors or methods of 7;

4)) returned r t: reference types returned by member methods of 7;

5.) field r t. declaration reference types of member fields of £,

6.) declaration r t. declaration reference types of variables declared inside method or
constructor bodies, or reference types used in cast expressions;

7.) formal r t. declaration reference types of formal parameters;

8.) static_r_t: reference types of which at least one static member is referenced in #;

9.) living r t: classes instantiated (new keyword) in 7.

* reference types extracted from 7 (points 1. through 9.) are inserted in AT though the same process,
possibly leading to the identification of further AT ¢lements.

AT construction ends when no additional reference types are collected.

AT nodes are distinguished in class-nodes and interface-nodes, which respectively correspond to
classes or interfaces.

In section 3, discussion will focus on static r ¢, living r ¢, and also on returned native r t. This
latter AT node attribute is a subset of refurned r t, and groups reference types returned by native
member methods of an AT node.

Some restrictions apply to the AT model for program representation. AT is designed for those
cases where classes are not generated dynamically during program execution (for instance, by
extending the abstract class java.lang.ClassLoader). Such a circumstance potentially would not allow
the above AT construction algorithm to statically identify all necessary reference types.

Attention must be paid also to native methods whose behavior can not be described precisely. A
native method might actually return an object that is an instance of a subclass of the return reference
type declared in its signature, preventing static detection of the actually involved reference types. We
require that such a circumstance does not occur. Therefore, a native method is assumed to return an
instance of the signature return reference type, which is necessarily a class because interfaces can not
be instantiated.

3. Application Living Classes

We aim at inferring the classes an expression can be an instance of at run-time based on the
analysis of objects instantiated by the application. Thus, this section preliminary defines the
application Living Classes Set (LCS).

Let CS be the set comprising all AT class-nodes. If C is an element of CS, C.a denotes attribute a
of taxonomy class-node C. In the previous section, among taxonomy node attributes, we defined:
Cfield r t, Cstatic v t, Cliving r t and C.returned native r t.

Let nestedRefComp(.) be a function from CS to the power set of CS, and such that it associates
to a class C in CS the union of 1.) the set of declaration class types of fields in C and 2.) the set of field
declaration class types encountered by recursively inspecting each class reference type in C.field r .
For example, if class 4 contains a reference member field whose declaration type is class B, and if
class B contains only primitive member fields, then nestedRefComp(4)={B}.

The precise definition of nestedRefComp(.) can be specified as follows:

nestedRefComp(C) =auxNestedRefComp(C,)

where auxNestedRefComp(.,.) is an auxiliary function dealing with definitions of circular data
structures:

auxNestedRefComp(C,5) = (C.field r t n CS)O g | JauxNestedRefComp(C".S O C. field r 1)

[C.field_ r tnCS
s

The first argument of auxNestedRefComp(.,.) is the AT class-node to inspect, whereas the second
argument is a set collecting reference types already met, which, therefore, must be discarded.

LCS is defined as follows. A class C belongs to LCS iff at least one of these conditions is verified:

1.) Cisthe AT generator

2)) OCPOLCS: COC living r t

3.) UCPOLCS: COC static v t

4) OC'OLCS, OC’'0OC " returned native r t: ClnestedRefComp(C)

A class C is excluded from LCS if and only if there can be no execution path in the application
that causes C to be instantiated. Condition (1.) states that the AT generator is always considered a
living class. The generator contains the main method and the JVM class loader generates an instance
of it when the application is started. Because of conditions (2.) and (3.), a class C is in LCS if an
exemplar of it is instantiated by class C'’ which is already in LCS, or if C’ code references one of C
static members (ficlds or methods).

Condition (4.) deals with native methods according to previous assumptions. If Cis a living class
for the application (it is in LCS), and if it contains a native method returning reference type C ', we
conservatively assume that such a method can be invoked, returning an instance of C'’. All nested
reference components of C’° potentially are generated by the native method upon creation of the

returned object C . Therefore all nested reference types of returned types by native methods belong to
LCS (condition 4.).

