An efficient algorithm for order evaluation of

Strict Locally Testable languages

Antonio Magnaghi, Hidehiko Tanaka
The University of Tokyo, Japan
E-mail: {magnaghi, tanaka}@mtl.t.u-tokyo.ac.jp

1 Abstract

Strict k-local testability is an important concept in
fields like pattern recognition, neural networks and
SJormal languages theory. Words of a strict k-locally
testable language L are parsed by decomposing the
input in k-length sub strings without the need to con-
sider context-dependent phenomena. First, we study
the problem to decide if a language L is strict lo-
cally testable: an algorithm is presented to ascertain
whether a value of k exists such that L is k-locally
testable in a strict sense. Then we face the problem
to determine the order of language L, e.g. the mini-
mum value of parameter k so that string recognition
can be optimally performed. Our approach relies on
the development of the concept of a prefix path inter-
section graph. Through it, we can provide topologi-
cal characterizations of strict local testability proper-
ties that can efficiently be tested in polynomial time.
Moreover, the methods proposed in this paper distin-
guish from previously achieved results because we do
not utilize algebraic concepts; in the past, strict lo-
cal testability was studied in terms of the syntactic
monotd structure.

2 Introduction and motivations

The concept of local testability (L7') has been
broadly investigated in previous decades, yet it still
represents an active area of research in the field of
formal languages.

In such a context it is possible to identify two main
research threads. One of them is concerned with lin-
ear sequences of symbols, e.g., string languages. The
other analyzes more articulated structures, such as,
for instance, images and tree languages [11, 15, 16].
In the case of strings, the wider class of Aperiodic

Languages constitutes the formal framework for
LT [4, 12]. Aperiodicity is revealed to be a lin-
guistic universal, characterized in a variety of ways:
grammatical inference [6], neural networks [12] and
algebraic structures [4, 5, 12, 17]. The importance
of LT springs from its close link to aperiodicity. A
hierarchy of aperiodic languages was identified [4],
imposing different constrains on the string recogni-
tion process. The hierarchy is composed of Definite,
Reverse Definite, Locally Testable in a Strict
Sense, Locally Testable and properly Aperiodic or
Non-Counting languages at the top of the taxonomy.

The class of Locally Testable languages in a Strict
Sense (LT's.s.) plays a crucial role in the whole
Aperiodic hierarchy: Aperiodic languages are the
closure of LTs.s. w.r.t. boolean operators and
concatenation [12]. Computational constraints
imposed on LTs.s. are actually met in several
communication processes: this gives an intuitive
valence to formal considerations. For a k-Locally
Testable language in a Strict Sense (L € LTjs.s.)
the recognition procedure is carried out on an input
string by a k-wide window to be moved along
x. The sequences of symbols observed through the
window are annotated in a record, regardless of the
order or position they occupy in the string. After
moving the window from one end to the other, z is
accepted or rejected based on the set of sub strings
that compose the produced record.

Also, locality property shows a link to parallel
parsing of string languages. A word of a local
language has such a syntactical structure that each
sub string is analyzed independently from all the
others. Hence, it is possible to decompose the
input sentence among computational units of a

parallel computer to simultaneously recognize the
different parts, substantially improving parsing
performance. Moreover, another feature emerges for
LTs.s. languages in relation to error identification.
The presence of a syntax error is easy to detect and
its position is precisely defined as well: it is located
within the k-length sub string that does not match
any element of the recognition sets of words used
when parsing. On the contrary, in the general case
when LT's.s. property does not hold, error handling
is more complex.

A systematic characterization of the different sub
families of aperiodic languages was presented in the
past [3, 5]. The adopted techniques, however, were
quite elaborate and the algebraic approach left un-
solved computational problems. In 1994 [10] it was
proved that the optimization problem of the order of
an LT language is NP-hard. In the following section,
we describe the results we could achieve for LT's.s.
class.

