
An e�cient algorithm for order evaluation of

Strict Locally Testable languages

Antonio Magnaghi, Hidehiko Tanaka

The University of Tokyo, Japan

E-mail: fmagnaghi, tanakag@mtl.t.u-tokyo.ac.jp

1 Abstract

Strict k-local testability is an important concept in

�elds like pattern recognition, neural networks and

formal languages theory. Words of a strict k-locally

testable language L are parsed by decomposing the

input in k-length sub strings without the need to con-

sider context-dependent phenomena. First, we study

the problem to decide if a language L is strict lo-

cally testable: an algorithm is presented to ascertain

whether a value of k exists such that L is k-locally

testable in a strict sense. Then we face the problem

to determine the order of language L, e.g. the mini-

mum value of parameter k so that string recognition

can be optimally performed. Our approach relies on

the development of the concept of a pre�x path inter-

section graph. Through it, we can provide topologi-

cal characterizations of strict local testability proper-

ties that can e�ciently be tested in polynomial time.

Moreover, the methods proposed in this paper distin-

guish from previously achieved results because we do

not utilize algebraic concepts; in the past, strict lo-

cal testability was studied in terms of the syntactic

monoid structure.

2 Introduction and motivations

The concept of local testability (LT) has been

broadly investigated in previous decades, yet it still

represents an active area of research in the �eld of

formal languages.

In such a context it is possible to identify two main

research threads. One of them is concerned with lin-

ear sequences of symbols, e.g., string languages. The

other analyzes more articulated structures, such as,

for instance, images and tree languages [11, 15, 16].

In the case of strings, the wider class of Aperiodic

Languages constitutes the formal framework for

LT [4, 12]. Aperiodicity is revealed to be a lin-

guistic universal, characterized in a variety of ways:

grammatical inference [6], neural networks [12] and

algebraic structures [4, 5, 12, 17]. The importance

of LT springs from its close link to aperiodicity. A

hierarchy of aperiodic languages was identi�ed [4],

imposing di�erent constrains on the string recogni-

tion process. The hierarchy is composed of De�nite,

Reverse De�nite, Locally Testable in a Strict

Sense, Locally Testable and properly Aperiodic or

Non-Counting languages at the top of the taxonomy.

The class of Locally Testable languages in a Strict

Sense (LTs:s:) plays a crucial role in the whole

Aperiodic hierarchy: Aperiodic languages are the

closure of LTs:s: w.r.t. boolean operators and

concatenation [12]. Computational constraints

imposed on LTs:s: are actually met in several

communication processes: this gives an intuitive

valence to formal considerations. For a k-Locally

Testable language in a Strict Sense (L 2 LTks:s:)

the recognition procedure is carried out on an input

string x by a k-wide window to be moved along

x. The sequences of symbols observed through the

window are annotated in a record, regardless of the

order or position they occupy in the string. After

moving the window from one end to the other, x is

accepted or rejected based on the set of sub strings

that compose the produced record.

Also, locality property shows a link to parallel

parsing of string languages. A word of a local

language has such a syntactical structure that each

sub string is analyzed independently from all the

others. Hence, it is possible to decompose the

input sentence among computational units of a

1

parallel computer to simultaneously recognize the

di�erent parts, substantially improving parsing

performance. Moreover, another feature emerges for

LTs:s: languages in relation to error identi�cation.

The presence of a syntax error is easy to detect and

its position is precisely de�ned as well: it is located

within the k-length sub string that does not match

any element of the recognition sets of words used

when parsing. On the contrary, in the general case

when LTs:s: property does not hold, error handling

is more complex.

A systematic characterization of the di�erent sub

families of aperiodic languages was presented in the

past [3, 5]. The adopted techniques, however, were

quite elaborate and the algebraic approach left un-

solved computational problems. In 1994 [10] it was

proved that the optimization problem of the order of

an LT language is NP-hard. In the following section,

we describe the results we could achieve for LTs:s:

class.

3 Our results

In this paper, we provide an e�cient algorithm for

order evaluation of languages belonging to LTs:s: To

our knowledge, no such algorithm has been reported

in the literature. Presented considerations describe

how to prove that the order evaluation of a language

L in LTs:s: can be performed by a polynomial al-

gorithm of time-complexity o(j�j2mn), where �; m

and n are, respectively, the alphabet of L, the num-

ber of edges and the number of states of the �nite

state automaton accepting L. In order to obtain

such a result, it was necessary to frame the concept

of LTs:s: in a di�erent perspective. Our approach

aims at capturing strict local testability in a direct

manner, without employing any algebraic property

of the syntactic monoid. Instead, a set-theoretically

based analysis is carried out in order to link local

testability to topological properties of the automa-

ton of language L. Before being able to establish

the polynomial algorithm of order evaluation, it was

necessary to face strictly related problems, concern-

ing the characterization of k-local testability in a

strict sense (LTks:s:), and the decidibility of LTs:s:

property. The exposition follows the sequentiality

of these conceptual units. In particular, the speci�c

points we addressed can be summarized as follows:

1. Characterization of LTks:s: property: for a spe-

ci�c integer value of k, the analyzed decision

problem is: \L 2 LTks:s:?"

