
Inter-Procedural Analysis for Parallelization

of Java Programs

Antonio Magnaghi, Shuichi Sakai, Hidehiko Tanaka

The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

1 Introduction

Parallelization of Java programs is a complex task due to inheritance, dynamic
method dispatching and aliases. Our research [2] aims to perform static analy-
sis of Java programs in order to identify implicit parallelism. In this paper, we
discuss �rst the inter-procedural analysis technique we are studying and imple-
menting to characterize data-dependency. And then we enhance this framework
with type-based alias analysis.

2 Inter-Procedural Analysis

Some of the fundamental characteristics of Object Oriented Programming (OOP),
such as information hiding, lead us to stress the role of inter-procedural analysis
for Java programs because access to objects relies heavily on method dispatch-
ing. Through the example below we demonstrate how implicit parallelism can be
identi�ed in source programs. Let us focus on instructions S1 and S2 of method

class Y {

private X myX;

void p() {

S1:myX.m();

S2:myX.n(3);}}

class X {

private char c;

private int i;

void m() {

S3:String s="X"+c;}

void n(int e) {

S4:i=e; }}

p in class Y (using a notation borrowed from C++:
Y::p()). The member �eld myX of class Y is a refer-
ence object comprising two primitive member �elds: c
and i. In S1 and S2, the actions performed by methods
m and n on the receiver myX can alter the state of its con-
stituent �elds. Method X::m() performs an assignment
that uses as input the value of member �eld c. Hence

we can conclude that: 1.) no alteration is produced on
the state of the receiver by X::m(); 2.) the execution
of X::m() requires member �eld c as input informa-
tion. We model this situation by associating two sets to
method X::m(), a set IN(X::m())=fthis.cg contain-
ing objects externally visible to the method and used
as input to the task performed by the method.

And similarly, OUT(X::m())=; is the set of objects which are modi�ed. The fol-
lowing sets are produced for X::n(int): IN(X::n(int))=feg, OUT(X::n(int))=
fthis.ig. Because it is not possible for the two member �elds of myX (c and i)
to be alias of one another, we conclude that S1 and S2 in Y::p do not interfere
with each other even if they are invoked on the same object. Therefore S1 and
S2 can be issued simultaneously in a multi-threaded manner.



3 Type-based Pointer Analysis

In more general contexts than the example above, alias problems arise [1].We can
formalize our type-based approach for aliases as follows. Let Class and Object

respectively be the sets containing all program classes, and all program objects.
Let Type be a function that returns the class type of an object. Let Comp be a
function from Class to 2Class. It maps every class to the set of reference types
encountered by recursively traversing the data structure of the input class. If
cls 2 Class, and S is the set of nodes of the sub-tree rooted in cls in the program
taxonomy, then we designate Comp�(cls) =

S
i2S

Comp(i). If we consider two
objects in Object, obj1 and obj2, we assume that an alias may take place i� the
following condition holds: Comp�(Type(obj1))\Romp�(Type(obj2)) 6= ;

4 Analyzer Structure

Current implementation produces dependency information based on the algo-
rithms expressed above, conveniently addressing inheritance and method (con-
structor) overloading. The structure of the analyzer can be outlined as follows:
1.) First Pass: the input program is parsed and information about call sides is
collected. 2.) Second Pass: it gathers additional information that becomes avail-
able only after parsing the whole input program. The following activities are
carried out: call graph construction; topological sorting of methods (construc-
tors) based on call graph analysis (the concept of Transfer set is introduced as
a generalization to OOP of the Extension in [3]); evaluation of IN and OUT

sets for every call site and method (constructor) by type-based alias analysis.

5 Conclusions

Preliminary evaluation has been carried out. On simple benchmarks like Linpack
and Primes, we identi�ed parallelism associated to immutable objects or stateless
methods. Current research activity is improving the alias analysis algorithms by
re�ning the type information associated with every program object.

References

1. A. Diwan, K. McKinley, E. Moss. Type-based Alias Analysis. In ACM SIGPLAN98

Conference on Programming Language Design and Implementation, pp. 106-117,

1998.

2. A. Magnaghi, S. Sakai, H. Tanaka. An Inter-procedural Approach for Optimizations

of Java Programs. In Proceedings of the Information Processing Society of Japan,

vol. 57, pp. 299-300, 1998.

3. M. Rinard, P. Diniz. Commutativity Analysis: a New Analysis Technique for Par-

allelizing Compilers. ACM Transactions on Programming Languages and Systems,

vol. 19, no. 6, pp. 942-991, 1997.

4. H. Zima, B. Chapman. Supercompilers for Parallel and Vector Computers. ACM

Press, 1992.