3 Our results

In this paper, we provide an efficient algorithm for
order evaluation of languages belonging to LT's.s. To
our knowledge, no such algorithm has been reported
in the literature. Presented considerations describe
how to prove that the order evaluation of a language
L in LTs.s. can be performed by a polynomial al-
gorithm of time-complexity o(|X|?mn), where 3, m
and n are, respectively, the alphabet of L, the num-
ber of edges and the number of states of the finite
state automaton accepting L.
such a result, it was necessary to frame the concept
of LTs.s. in a different perspective. Our approach
aims at capturing strict local testability in a direct
manner, without employing any algebraic property
of the syntactic monoid. Instead, a set-theoretically
based analysis is carried out in order to link local
testability to topological properties of the automa-
ton of language L. Before being able to establish
the polynomial algorithm of order evaluation, it was
necessary to face strictly related problems, concern-
ing the characterization of k-local testability in a
strict sense (LT}s.s.), and the decidibility of LT's.s.
property. The exposition follows the sequentiality
of these conceptual units. In particular, the specific

In order to obtain

points we addressed can be summarized as follows:

1. Characterization of L'Tys.s. property: for a spe-
cific integer value of k, the analyzed decision
problem is: “L € LTys.s.7”

A sufficient and necessary condition is for-
mulated (theorem 3). It involves topological
properties of paths in the accepting automa-
ton. Such a characterization has the advan-
tage to impose determinism as a unique con-
straint, without requiring the automaton to be
reduced. Nonetheless the minimal automaton
case is studied and then conveniently employed
in subsequent considerations.

2. Development of an algorithm to decide LT's.s.
property (existential problem): given language
L, does a value of k exist such that L € LT}s.s.?

Our approach consists, first, in defining the
Prefix-Path-Intersection Graph (PPIG). For its
construction a fixed-point algorithm is formu-
lated. Then its complexity is shown to be
o(|X*mn) (theorem 5).

3. Development of an algorithm for the optimiza-
tion problem of order evaluation: for a language
L € LTs.s., which is the minimum value of k,,;,
such that k,,;, = ming{k : L € LTs.s.}?

The study of the PPIG properties relates the
length of the longest path in the PPIG to the
order of language L. Then, finally, the paper
states the major result: the order of L can be
evaluated in o |Z|?mn).

In addition to previous results, the introduced ap-
proach seems to have a worthwhile characteristic:
the syntactic monoid and its algebraic structure are
not involved. This leads us to think that such an
approach might give insight on how to extend our
considerations to different contexts, such as image
and tree languages.

4 Preliminary definitions

Let ¥ be a finite alphabet of symbols, and let ¥*
denote the universal language over X, including all
the strings obtained by concatenation of alphabet
elements. A subset L of ¥* is a string language, or
a string event, over ¥. If L defines a regular set (it

can be characterized through a regular expression),
the language L is regular and it can be recognized
by a finite state automaton M.

Our notation follows [12]. Being that k is a non-
negative integer number, it is possible to define the
following operators on a string z of length greater or
equal to k:

(1)
(2)

Ly(z) ={y:x =yw Ayl = k}

Ri(z)={w: 2z =ywA|w| =k}

I(z)={w:z=ywzAy,w,z# e N |w| =k} (3)
The operator Ly (z) extracts the k-length prefix from
the input string. Symmetrically, R (z) produces the
k-length suffix of word z. Equation (3) defines the
set of properly internal k-length sub strings of z. If
the length of 2 (denoted by |z|) equals k or (k+1),
I (z) is the empty set.

Let avg,,Bx,7% be sub sets of ©F; they are sets of strings
over X whose length is k.

The language L is k-locally testable in a strict sense
(L €LTys.s.) if sets ay,Bk, 7k exist such that for
every z € ¥* (|z| > k):

(z€l) <=
(Lk(ac) € ap A\ Ik(x) C 0y /\Rk(ac) € ’Vk)

(4)

Based on relation (4), a k-locally testable language
in a strict sense has a property so that syntactic
analysis can be performed locally. On a procedu-
ral level, parsing activity requires that the prefix
(Lg(x)), suffix (Rg(z)) and the set on internal sub
strings ([x(z)) be extracted from string z. Recalling
the initial window analogy, = can be parsed by a k-
letters-wide loophole to be moved from left to right
end one symbol at a time.

Correctness is evaluated using only the information
collected through such a decomposition. No infor-
mation about order or relative position of occurrence
is kept. Definition (4) does not consider strings of
L consisting of a number of symbols less than k. In
this case, the number of possible words is limited,
so parsing can be performed separately in a simple
way.

In particular oy, Bk, v contain the recognition pat-
terns necessary to ascertain whether a string belongs

to L or not. «p can be interpreted as the set con-
taining all possible k-length prefixes of strings of L.
Dually, i is the set of all acceptable k-length suf-
fixes. fj is the set of all acceptable internal k-length
sub strings of words of L.

ar = {z:w=ayA|e|=kAwe L} (5)
Br = {v:iw=wuvzA

ANu,z# eNv|=kAwe L} (6)
w o= {yrw=ayrlyl=kAwelL} (7)

L € LTys.s. means that syntactical analysis can
be correctly carried out through sets ag, Sk, vk, as
defined above. On the contrary, if L ¢ LTys.s., the
language recognized through such sets is a super set

of L.