A su�cient and necessary condition is for-

mulated (theorem 3). It involves topological

properties of paths in the accepting automa-

ton. Such a characterization has the advan-

tage to impose determinism as a unique con-

straint, without requiring the automaton to be

reduced. Nonetheless the minimal automaton

case is studied and then conveniently employed

in subsequent considerations.

2. Development of an algorithm to decide LTs:s:

property (existential problem): given language

L, does a value of k exist such that L 2 LTks:s:?

Our approach consists, �rst, in de�ning the

Pre�x-Path-Intersection Graph (PPIG). For its

construction a �xed-point algorithm is formu-

lated. Then its complexity is shown to be

o(j�j2mn) (theorem 5).

3. Development of an algorithm for the optimiza-

tion problem of order evaluation: for a language

L 2 LTs:s:, which is the minimum value of kmin

such that kmin = minkfk : L 2 LTks:s:g?

The study of the PPIG properties relates the

length of the longest path in the PPIG to the

order of language L. Then, �nally, the paper

states the major result: the order of L can be

evaluated in o(j�j2mn).

In addition to previous results, the introduced ap-

proach seems to have a worthwhile characteristic:

the syntactic monoid and its algebraic structure are

not involved. This leads us to think that such an

approach might give insight on how to extend our

considerations to di�erent contexts, such as image

and tree languages.

4 Preliminary de�nitions

Let � be a �nite alphabet of symbols, and let ��

denote the universal language over �, including all

the strings obtained by concatenation of alphabet

elements. A subset L of �� is a string language, or

a string event, over �. If L de�nes a regular set (it

2

can be characterized through a regular expression),

the language L is regular and it can be recognized

by a �nite state automaton M .

Our notation follows [12]. Being that k is a non-

negative integer number, it is possible to de�ne the

following operators on a string x of length greater or

equal to k:

Lk(x) = fy : x = yw ^ jyj = kg (1)

Rk(x) = fw : x = yw ^ jwj = kg (2)

Ik(x) = fw : x = ywz ^ y; w; z 6= � ^ jwj = kg (3)

The operator Lk(x) extracts the k-length pre�x from

the input string. Symmetrically, Rk(x) produces the

k-length su�x of word x. Equation (3) de�nes the

set of properly internal k-length sub strings of x. If

the length of x (denoted by jxj) equals k or (k+1),

Ik(x) is the empty set.

Let �k ,�k,k be sub sets of �
k; they are sets of strings

over � whose length is k.

The language L is k-locally testable in a strict sense

(L 2LTks:s:) if sets �k,�k,k exist such that for

every x 2 �� (jxj � k):

(x 2 L)()

(Lk(x) 2 �k ^ Ik(x) � �k ^Rk(x) 2 k) (4)

Based on relation (4), a k-locally testable language

in a strict sense has a property so that syntactic

analysis can be performed locally. On a procedu-

ral level, parsing activity requires that the pre�x

(Lk(x)), su�x (Rk(x)) and the set on internal sub

strings (Ik(x)) be extracted from string x. Recalling

the initial window analogy, x can be parsed by a k-

letters-wide loophole to be moved from left to right

end one symbol at a time.

Correctness is evaluated using only the information

collected through such a decomposition. No infor-

mation about order or relative position of occurrence

is kept. De�nition (4) does not consider strings of

L consisting of a number of symbols less than k. In

this case, the number of possible words is limited,

so parsing can be performed separately in a simple

way.

In particular �k ; �k; k contain the recognition pat-

terns necessary to ascertain whether a string belongs

to L or not. �k can be interpreted as the set con-

taining all possible k-length pre�xes of strings of L.

Dually, k is the set of all acceptable k-length suf-

�xes. �k is the set of all acceptable internal k-length

sub strings of words of L.

�k = fx : w = xy ^ jxj = k ^ w 2 Lg (5)

�k = fv : w = uvz ^

^u; z 6= � ^ jvj = k ^ w 2 Lg (6)

k = fy : w = xy ^ jyj = k ^ w 2 Lg (7)

L 2 LTks:s: means that syntactical analysis can

be correctly carried out through sets �k; �k; k, as

de�ned above. On the contrary, if L =2 LTks:s:, the

language recognized through such sets is a super set

of L.

5 Basic concepts and formal tools

Let M = (Q;�; �; q0; F) [8] be a deterministic �nite

state automaton (DFA) accepting the regular lan-

guage L. Q is the set of states. � is the input alpha-

bet. � is the transition function. q0 2 Q is the initial

state and F � Q is the non-empty set of �nal states.