4. Type-Inference via Living Classes Analysis

AT and LCS are used to perform type-inference and, thus, to refine type information associated
with program expressions. At run-time, because of polymorphism, an expression can be an instance of
any subclass of the class (interface) that represents the expression static type. Therefore, program call-
sites can actually dispatch messages to several different methods, limiting interprocedural analysis
effectiveness. Living Classes Analysis (LCA) employs information about those AT classes that may be
instantiated by the application in order to improve static analysis.

Let type(.) be a function that returns the unique static type associated with a program expression.
type(.) is defined properly as Java is strictly statically typed. Let subTreeClasses(.) be a function
that maps every AT node # to the set of class-nodes of the AT sub-tree rooted in 7. There exists a one-
to-one correspondence O between reference types in the application and AT nodes. Hence
subTreeClasses(.) can be described equivalently as a function that maps every reference type ¢ in the
application to the set s of all application class types that subclass ¢. Therefore, if the expression expr
has static reference type r=type(expr), then at run-time expr is an instance of classes in
subTreeClasses(o (¢)). This represents a conservative assumption. In order to refine type
information, the function typelnference(.) is introduced. For every application reference type ¢:

typelnference(s) =subTreeClasses(o (f))nLCS

As LCS is a super-set of the classes that are actually instantiated through any program execution
path, the above definition enables the removal of all those classes that belong to the taxonomy but that
the application does not generate. Therefore, the value typelnference(type(expr)) is evaluated to
perform type-inference on any expression expr. This represents an estimation of the classes expr can
be an instance of when the application is run, and type information refinement is obtained as
typelnference(type(expr))OsubTreeClasses(o(type(expr))).

In [M99], through a working example, we discuss the developed concepts of AT and type-
inference by LCA. Additionally, [M99] utilizes LCA for call-graph construction optimization. This is
the subject of next section. The example we propose in [M99] depicts the typical situation met in the
implementation of the Visitor Pattern [GHJ94| and shows how LCA effectively improves program
analysis in such a case.

5. Experimental Evaluation of LCA

Type-inference algorithms for the refinement of type information find several fruitful areas of
application in the design and development of optimizing compilers for OO programming languages. In
the remainder of the exposition, we will focus on the application of LCA to call-graph construction
because of the importance of call-graphs for interprocedural optimizing compilers.
Substantial improvements in application performance can be achieved by allowing optimizing
compilers to make less conservative assumptions across method invocation boundaries. Given a
program call-graph representing the possible callees at each call-site, interprocedural analysis
summarizes the effects of callees at each method entry. Because of the Java dynamic dispatching
mechanism, the set of possible callees at each call-site is difficult to evaluate precisely, and
necessitates the computation of the possible classes of message receivers or the possible values
returned by invoked methods. Generally, more consolidated call-graph construction techniques rely on
interprocedural data-flow analysis. In this section we investigate an alternative approach: type-
inference through LCA is applied to enhance call-graph construction.

The choice of benchmarks is a delicate task because of the lack of standard programs that are
widely accepted by the Java community. This is due, on one hand, to the broad variety of
programming contexts that Java APIs address, and, on the other hand, to the relative newness of the

language. We chose a set of five Java benchmarks based on diversification of application area and
complexity as well: 1.) hrtpserver is a simple HTTP-server application; 2.) proxy is a generic
cascading proxy server supporting single socket network applications; 3.) RngPack implements a
random number generator; 4.) denf is a formatter of Java source code; 5.) Jasmine is a Java byte-code
decompiler. Table 1 summarizes some features of these programs.

Application Number Of Classes Number Of Code Lines

1. httpserver | 62

2. proxy 3 309

3. RngPack 8 1419

4. dent 22 4286

5. Jasmine 177 15585
Table 1

The number of classes in table 1 refers to classes (interfaces) contained in the application
distribution package. The number of code lines refers to the application source code if it is available,
otherwise it is obtained through byte-code decompilation. All benchmarks are pure Java applications.
For convenience, benchmarks will be identified by the sequential numbers they have in table 1.