5 Basic concepts and formal tools
Let M = (Q, %, 6, qo, ') [8] be a deterministic finite
state automaton (DF'A) accepting the regular lan-
guage L. () is the set of states. X is the input alpha-
bet. ¢ is the transition function. ¢g €) is the initial
state and ' C () is the non-empty set of final states.
For any ¢ € Q and 2 € ¥*, §(q,z) denotes the state
that results when input x is applied to M from state
q. A string z is accepted by M if §(qo,) € I, hence
L={zeX*:6(q,z) € F}.

A A A A
Let us define M= (Q, %, 6, qo, F) to be the automa-

A A
ton derived from M in such a way that: QC @; §
is a new partial transition function whose domain

A A
is a subset of) x3I, and image is (); the new set

of final states]/«; is a sub set of F'. We require that
A A
Vg €Q,3xy, 22 € X* : 6(qo, 1) = g A S(q,22) EF. A

A A
node ¢ is in the set) of M only if ¢ can be reached in
M from the initial state gg and if from ¢, it is possible
to reach in M a final state belonging to F'. The tran-

A

sition function is modified accordingly: § (¢1,a) = ¢2
A A

is defined in M iff ¢1,q2 €Q and 6(q1,a) = g2 in M.

]\/\4 differs from M for the suppression of unreachable
(from ¢o) or unproductive states that do not allow
an end to the computation in a final node. Conse-
quently transitions from/to such suppressed states
are eliminated.

M, = (Q.,%,0,,F,) denotes the reduced DIF'A

associated with M. M, is unique if state-renaming

isomorphisms are neglected. ¢ is a sink state in M
if, from it, a final node can not be reached. When
a sink state is reached: &(qo,2z) ¢ F', this means
that input string = does not belong to L. In M, the
sink state, if present, is unique and it is denoted

A
by S. M, results from M, by eliminating S and all
transitions: 0(q,a) = S,a € ¥, ¢ € Q.

A
Let G= (V,X,P,< ¢o >) be the linear right-
derivative context-free grammar associated univo-

cally to]\/\4 as follows:

1. the set V of non terminals contains a symbol for

A
every state of M:

A
V={<q>qeqQ}
2. the terminal alphabet X of (/\} equals the input
alphabet of]\/\4

3. the set P of linear productions is derived from

]\/\4 as follows:

P = {<qa>=2a<q>:
A A
q1,q2 €Q Na € XN 6§ (qu,a) = g2} U

A
U{< q; > €e:qs €F}
4. the grammar axiom < go > corresponds to the
A
initial state gy of M.

Let 7 be the omomorphism whose domain and image
are respectively (XU V)*, ¥*:

m(a) = a,Ya € (XU {e})

A
(< q; >) =¢€,Yq; €Q

m(zy) = 7(z)7(y),Ve,y € (XU V)~

A
For any state ¢; of M and for any integer k, the
following set of strings is defined:

Vilgi) = {7 (w) < ¢ >=t w}

(8)

Vi(gi) 1is the set of all words obtained through the
application of 7(.) to derivations of length k starting

from the non terminal < ¢; >. If the last derivation
to produce w is not terminal, then |7 (w)| = k; oth-
erwise |r(w)| = (k — 1).

A
For every ¢; €Q and for every = € Vi(¢), let us
define the set Dy(q;,) :

Di(gi,z) = {y=2au e Vipi(q):
weXU{er},ifle| =k (9)
Di(qi,2) = 0,if|z|=(k-1) (10)

Dy(qi,) consists of the strings whose k-prefix equals
z and that are produced by a chain of (k+1) deriva-
tions from < ¢; >.

Lemma 1 2z € Dy(q;,z) iff 6(¢i,z) € F

6 Characterization of LT}s.s.

property

In this section a set-theoretical characterization of
LTys.s. property is established (theorem 3). The
adopted formulation of a necessary and sufficient
condition directly appears to be of interest on a pro-
cedural level. Such a result constitutes a decidibil-
ity algorithm for ascertaining if L is in LTjs.s. We
show in the following section that theorem 3 also
represents a useful instrument for the solution to a
different decision problem: “Is L in L1's.s.?,” which
contributes to an explication of the relation between
LTps.s. and LTs.s.