For any q 2 Q and x 2 ��, �(q; x) denotes the state

that results when input x is applied to M from state

q. A string x is accepted by M if �(q0; x) 2 F , hence

L = fx 2 �� : �(q0; x) 2 Fg.

Let us de�ne
^

M= (
^

Q;�;
^

�; q0;
^

F) to be the automa-

ton derived from M in such a way that:
^

Q� Q;
^

�
is a new partial transition function whose domain

is a subset of
^

Q ��, and image is
^

Q; the new set

of �nal states
^

F is a sub set of F . We require that

8q 2
^

Q; 9x1; x2 2 �� : �(q0; x1) = q ^ �(q; x2) 2
^

F . A

node q is in the set
^

Q of
^

M only if q can be reached in

M from the initial state q0 and if from q, it is possible

to reach in M a �nal state belonging to F . The tran-

sition function is modi�ed accordingly:
^

� (q1; a) = q2

is de�ned in
^

M i� q1; q2 2
^

Q and �(q1; a) = q2 in M .
^

M di�ers fromM for the suppression of unreachable

(from q0) or unproductive states that do not allow

an end to the computation in a �nal node. Conse-

quently transitions from/to such suppressed states

are eliminated.

Mr = (Qr;�; �r; Fr) denotes the reduced DFA

associated with M . Mr is unique if state-renaming

3

isomorphisms are neglected. q is a sink state in M

if, from it, a �nal node can not be reached. When

a sink state is reached: �(q0; x) =2 F , this means

that input string x does not belong to L. In Mr the

sink state, if present, is unique and it is denoted

by S.
^

Mr results from Mr by eliminating S and all

transitions: �(q; a) = S; a 2 �; q 2 Q.

Let
^

G= (V;�; P;< q0 >) be the linear right-

derivative context-free grammar associated univo-

cally to
^

M as follows:

1. the set V of non terminals contains a symbol for

every state of
^

M :

V = f< q >: q 2
^

Qg

2. the terminal alphabet � of
^

G equals the input

alphabet of
^

M

3. the set P of linear productions is derived from
^

M as follows:

P = f< q1 >! a < q2 >:

q1; q2 2
^

Q ^a 2 �^
^

� (q1; a) = q2g [

[f< qf >! � : qf 2
^

F g

4. the grammar axiom < q0 > corresponds to the

initial state q0 of
^

M .

Let � be the omomorphism whose domain and image

are respectively (�[V)�, ��:

�(a) = a; 8a 2 (� [f�g)

�(< qj >) = �; 8qj 2
^

Q

�(xy) = �(x)�(y); 8x; y 2 (�[V)�

For any state qi of
^

M and for any integer k, the

following set of strings is de�ned:

Vk(qi) = f�(!) :< qi >
k

=) !g (8)

Vk(qi) is the set of all words obtained through the

application of �(:) to derivations of length k starting

from the non terminal < qi >. If the last derivation

to produce ! is not terminal, then j�(!)j = k; oth-

erwise j�(!)j = (k � 1).

For every qi 2
^

Q and for every x 2 Vk(qi), let us

de�ne the set Dk(qi; x) :

Dk(qi; x) = fy = xu 2 Vk+1(qi) :

u 2 � [f�gg; if jxj= k (9)

Dk(qi; x) = ;; if jxj= (k � 1) (10)

Dk(qi; x) consists of the strings whose k-pre�x equals

x and that are produced by a chain of (k+1) deriva-

tions from < qi >.

Lemma 1 x 2 Dk(qi; x) i� �(qi; x) 2 F

6 Characterization of LTks:s:

property

In this section a set-theoretical characterization of

LTks:s: property is established (theorem 3). The

adopted formulation of a necessary and su�cient

condition directly appears to be of interest on a pro-

cedural level. Such a result constitutes a decidibil-

ity algorithm for ascertaining if L is in LTks:s: We

show in the following section that theorem 3 also

represents a useful instrument for the solution to a

di�erent decision problem: \Is L in LTs:s:?," which

contributes to an explication of the relation between

LTks:s: and LTs:s:

In the following considerations, qi; qh denote arbi-

trary states in
^

Q, if there is at least one edge in
^

M

entering the initial state q0. Otherwise, qi; qh be-

long to
^

Q �fq0g: in this case q0 is used only once

when string parsing begins, hence such a state is not

considerated because it can not generate k-length

recognition strings either in �k or in k.

Theorem 1 Let L be in LTks:s:, then every DFA

M accepting L is such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any x 2 Vk�1(qi) \ Vk�1(qh) and for any qi; qh.

4

Proof

It will be proved that L =2 LTks:s: if there exist two

distinct states qi; qh and a string x such that:

x 2 Vk�1(qi) \ Vk�1(qh) (11)

Dk�1(qi; x) 6= Dk�1(qh; x) (12)

If jxj = (k � 2), then Dk�1(qi; x) = Dk�1(qh; x) = ;

because of de�nition (10). Hence, necessarily

jxj = k � 1.