400

360
350

260

206

3
3

g

g 198 197 —

2 200 _° 197 191 oAt
v @mics
&

111 113 116

1 2 3 4 5
Benchmarks

Figure 1

The experiment we conducted can be described as follows. Firstly AT is constructed and LCS is
evaluated. Figure 1 shows for each benchmark (horizontal axis) the cardinality (vertical axis) of AT
(light gray bars) and LCS (dark gray bars). A preliminary observation is that in benchmarks 1 to 4 the
number of taxonomy classes does not vary much (about 200 elements). The number of classes
(interfaces) that constitute the applications is relatively small (see table 1), and therefore, the majority
of AT nodes are represented by classes (interfaces) belonging to jdk APIs. Benchmark 5 represents an
exception: 49.2% of AT nodes are classes (interfaces) that belong to the application (177 AT nodes
out of 360).

Additionally, it is interesting to observe that for applications 1, 2, 3, and 4 the percentage of living
classes in the AT is considerably stable (respectively: 56%, 57.3%, 55.5% and 56.3%) even if the size
of the applications in terms of lines of code varies in a significant manner from benchmark 1 to
benchmark 4. But the fifth benchmark shows a different behavior: 72.2% of taxonomy classes are
living classes. Such a high percentage of living classes affects LCA precision as the following
experimental steps clearly prove.

Successively, experimentation consists in evaluating the effectiveness of LCA for call-graph
optimization. Hence, two approaches are used when producing the application call-graphs. In the first

place, for each benchmark, the call-graph is produced without the exploitation of type-inference by
LCA. Therefore, only AT was taken into consideration when analyzing call-sites. Then, the call-graph
is computed again, but LCA is performed in order to gather more precise information. Figure 2 and 3
show the achieved results.

ntage (%

148

136

entage (%)

Call-Sites Reduction Perct

Methods (Constructors) Reduction Percel

Benchmarks Benchmarks

Figure 2 Figure 3

Figure 2 compares the number of methods (constructors) included in the constructed call-graphs
when LCA is not employed against the case when LCA is carried out. It shows for each benchmark
(horizontal axis) the reduction percentage (vertical axis) of the number of call-graph methods
(constructors). LCA performs efficiently on benchmarks 1,2.3 and 4: it is possible to obtain by LCA a
20% reduction of methods (constructors) in the call-graph compared to the case when LCA is not
employed. Instead, in the case of the fifth benchmark LCA produces a 9.2% reduction. As previously
observed, such a benchmark shows a higher percentage of living classes (72.2%) compared to the
other selected applications.

Figure 3 evaluates LCA impact on call-graph enhancement by considering the reduction in the
number of overall call-sites in the case where LCA is employed in comparison to where it is not
utilized (the call-site reduction percentage is reported along the vertical axis). Figure 3 shows that
LCA achieves the highest reduction percentage on the third benchmark (17.3% reduction), and that the
lowest reduction value (4%) is attained in correspondence of the fifth benchmark.

100

928 94.6 948 944

90 +—

80 T— —

70 1T—— —

60 +—— —

50 +— —

40 1+— —

No-Late-Binding Call-Sites (%)

30 T— —

20 T—— —

10— —

0

1 2 3 4 5

Benchmarks .
Figure 4

In figure 4, we provide additional experimental data about LCA collected from benchmarks
1,2,3,4 and 5. The application call-graphs are exposed to LCA optimization. The diagram indicates the
percentage (vertical axis) of call-sites for which run-time method dispatch requires only one method.

Our LCA-based approach enables compilers to locate a remarkable amount of late binding occurrences
that can be replaced by static bindings (on the average 92.7%).

6. Conclusions

The contributions of this paper can be summarized as follows. We proposed both a conceptual
framework and an implementation to carry out type-inference on Java programs. Using this
framework, we empirically accessed a set of benchmarks, which vary in complexity and area of
application. We applied LCA type-inference to these benchmarks in order to optimize their call-
graphs. Obtained results showed that LCA enabled substantial improvements in call-graph
construction. For those benchmarks where the percentage of application living classes was
approximately 50%, LCA type-inference led us to a significant reduction: (1.) in the number of call-
graph constructors/methods (20%), and (2.) in the number of late binding occurrences (over 92.7%).
However, in one case (benchmark 5), the percentage of living classes was remarkably higher (more
than 72%) than in the other benchmarks, and call-graph optimization achieved by LCA was limited.
We aim to improve LCA performance also in such situations by adopting a control-flow sensitive
algorithm for evaluation of application living classes.