In the following considerations, ¢;,¢q, denote arbi-

A A
trary states in @, if there is at least one edge in M
entering the initial state gg. Otherwise, ¢;, g, be-

long to é —{qo}: in this case ¢ is used only once
when string parsing begins, hence such a state is not
considerated because it can not generate k-length
recognition strings either in G or in ~4.

Theorem 1 Let L be in LTys.s., then every DFA
M accepting L is such that:

Di_1(gi,z) = Dr—1(qn,)

for any x € Vi_1(q¢;) N Vi—1(qn) and for any ¢;, qn.

Proof
It will be proved that L ¢ LT}s.s. if there exist two
distinct states ¢;, g5 and a string « such that:

€ Vi_1(q) N Vi—i(qn)
Di_1(q:i,z) # Di—1(qn,)

(11)
(12)

If || = (k — 2), then Dg_1(¢;,2) = Dg—1(qn,z) =0
because of definition (10). Hence, necessarily
|| =k — 1.

Let z have the form: =z = tity...tp_1,t; €
¥,1 < 7 < k — 1. Condition (12) implies
that ¢ # ¢, and that at least one of the

sets (Dy—1(gi;2) — Dy—1(qn, @), (Di—1(gn,) —
Dy_1(gi, x)) is not empty. For instance, let y belong
to Dp_1(¢;,x) — Dp_1(qn,) : y = xtx(|y| = k).
As y ¢ Di_1(qn,2), d(qn,y) = P, where P is
a sink state. Being that M is deterministic,
and ¢; # qn, there must be two different strings
wy, wy that lead from ¢o to ¢; and ¢ respectively:
ZS\ (90, w1) :ZS\ (q0, 102 .. .ap) = f]ﬁg (0, wa2) :ZS\
(g0, b1bs ... b,) = qn, where m,n > 0, but not
both of them can equal zero, and wy # wq. Let

~ A ~ A
us consider the following states: ¢;=§ (¢i,z);qn=6
~ AN~ ~ ~
(qn, x);qi1=68 (qi,tx), P = 6(qn,tx). From ¢ a final
state ¢; is reachable. Let z = ¢jcp...¢5,(s > 0)
be the string leading to ¢;: 5(qi, 2) = qr € I

Now, let us consider the word w = wsyyz, where
the length of w is greater or equal to k. Previous
considerations assure that 0(qo,wzy) = P. This

implies 6(qo, wayz) = 0(qo, w) = P, hence w ¢ L.

In the reminder of the proof it will be verified that
the existence of string w implies no proper sets
g, O, 6, exist. If L were in LT}s.s., necessarily syn-
tactical analysis should utilize ay, Bk, v as defined
in (5), (6), (7). Nonetheless, in such a case a super
set of L would be recognized.

Let us consider Ly(w); two cases are possible ac-
cording to the length of string wy: (a)if n > k,
Lk(w) = biby... by, (b)lf 0 < n < k, Lk(w) =
biby ... byttt .. b, where n + 1=k, 1 <[<k.
(Case a) ZS\ (g0, w2) = ¢y, and from ¢, a final state ¢/
is reachable, hence from ZS\ (g0, b1, b3 .. .by) the same
node ¢;/ is reachable. As a consequence, biby...by

is the prefix of a string in L, hence because of (5)
Lk(w) € ag.

(Case b)The condition z =
Vi—1(qn) guarantees that

A
q =6 (qo,watity...t1),1 < | < k, a path ex-

tits .. .ty €

for any state:

A
ists leading to a final state of M from ¢;. Hence, it
is possible to conclude again that Lg(w) € ay.

Let us consider Ry (w) and recall that |z| = s. (a)if
s>k, Rg(w) = Cop1-kCoqa—t---Cs; (D)If 0 < s <k,
Ri(w) = titi41 .. . tgcrca .. .cs, 1 < 1 < k. In both
case (a) and (b) we can prove that Ry
fashion similar to the one used for Ly(

(w) € v, in a
w)

In the end it is also possible to wverify that
Ix(w) C By

Hence if conditions (11), (12) simultaneously hold,
a string w exists such that w ¢ L, but for which:
Lk(w) € Oek,]k(w) - ﬁk,Rk(w) € Yk
conclude L ¢ LTys.s.

|

Thus we

In order to prove theorem 2 in a more concise fash-
ion, two preliminary lemmata are required (lemma
2 and lemma 3).