Let x have the form: x = t1t2 : : : tk�1; ti 2

�; 1 � i � k � 1. Condition (12) implies

that qi 6= qh and that at least one of the

sets (Dk�1(qi; x) � Dk�1(qh; x)); (Dk�1(qh; x) �

Dk�1(qi; x)) is not empty. For instance, let y belong

to Dk�1(qi; x) � Dk�1(qh; x) : y = xtk(jyj = k).

As y =2 Dk�1(qh; x), �(qh; y) = P , where P is

a sink state. Being that M is deterministic,

and qi 6= qh, there must be two di�erent strings

w1; w2 that lead from q0 to qi and qh respectively:
^

� (q0; w1) =
^

� (q0; a1a2 : : : am) = qi;
^

� (q0; w2) =
^

�
(q0; b1b2 : : : bn) = qh, where m;n � 0, but not

both of them can equal zero, and w1 6= w2. Let

us consider the following states:
�

qi=
^

� (qi; x);
�

qh=
^

�

(qh; x);
�

qi0=
^

� (
�

qi; tk); P = �(
�

qh; tk). From
�

qi0 a �nal

state qf is reachable. Let z = c1c2 : : : cs; (s � 0)

be the string leading to qf : �(
�

qi; z) = qf 2 F .

Now, let us consider the word w = w2yz, where

the length of w is greater or equal to k. Previous

considerations assure that �(q0; w2y) = P . This

implies �(q0; w2yz) = �(q0; w) = P , hence w =2 L.

In the reminder of the proof it will be veri�ed that

the existence of string w implies no proper sets

�k; �k; �k exist. If L were in LTks:s:, necessarily syn-

tactical analysis should utilize �k ; �k; k as de�ned

in (5), (6), (7). Nonetheless, in such a case a super

set of L would be recognized.

Let us consider Lk(w); two cases are possible ac-

cording to the length of string w2: (a)if n � k,

Lk(w) = b1b2 : : : bk, (b)if 0 � n < k, Lk(w) =

b1b2 : : : bnt1t2 : : : tl, where n+ l = k; 1 � l � k.

(Case a)
^

� (q0; w2) = qh, and from qh a �nal state qf 0

is reachable, hence from
^

� (q0; b1; b2 : : : bk) the same

node qf 0 is reachable. As a consequence, b1b2 : : : bk
is the pre�x of a string in L, hence because of (5)

Lk(w) 2 �k.

(Case b)The condition x = t1t2 : : : tk 2

Vk�1(qh) guarantees that for any state:

ql =
^

� (q0; w2t1t2 : : : tl); 1 � l � k, a path ex-

ists leading to a �nal state of
^

M from ql. Hence, it

is possible to conclude again that Lk(w) 2 �k .

Let us consider Rk(w) and recall that jzj = s. (a)if

s � k, Rk(w) = cs+1�kcs+2�k : : : cs; (b)if 0 � s < k,

Rk(w) = tltl+1 : : : tkc1c2 : : : cs; 1 � l � k. In both

case (a) and (b) we can prove that Rk(w) 2 k in a

fashion similar to the one used for Lk(w).

In the end it is also possible to verify that

Ik(w) � �k.

Hence if conditions (11), (12) simultaneously hold,

a string w exists such that w =2 L, but for which:

Lk(w) 2 �k; Ik(w) � �k; Rk(w) 2 k. Thus we

conclude L =2 LTks:s.

In order to prove theorem 2 in a more concise fash-

ion, two preliminary lemmata are required (lemma

2 and lemma 3).

Lemma 2 Let M be a DFA such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any x 2 Vk�1(qi) \ Vk�1(qh), and for any qi; qh.

Let w = a1a2 : : : am; (m � k) be a string such that:

Lk(w) 2 �k ^ Ik(w) � �k ^Rk(w) 2 k. Then

�(q0; a1a2 : : : ar) 2
^

Q; 1 � r � m

As follows, the second lemma is stated, in order to

prove subsequent theorem 2.

Lemma 3 Let M be a DFA such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any x 2 Vk�1(qi) \ Vk�1(qh) and for any qi; qh.

Then the state �(qi; x) is equivalent to �(qh; x).

Proof

Let x = a1a2 : : :ak 2 Vk�1(qi) \ Vk�1(qh), and let

us assume that
�

qi= �(qi; x) is not equivalent to
�

qh=

�(qh; x). This implies the existence of a string y =

b1b2 : : : bm(m � 0) such that �(
�

qi; y) 2 F and �(
�

qh

5

; y) =2 F or �(
�

qi; y) =2 F and �(
�

qh; y) 2 F .