We expect that LCA type-inference can be beneficial not only to call-graph construction, but also
to other essential tasks performed by optimizing compilers. Specifically, in our research project about
automatic parallelization of Java programs [MST98, MST99|, LCA is adopted not only to enhance
program call-graphs, but also to develop an interprocedural analysis framework where aliasing
conflicts are investigated via Type-Based Aliasing Analysis (TBAA) [DMM98, MST9S].

References

[A95] 0. Agesen. The Cartesian Product Algorithm: Simple and Precise Type Inference of
Parametric Polymorphism. In Proceedings of the 9" European Conference on Object-
Oriented Programming, pp. 2-26, 1995

[ASU86] A. Aho, R. Sethi, J. Ullman. Compilers: Principles, Techniques and Tools, Addison-
Wesley, 1986

[A97] A. Appel. Modern Compiler Implementation in Java, Cambridge University Press, 1997

[BNN97] C. Brownhill, A. Nicolau, S. Novack, C. Polychronopoulos. Achieving Multi-level
Parallelization. In Proceedings of ISHPC'97International Symposium, Lecture Notes in
Computer Science, Springer-Verlag, pp. 183-194, 1997

[CCZ97] S. Collin, D. Colnet, O. Zendra. Type Inference for Late Binding: the SmallEiffel
Compiler. In Proceedings of the Joint Modular Languages Conference (JMLC97),
Lecture Notes in Computer Science, Springer-Verlag, pp. 67-81, 1997

[DMM98] A. Diwan, K. McKinley, E. Moss. Type-Based Alias Analysis. In Proceedings of the
ACM SIGPLANYS8 Conference on Programming Language Design and Implementation,
pp. 106-117, 1998

[GHJ94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns, Addison-Wesley, 1994

[GJ90] J. Graver, R. Johnson. A Type System for Smaltalk. In Proceedings of POPL, pp. 139-
150, 1990

[GDD97] D. Grove, G. DeFouw, J. Dean, C. Chambers. Call Graph Construction in Object-
Oriented Languages. In Proceedings of the ACM OOPSLA97 Conference, pp. 108-124,
1997

[HO8] W. Hwu. ISCA-98 Tutorial, Java: VM Architecture, Sofiware Architecture,
Implementations and Applications, 25th International Symposium on Computer
Architecture, 1998

[Ja] “Jasmine Java Decompiler”, http://members tripod.com/~SourceTec/jasmine htm

[MO38] A. Magnaghi. Java Native-Thread Support on Sun Enterprise Servers, Internal Report,
The University of Tokyo, June 1998

[M99]
[MSTO8]

[MST99]

[MHO98]
[Mi78]

[RD97]

[VO8]

A. Magnaghi et al. The Visitor Pattern: an Applicability Example of L.CA, Internal
Report, The University of Tokyo, February 1999

A. Magnaghi, S. Sakai, H. Tanaka. An Inter-procedural Approach for Optimizations of
Java Programs. In Proceedings of Information Processing Society of Japan, 1998

A. Magnaghi, S. Sakai, H. Tanaka. Inter-procedural Analysis for Parallelization of

Java Programs. In Proceedings of the 4" International Conference on Parallel
Computation (ACPC99), Lecture Notes in Computer Science, Springer-Verlag, pp. 594-
595, 1999

A. McManus, J. Hunt. The Need for Speed. In SIGS Java Report, Vol. 3, No. 5, pp.39-44,
May 1998

R. Milner. A Theory of Type Polymorphism in Programming. In Journal of Computer
and Systems Sciences, pp. 348-375, 1978

M. Rinard, P. Diniz. Commutativity Analysis: A New Analysis Technique for
Parallelizing Compilers. In ACM Transactions on Programming Languages and Systems,
Vol. 19, No. 6, pp. 942-991, November 1997

B. Venners. Inside the Java Virtual Machine. McGraw-Hill, 1998