Lemma 2 Let M be a DFA such that:
Di—1(g5,2) = Di—1(qn,)

Jor any x € Vi_1(¢:) N Vi—1(qn), and for any g, qn-
Let w = aqay . ..an, (m > k) be a string such that:
Li(w) € ap A Iy (w) C B A R (w) € vi. Then

A
d(qo,araz...a,) €Q,1 <r<m

As follows, the second lemma is stated, in order to
prove subsequent theorem 2.

Lemma 3 Let M be a DFA such that:
Di—1(g5,2) = Di—1(qn,)

Jor any x € Vi_1(q:) N Vi_1(qn) and for any g, qn.
Then the state §(q;, x) is equivalent to 6(qp, x).

Proof

Let @ = ajag...ar € Vi_1(q;) N Vi—1(qn), and let
us assume that ¢;= d(¢, @) is not equivalent to gh=
d(qn,). This implies the existence of a string y =
biby...by(m > 0) such that §(q;,y) € F and §(qj,

,y) & For 8(gi,y) ¢ F and 8(qn,y) € F .

Consider for instance the first possible case, let z =
zy(|z| > k), and o; (resp. o) be the path comprising
the edges of M used by the involved transitions from
¢; (resp.qp) to d(qi, z) (resp. 8(qn, 2)):

g; = (%7 5(%7 al))((s(qﬂ a1)7 5(5((127 a1)7 a?)) ...
((S((]27 aias .. .akblbg . -bm—1)7 bm)

(resp.ah = (th 5((]h7 al))((s(qhv al)v 5(5((]h7 al)v
az)) e ((S((N“ aias .. .akblbg .. -bm—1)7 bm))

With qr;/ (resp. qZ/) we designate the node at a
distance of (k-1) edges from §(¢;, z) (resp. d(qn, 2))

along the path o; (resp. o). As |z] > k, (Z/ (resp.
qZ/) exists, and 7 is the (k-1)-suffix of z such that:
5(qir.F) = 8(d.y) (resp. d(anr,F) = 8(Gi.y))- We
note that € Vi_1(q:i/) N Vi_1(qn?). However, the set
equality Dk_l((};u%) = Dk—l((]Zh%) does not hold:
5((};/7 %) = 5((};,y) € F, hence lemma 1 guarantees
that Z€ Dk_l(q7/7$); on the other hand, being
5(qnt, T) = 6(qn,y) & F,7¢ Di1(qns, @) (lemma 1).
This represents a contradiction; necessarily §(¢;, x)
is equivalent to (g, z).

We can derive the following result as an immediate
consequence of previous lemma:

Corollary 1 Let M, be a reduced DFA such that:
Dy—1(q;,) = Dg_1(qn, z)

for any x € Vi_1(q;) N Vi—1(qn) and for any ¢, qn.
Then:

6(¢i,z) = 6(qn,)

It is now possible to proceed to theorem 2; it proves
the validity of exchanging hypothesis and thesis in
theorem 1.

Theorem 2 Let M be a DFA such that:
Di—1(g5,2) = Di—i1(qn,)

Jor any x € Vi_1(q:) N Vi—1(qn) and for any q;, qn-
Then the language accepted by M is LTys.s. w.r.t.

a (5), Br (6); v (7).

Proof

Recalling the definition of LT}s.s. language (4), two
implications must be verified.

Being w € ¥*, |w| > k:

we L= Ly(w) € ap Al (w) C BN Ri(w) € v
and

Li(w) € ap AN (w) C B A Rg(w) € vp = w € L
Because of (5), (6), (7) the first of them holds in

a straightforward manner, whereas the second one
requires additional considerations.

Let w be a string of this form: w = ajaz ...a,,(m >
k), with the property that Li(w) € oy, Ix(w) C
By Ri(w) € vg. Our aim is to show that w is syn-
tactically correct: §(qo, w) = ¢, € F'.
Rk(w) =k 10m—f42- - Oy € V.
sider the states: @m_rr1 =0(qo,a102. . Qpm—ft1)
and ¢n =0(¢m-k+1,Cm—k+20m—k+3- - -Am). Both

Let us con-

of them belong to é because of lemma 2. The
String Gp—k4+1@m—k+2 - - - A IS in g, therefore a
string y of L exists such that a,,—g+1@m—t+2 ---0m
is its k-length suffix. Being y in L, a state q
5(q

~ A
Lemma 2 assures that ¢eQ).

ek 2Cm—kt3 -+ O € Vi1 (qm—kt1) O Vi_1(9).
Considering that the hypothesis of lemma 3 hold, we

exists: ,am_k+2am—k+3---am) = g5 € F.