Consider for instance the �rst possible case, let z =

xy(jzj � k), and �i (resp. �h) be the path comprising

the edges ofM used by the involved transitions from

qi (resp.qh) to �(qi; z) (resp. �(qh; z)):

�i = (qi; �(qi; a1))(�(qi; a1); �(�(qi; a1); a2)) : : :

(�(qi; a1a2 : : : akb1b2 : : : bm�1); bm)

(resp:�h = (qh; �(qh; a1))(�(qh; a1); �(�(qh; a1);

a2)) : : :(�(qh; a1a2 : : : akb1b2 : : : bm�1); bm))

With
�

qi0 (resp.
�

qh0) we designate the node at a

distance of (k-1) edges from �(qi; z) (resp. �(qh; z))

along the path �i (resp. �h). As jzj � k,
�

qi0 (resp.
�

qh0) exists, and
�

x is the (k-1)-su�x of z such that:

�(
�

qi0;
�

x) = �(
�

qi; y) (resp. �(
�

qh0;
�

x) = �(
�

qh; y)). We

note that
�

x2 Vk�1(
�

qi0)\Vk�1(
�

qh0). However, the set

equality Dk�1(
�

qi0;
�

x) = Dk�1(
�

qh0;
�

x) does not hold:

�(
�

qi0;
�

x) = �(
�

qi; y) 2 F , hence lemma 1 guarantees

that
�

x2 Dk�1(
�

qi0;
�

x); on the other hand, being

�(
�

qh0;
�

x) = �(
�

qh; y) =2 F;
�

x=2 Dk�1(
�

qh0;
�

x) (lemma 1).

This represents a contradiction; necessarily �(qi; x)

is equivalent to �(qh; x).

We can derive the following result as an immediate

consequence of previous lemma:

Corollary 1 Let Mr be a reduced DFA such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any x 2 Vk�1(qi) \ Vk�1(qh) and for any qi; qh.

Then:

�(qi; x) = �(qh; x)

It is now possible to proceed to theorem 2; it proves

the validity of exchanging hypothesis and thesis in

theorem 1.

Theorem 2 Let M be a DFA such that:

Dk�1(qi; x) = Dk�1(qh; x)

for any x 2 Vk�1(qi) \ Vk�1(qh) and for any qi; qh.

Then the language accepted by M is LTks:s: w.r.t.

�k (5), �k (6), k (7).

Proof

Recalling the de�nition of LTks:s: language (4), two

implications must be veri�ed.

Being w 2 ��; jwj � k:

w 2 L) Lk(w) 2 �k ^ Ik(w) � �k ^ Rk(w) 2 k

and

Lk(w) 2 �k ^ Ik(w) � �k ^ Rk(w) 2 k) w 2 L

Because of (5), (6), (7) the �rst of them holds in

a straightforward manner, whereas the second one

requires additional considerations.

Let w be a string of this form: w = a1a2 : : :am(m �

k), with the property that Lk(w) 2 �k; Ik(w) �

�k; Rk(w) 2 k. Our aim is to show that w is syn-

tactically correct: �(q0; w) = qm 2 F .

Rk(w) =am�k+1am�k+2: : :am 2 k. Let us con-

sider the states: qm�k+1 =�(q0;a1a2: : :am�k+1)

and qm =�(qm�k+1 ;am�k+2am�k+3: : :am). Both

of them belong to
^

Q because of lemma 2. The

string am�k+1am�k+2 : : :am is in k, therefore a

string y of L exists such that am�k+1am�k+2 : : : am

is its k-length su�x. Being y in L, a state
�

q

exists: �(
�

q ; am�k+2am�k+3 : : : am) = qf 2 F .

Lemma 2 assures that
�

q2
^

Q. In particular:

am�k+2am�k+3 : : :am 2 Vk�1(qm�k+1) \ Vk�1(
�

q).

Considering that the hypothesis of lemma 3 hold, we

conclude the state �(qm�k+1; am�k+2am�k+3 : : : am)

is equivalent to �(
�

q; am�k+2am�k+3 : : :am). There-

fore, qm is equivalent to qf : qm belongs to F , that

is w 2 L.

Theorems 1 and 2 lead us to obtain directly the main

result of this section, characterizing LTks:s:

Theorem 3 A language L, accepted by a DFA M ,

is in LTks:s: i� Dk�1(qi; x) = Dk�1(qh; x) for any

x 2 Vk�1(qi) \ Vk�1(qh) and for any qi; qh.

The following corollary is a direct consequence of

theorem 3 and corollary 1:

Corollary 2 A language L, accepted by the reduced

DFA Mr, is in LTks:s: i� �(qi; x) = �(qh; x) for any

x 2 Vk�1(qi) \ Vk�1(qh) and for any qi; qh.

6

7 LTs:s: decidibility algorithm

In this section, we show that local testability in a

strict sense can be checked through an acyclicity test

on a convenient graph (PPIG), directly obtained

from the automaton that accepts L. The overall

complexity of the decision algorithm results in

o(j�j2mn), where m;n are the cardinality of the

sets of edges and nodes of
^

M r.