In particular:

conclude the state d(¢um—k+1, Gm—kt+20m—k+3 - - - Am)
is equivalent to 5(5, Akt 20m—k43 - - -G). There-
fore, ¢, is equivalent to ¢s: ¢, belongs to F', that
isw e L.

[|

Theorems 1 and 2 lead us to obtain directly the main
result of this section, characterizing LT}s.s.

Theorem 3 A language L, accepted by a DFA M,
is in LTys.s. iff Di—1(qi,x) = Dg_1(qn, x) for any
v € Vim1(q:) N Vi—i(gn) and for any gi, gn.

The following corollary is a direct consequence of
theorem 3 and corollary 1:

Corollary 2 A language L, accepted by the reduced
DFA M,, is in LTys.s. iff 6(q;,x) = 6(qn,) for any
v € Vim1(q:) N Vi—i(gn) and for any gi, gn.

7 LTs.s. decidibility algorithm

In this section, we show that local testability in a
strict sense can be checked through an acyclicity test
on a convenient graph (PPIG), directly obtained
from the automaton that accepts L. The overall
complexity of the decision algorithm results in
o(|Z|*mn), where m,n are the cardinality of the

A
sets of edges and nodes of M.

The considerations below are restricted to the
reduced DFA M, = (Q,,4, qo, I') that recognizes
L. Corollary 2 to theorem 3 provides a necessary
and sufficient condition for local testability that can
significantly be expressed in terms of topological

properties of paths on M,. Let us consider two

states ¢; and ¢ in é, from which it is possible
to produce two paths, respectively, not
containing the sink state S, and labeled through
the same k-length string z. M, (the language L) is
in LT}s.s. if, and only if, there exists a prefix u of
z (not necessarily proper) leading to the same node
in o; and ox: 6(q;, u) = 6(qn, u) = q.. If the prefix
u equals x, the condition expressed in corollary 2
is valid in a straightforward way. Otherwise, if u
is a proper prefix, the determinism of M, guaran-
tees that from ¢. the paths o; and o), necessarily
coincide, hence §(¢;,2) = §(qn,z). Therefore, L is
A

0iy,0h

in LTs.s. iff for any ¢;, ¢, €@ and any arbitrary
k-length string @ € Vi_1(¢;) N Vi—1(qn), paths o;, o3,
present an intersection node, reached through the
same prefix string.

For every letter a of the input alphabet X, a set I,
is constructed composed of all nodes of M, that are
the target of an arc labeled with letter a:

AA
I.={q :3q, €Q NS (qr,a) = ¢q;},a € X

Let N be the set containing all sets I,, whose cardi-
nality is greater than one:

(13)

N=A{l,:ae XAl >1} (14)
A function 2 is defined on N x X:

A A

A (Iqy,a2) = UJ {6 (¢:,a2)} (15)

(Zz 6 Ial
g(q,‘,aQ)defined

ﬁ is such that: ﬁ (Ia,,a2) C 14,,Vay,ay € X.

Let us now introduce the Prefix-Path-Intersection
Graph (PPIG). It is a graph produced by the fixed-
point algorithm of Figure 1.

AN
Input: set of nodes N ; alphabet z ; function A
output: PPIG=(N ., , [.,)

{SetType: N PPIG ? E pric 'NewStates;

NPPIG =N H EPPIG =; NewStates= NPPIG H
while(NewStates !=)

{chose I o cNewStates
forevery d, e z

(A, ,a0))e Npp)88(A L, ,a))>1)

N

{Newstates=Newstates L {A (], ,,)k

Nop=N

PPIG PPIG
5

AN, ,a,)%

([, s A, 0, 0,)2 Eppy)

E

PPIG
5

NewStates=NewStates - {] o b

o
return PPIG=(NPPIG !EPP]G)

=f

PPIG

Al AL, a)),a)))

} Figure 1: PPIG Construction

The algorithm considers initially all macro-nodes de-
fined in (13). From each node, all possible output

arcs are taken into account. If function 2 maps the
node [,, to a new macro-node containing a number
of M, states greater than one, the set Nppyg is con-
sequently augmented.

The algorithm terminates when variable NewStates
is empty. It contains all nodes from which new pos-
sible transitions may originate. When NewStates is
empty, there is no possibility to further augment the
graph: a fixed-point therefore is reached. The car-
dinality of NewStates is limited by the power set of
N and every iteration of the out-most for-loop re-
duces it by one element. Therefore NewStates will
be empty, hence the algorithm terminates.

Lemma 4 All macro-nodes in the same loop of the

PPIG contain the same number of nodes of M,..