The considerations below are restricted to the

reduced DFA Mr = (Q;�; �; q0; F) that recognizes

L. Corollary 2 to theorem 3 provides a necessary

and su�cient condition for local testability that can

signi�cantly be expressed in terms of topological

properties of paths on Mr. Let us consider two

states qi and qh in
^

Q, from which it is possible

to produce two paths, �i; �h respectively, not

containing the sink state S, and labeled through

the same k-length string x. Mr (the language L) is

in LTks:s: if, and only if, there exists a pre�x u of

x (not necessarily proper) leading to the same node

in �i and �h: �(qi; u) = �(qh; u) = qc. If the pre�x

u equals x, the condition expressed in corollary 2

is valid in a straightforward way. Otherwise, if u

is a proper pre�x, the determinism of Mr guaran-

tees that from qc the paths �i and �h necessarily

coincide, hence �(qi; x) = �(qh; x). Therefore, L is

in LTks:s: i� for any qi; qh 2
^

Q and any arbitrary

k-length string x 2 Vk�1(qi)\ Vk�1(qh), paths �i; �h
present an intersection node, reached through the

same pre�x string.

For every letter a of the input alphabet �, a set Ia
is constructed composed of all nodes of Mr that are

the target of an arc labeled with letter a:

Ia = fqi : 9qh 2
^

Q ^
^

� (qh; a) = qig; a 2 � (13)

Let N be the set containing all sets Ia, whose cardi-

nality is greater than one:

N = fIa : a 2 � ^ jIaj > 1g (14)

A function
^

� is de�ned on N � �:

^

� (Ia1 ; a2) =
[

qi 2 Ia1
^

�(qi;a2)defined

f
^

� (qi; a2)g (15)

^

� is such that:
^

� (Ia1; a2) � Ia2 ; 8a1; a2 2 �.

Let us now introduce the Pre�x-Path-Intersection

Graph (PPIG). It is a graph produced by the �xed-

point algorithm of Figure 1.

,,QQSXSXWW� VHW RI QRGHV 1 � DOSKDEHW6 � IXQFWLRQ

�

'

22XWSXXWSXWW� 33,* �
33,*

1 �
33,*

(�

^6HW7\SH�
33,*

1 �
33,*

(�1HZ6WDWHV�

33,*
1 1 �

33,*
(�� 1HZ6WDWHV

33,*
1 �

ZKLOH�1HZ6WDWHV � ��

^FKRVH
�
D
, �1HZ6WDWHV

IRU HYHU\
�
D �6

^LI��

�

' �
�
D
, �

�
D ��

33,*
1 �		�_

�

' �
�
D
, �

�
D �_!���

^1HZ6WDWHV 1HZ6WDWHV � ^

�

' �
�
D
, �

�
D �`�

33,*
1

33,*
1 �^

�

' �
�
D
, �

�
D �`�

`�

LI��
�
D
, �

�

' �
�
D
, �

�
D ��

�
D ��

33,*
(�

33,*
(

33,*
(�^�

�
D
, �

�

' �
�
D
, �

�
D ��

�
D �`�

`�

1HZ6WDWHV 1HZ6WDWHV � ^
�
D
, `�

`�

UHWXUQ 33,* �
33,*

1 �
33,*

(��

` Figure 1: PPIG Construction

The algorithm considers initially all macro-nodes de-

�ned in (13). From each node, all possible output

arcs are taken into account. If function
^

� maps the

node Ia1 to a new macro-node containing a number

of Mr states greater than one, the set NPPIG is con-

sequently augmented.

The algorithm terminates when variable NewStates

is empty. It contains all nodes from which new pos-

sible transitions may originate. When NewStates is

empty, there is no possibility to further augment the

graph: a �xed-point therefore is reached. The car-

dinality of NewStates is limited by the power set of

N and every iteration of the out-most for-loop re-

duces it by one element. Therefore NewStates will

be empty, hence the algorithm terminates.

Lemma 4 All macro-nodes in the same loop of the

7

PPIG contain the same number of nodes of Mr.

Lemma 4 assures that all the macro-nodes of the

PPIG in any strongly-connected component contain

the same number of states of Mr.

Finally we can prove the following theorem that pro-

vides an algorithm to test LTs:s: property.

Theorem 4 L is in LTs:s: i� its PPIG is acyclic.

Proof

(Necessary condition)

If a cycle � =< Ia1 ; Ia2; : : : ; Ial > exists in the

PPIG, all nodes in it contain the same number of

states of Mr (lemma 4). Moreover, all of the PPIG

macro-nodes contain at least two distinct states of

Mr. Let us consider q1; q2 2 Ial (q1 6= q2) and the

string: y = a1a2 : : : al. �(q1; y) = q1, �(q2; y) = q2;

this guarantees the existence of an arbitrary length

string x such that �(q1; x) 6= �(q2; x), implying L is

not in LTs:s: (corollary 2). Hence necessarily the

PPIG is cycle-free.