Lemma 4 assures that all the macro-nodes of the
PPIG in any strongly-connected component contain
the same number of states of M,.

Finally we can prove the following theorem that pro-
vides an algorithm to test LT's.s. property.

Theorem 4 L is in LTs.s. iff its PPIG is acyclic.

Proof

(Necessary condition)

If a cycle n =< I,,,14,,...,15, > exists in the
PPIG, all nodes in it contain the same number of
states of M, (lemma 4). Moreover, all of the PPIG
macro-nodes contain at least two distinct states of
M,. Let us consider ¢1,¢2 € I,, (1 # gq2) and the
string: y = a1az...a;. 5(q1,y) = q1, 8(q2,y) = qo;
this guarantees the existence of an arbitrary length
string « such that §(q1, 2) # d(gq, 2), implying L is
not in LTs.s. (corollary 2). Hence necessarily the
PPIG is cycle-free.

(Sufficient condition)

Being that the PPIG is cycle-free, all paths in it are
simple. Hence, it is possible to consider the longest
path o in the graph. All paths labeled by strings in
3* whose length is greater than the length of ¢ are
completely disjointed or met in one same node of
M.,.. Therefore, the condition expressed by corollary
2 is verified, assuming k is equal to the length of &
augmented by one.

We can proceed to evaluate the complexity of the
construction algorithm for the PPIG and an upper
bound to the cardinality of sets Npprs, Epprg. In
the reminder of the paper all considerations will be

related, through the PPIG, to the]\/\4,, graph. Hence,
values m, n refer to the cardinality of the set of edges

A
and nodes in M, .

Theorem 5 The PPIG=(Nppig,Eppic) con-
struction algorithm has a time complexity o(|X|?mn)
and |[Nppig| < C1|3|m, |Eppia] < Co|X|?*m, where

C'1,Cy are constants.

Proof
We will outline the basic ideas as follows. Let
|NewStates| denote the overall number of different

states that are inserted in variable NewStates dur-
ing the whole execution of the algorithm. Any time
control flow reaches the while-cycle last instruction
one element is eliminated from NewStates; hence,
the cycle will be iterated |NewStates| times. If we
focus on the body of the for-statement, it is possible
to note that operations can be carried out in a time
proportional to n under the worst-case assumption.
Therefore, the complexity is o(|X|n|NewStates|).
Hence, an upper bound for |NewStates| value is re-
quired. Let us consider one of the macro-nodes given
by (13) and the path o(/,) in the PPIG composed

of the following nodes: o([,) =< Ia,ﬁ (Ia,a),g (ﬁ
(Ia,a),a),g (ﬁ (ﬁ (Iy,a),a),a)... >. We know
that A (Io,a) € Tn;A (A (Io,a),a) CA (u.a) C
I;... This assures that the length of o(1,) is lim-

ited, and it contains the maximum possible num-
ber of nodes when it is cycle-free and every suc-

cessive application of function ﬁ decreases by one
unit the number of M, states in the input macro-
node. Hence, max|o([,)| < |l,]. Now let us analyze
at the same time two distinct macro-nodes, I,,, 1,,
as defined in (13). The construction of the PPIG
requires us to consider the ag-labeled edges from
nodes of o(l,,). Let s; denote a node in o(1,,).

A
A (s1,a3) can be a node in o(l,,); in this case,
A
no new node is added. A (s1,az), however, can be
a new node. A node sy € o(l,,) exists such that

A
s3 DA (s1,az). In particular, let sy be the smallest
A
set in o(1l,,) with the property that s; DA (s1, az).
A

Only the new node A (s1, az) is introduced, because
A A A

A (A (s1,a2),a3) =A (sz,a3). Hence, for every
ordered couple (o(14,),0(ls,)), the number of new
nodes that it is possible to introduce does not ex-
ceed max|o(ly,)] < |1a]-

Now, therefore, we can consider the following chain,
where ¢; is a constant:

cr Y ([l + (1% = DIL]) =
a€X

= Y] Z || = 1] X|m
aEX

|NewStates| <

The last equality is generated by the fact that the
sets I, can be directly mapped to a partition in the
edges set of M,.

In order to conclude: |NewStates| < ¢1|X|m,
INppic| < ¢1|X|m. It is possible also to evaluate
an upper bound for the cardinality of the set of
edges Eppiq, considering the arcs belonging to ev-
ery path o(/,,) and the arcs connecting every node of
Nppig. As the language automaton is deterministic,
the maximum number of edges from every macro-

node in the PPIG is |X|, hence we have:

[Eppicl < e2 Y (] + [BI(1E] = D)) <
a€EX
< S Y L] = ol SPm
a€EX

where ¢y, c3 are constants.