(Su�cient condition)

Being that the PPIG is cycle-free, all paths in it are

simple. Hence, it is possible to consider the longest

path � in the graph. All paths labeled by strings in

�� whose length is greater than the length of � are

completely disjointed or met in one same node of

Mr. Therefore, the condition expressed by corollary

2 is veri�ed, assuming k is equal to the length of �

augmented by one.

We can proceed to evaluate the complexity of the

construction algorithm for the PPIG and an upper

bound to the cardinality of sets NPPIG; EPPIG. In

the reminder of the paper all considerations will be

related, through the PPIG, to the
^

M r graph. Hence,

values m;n refer to the cardinality of the set of edges

and nodes in
^

M r.

Theorem 5 The PPIG=(NPPIG; EPPIG) con-

struction algorithm has a time complexity o(j�j2mn)

and jNPPIGj � C1j�jm; jEPPIGj � C2j�j
2m, where

C1; C2 are constants.

Proof

We will outline the basic ideas as follows. Let

jNewStatesj denote the overall number of di�erent

states that are inserted in variable NewStates dur-

ing the whole execution of the algorithm. Any time

control ow reaches the while-cycle last instruction

one element is eliminated from NewStates; hence,

the cycle will be iterated jNewStatesj times. If we

focus on the body of the for-statement, it is possible

to note that operations can be carried out in a time

proportional to n under the worst-case assumption.

Therefore, the complexity is o(j�jnjNewStatesj).

Hence, an upper bound for jNewStatesj value is re-

quired. Let us consider one of the macro-nodes given

by (13) and the path �(Ia) in the PPIG composed

of the following nodes: �(Ia) =< Ia;
^

� (Ia; a);
^

� (
^

�

(Ia; a); a);
^

� (
^

� (
^

� (Ia; a); a); a) : : : >. We know

that
^

� (Ia; a) � Ia;
^

� (
^

� (Ia; a); a) �
^

� (Ia; a) �

Ia; : : : This assures that the length of �(Ia) is lim-

ited, and it contains the maximum possible num-

ber of nodes when it is cycle-free and every suc-

cessive application of function
^

� decreases by one

unit the number of Mr states in the input macro-

node. Hence, max j�(Ia)j � jIaj. Now let us analyze

at the same time two distinct macro-nodes, Ia1 ; Ia2
as de�ned in (13). The construction of the PPIG

requires us to consider the a2-labeled edges from

nodes of �(Ia1). Let s1 denote a node in �(Ia1).
^

� (s1; a2) can be a node in �(Ia2); in this case,

no new node is added.
^

� (s1; a2), however, can be

a new node. A node s2 2 �(Ia2) exists such that

s2 �
^

� (s1; a2). In particular, let s2 be the smallest

set in �(Ia2) with the property that s2 �
^

� (s1; a2).

Only the new node
^

� (s1; a2) is introduced, because
^

� (
^

� (s1; a2); a2) =
^

� (s2; a2). Hence, for every

ordered couple (�(Ia1); �(Ia2)), the number of new

nodes that it is possible to introduce does not ex-

ceed max j�(Ia1)j � jIa1 j.

Now, therefore, we can consider the following chain,

where c1 is a constant:

jNewStatesj � c1
X

a2�

(jIaj+ (j�j � 1)jIaj) =

= c1j�j
X

a2�

jIaj = c1j�jm

The last equality is generated by the fact that the

sets Ia can be directly mapped to a partition in the

edges set of Mr.

8

In order to conclude: jNewStatesj � c1j�jm,

jNPPIGj � c1j�jm. It is possible also to evaluate

an upper bound for the cardinality of the set of

edges EPPIG, considering the arcs belonging to ev-

ery path �(Ia1) and the arcs connecting every node of

NPPIG. As the language automaton is deterministic,

the maximum number of edges from every macro-

node in the PPIG is j�j, hence we have:

jEPPIGj � c2
X

a2�

(jIaj+ j�j(j�j � 1)jIaj) �

� c3j�j
2
X

a2�

jIaj = c3j�j
2m

where c2; c3 are constants.

Once the PPIG is constructed, the acyclic-

ity test (theorem 4) can be performed through

the algorithm of [14], whose complexity is

o(max(jNPPIGj; jEPPIGj) = o(j�j2m).

8 Order evaluation

The order of a language L 2 LTs:s: is de�ned as

the minimum value kmin of parameter k such that L

is in LTkmin
s:s: If L is in LTks:s:, clearly L belongs

also to LTk0 , where k
0 > k. In general, however, it

is not true that L is in LTk00s:s: with k00 < k. kmin

determination allows us to optimally parse the input

string. This section faces the problem so we can

evaluate the order of L and, as a result, we propose

an algorithm whose complexity is o(j�j2mn).

Theorem 6 Let L be a language whose PPIG is

acyclic (L 2 LTs:s:), and let kPPIG denote the

length of the longest path in the PPIG. Then the

order of L is:

kmin = kPPIG + 2

Proof

For a macro-node Ia of the PPIG, let us consider a

path � =< Ia; Ia1; Ia2 : : : ; Ial > originating in Ia and

ending in a macro-node Il with no output edges. The

length of � augmented by one unit equals the length

of the shortest common pre�x for all Mr states in

Ia, so that for any string x = a1a2 : : :aly (y 2 �+):

�(qi; x) = �(qj ; x); qi; qj 2 Ia. Let us de�ne the

value: kIa = max�(Ia)fj�(Ia)j : �(Ia) is a path orig-

inating in Iag. kIa exists because PPIG is cycle-

free and the value kIa + 1 represents the shortest

common pre�x to guarantee that all possible paths

originating from nodes in Ia with a common pre�x

have the same intersection node. Therefore, con-

sidering all nodes of PPIG, let us de�ne the value:

kPPIG = maxIa2thePPIGfkIag. Based on what is

stated above, the minimum value of k satisfying

corollary 2 needs to respect the following constraint:

kPPIG + 1 = kmin � 1

We can �nally determine the order of L:

kmin = kPPIG + 2

Hence, the complete procedure for order evaluation

of language L consists of the following steps:

1. to build the PPIG: complexity o(j�j2mn) (the-

orem 5)

2. to test whether the PPIG is cycle-free: complex-

ity o(j�j2m)

3. to �nd the longest path in the PPIG: being the

PPIG a directed cycle-free graph, the longest

path can be determined by algorithms [2] of

complexity linear in the number of edges of the

graph, thus because of theorem 5: o(jEPPIGj) =

o(j�j2m).

Theorem 7 The optimization problem of order

evaluation for a language L 2 LTs:s: is polynomial

with complexity o(j�j2mn).

9 Acknowledgments

We are grateful to Eileen Mary Purcell for the pre-

cious editing suggestions she gave us.

References

[1] A. Aho, J. Hopcroft, J. Ullman. The design

and analysis of computer algorithms. Addison-

Wesley, 1974

[2] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Net-

work ows. Prentice-Hall, 1993

9

[3] J. A. Brzozowski, I. Simon. Characterization

of locally testable events. Discrete Mathematics,

Vol. 4, 1973, pp. 243-271

[4] J. A. Brzozowski. Hierarchies of aperiodic lan-

guages. R.A.I.R.O. Information Th�eorique (vol.

10, No. 8, août 1976, pp. 33-49)

[5] R. S. Cohen, J. A. Brzozowski. Dot-depth of

star-free events. J. Computer and System Sc.,

Vol. 5, 1971, pp. 1-16

[6] S. Crespi-Reghizzi, M. A. Melkano�, L. Lichten.

The use of grammatical inference for design-

ing programming languages. Comm. ACM 16,

2 (Feb. 1973), pp. 83-90

[7] M. Harrison. Introduction to formal language

theory. Addison-Wesley, 1978

[8] J. Hopcroft, J. Ullman. Introduction to au-

tomata theory, languages and computation.

Addison-Wesley, 1979

[9] S. M. Kim, R. McNaughton, R. McCloskey.

A polynomial time algorithm for local testa-

bility problem of deterministic �nite automata.

I.E.E.E. Trans. Comput., 40, 1991, pp. 1087-

1093

[10] S. M. Kim, R. McNaughton. Computing the or-

der of a locally testable automaton. SIAM J.

Comput. Vol. 23, No. 6, pp. 1193-1215, Decem-

ber 1994

[11] A. Magnaghi. Local Testability in Parse Trees of

Arti�cial Languages (in Italian) Master Thesis,

Adviser Prof. S. Crespi-Reghizzi, Polytechnic of

Milan, 1996

[12] R. McNaughton, S. Papert. Counter-free au-

tomata. M.I.T. Press, Cambridge, MA, 1971

[13] M. Perles, O. Rabin, E. Shamir. The theory

of de�nite automata. I.E.E.E. Trans. Electronic

Computers EC-12, 1963, pp.233-243

[14] R. E. Tarjan. Depth �rst search and linear

graph algorithms. SIAM J. Computing, 1, 146-

60, 1972

[15] A. Pottho�, W. Thomas. Regular tree languages

without unary symbols are star free. in 9th

International Conference on Fundamentals of

Computation Theory, Zolt�an �Esik, ed., Lecture

Notes in Compute Science 710 (1993), pp. 396-

405

[16] M. Steinby. A theory of language varieties. in

Tree Automata and Languages, M. Nivat and

A. Podelski (editors), Elsevier Publ., 1992, pp.

57-81

[17] Y. Zalcstein. Locally testable languages. J. Com-

puter and System Sc., Vol. 6, 1972, pp. 151-167

10