Once the PPIG is constructed, the acyclic-
ity test (theorem 4) can be performed through
the algorithm of [14], complexity is
o(max(|Nppial, |Eppial) = o|S[*m).

whose

8 Order evaluation

The order of a language L € LTs.s. is defined as
the minimum value k,,;, of parameter k£ such that L
isin LTy, . s.s. If L isin LT}s.s., clearly L belongs
also to LTy, where k' > k. In general, however, it
is not true that L is in LTyns.s. with k" < k. koun
determination allows us to optimally parse the input
string. This section faces the problem so we can
evaluate the order of L and, as a result, we propose
an algorithm whose complexity is o(|3|*mn).

Theorem 6 Let L be a language whose PPIG is
acyclic (L € LTs.s.), and let kppic denote the
length of the longest path in the PPIG. Then the
order of L is:

Emin = kppic + 2

Proof

For a macro-node [, of the PPIG, let us consider a
path 0 =< 14, I41, 14, ..., 14, > originating in I, and
ending in a macro-node I; with no output edges. The
length of ¢ augmented by one unit equals the length
of the shortest common prefix for all M, states in
I,, so that for any string @ = ajay...qy (y € XT):
5(¢iyx) = 6(q5,2); ¢iyq; € I, Let us define the

value: kj, = max,(y,){lo(l.)| : o(1.) is a path orig-
inating in I,}. kj, exists because PPIG is cycle-
free and the value k7, + 1 represents the shortest
common prefix to guarantee that all possible paths
originating from nodes in I, with a common prefix
have the same intersection node. Therefore, con-
sidering all nodes of PPIG, let us define the value:
kppra = maX[aetheppjg{k[a}. Based on what is
stated above, the minimum value of k satisfying
corollary 2 needs to respect the following constraint:

kppra+1=lkypm—1

We
kpin = kppic +2

can finally determine the order of L:

Hence, the complete procedure for order evaluation
of language L consists of the following steps:

1. to build the PPIG: complexity o(|X|*mn) (the-
orem 5)

2. to test whether the PPIG is cycle-free: complex-
ity o(|2P2m)

3. to find the longest path in the PPIG: being the
PPIG a directed cycle-free graph, the longest
path can be determined by algorithms [2] of
complexity linear in the number of edges of the

graph, thus because of theorem 5: o(|Eppic|) =
o(|Z[*m).

Theorem 7 The optimization problem of order
evaluation for a language L € LTs.s. is polynomial
with complexity o(|S]?*mn).

9 Acknowledgments

We are grateful to Eileen Mary Purcell for the pre-
cious editing suggestions she gave us.

References

[1] A. Aho, J. Hopcroft, J. Ullman. The design
and analysis of computer algorithms. Addison-
Wesley, 1974

[2] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Net-
work flows. Prentice-Hall, 1993

[3]

[11]

J. A. Brzozowski, 1. Simon. Characterization
of locally testable events. Discrete Mathematics,
Vol. 4, 1973, pp. 243-271

J. A. Brzozowski. Hierarchies of aperiodic lan-
guages. R.A.L.LR.O. Information Théorique (vol.
10, No. 8, aott 1976, pp. 33-49)

R. S. Cohen, J. A. Brzozowski. Dot-depth of
star-free events. J. Computer and System Sc.,
Vol. 5, 1971, pp. 1-16

S. Crespi-Reghizzi, M. A. Melkanoff, L. Lichten.
The use of grammatical inference for design-
ing programming languages. Comm. ACM 16,
2 (Feb. 1973), pp. 83-90

M. Harrison. Introduction to formal language
theory. Addison-Wesley, 1978

J. Hopcroft, J. Ullman. Introduction to au-
tomata theory, languages and computation.

Addison-Wesley, 1979

S. M. Kim, R. McNaughton, R. McCloskey.
A polynomial time algorithm for local testa-
bility problem of deterministic finite automata.
LE.E.E. Trans. Comput., 40, 1991, pp. 1087-
1093

S. M. Kim, R. McNaughton. Computing the or-
der of a locally testable automaton. STAM J.
Comput. Vol. 23, No. 6, pp. 1193-1215, Decem-
ber 1994

A. Magnaghi. Local Testability in Parse Trees of
Artificial Languages (in Italian) Master Thesis,
Adviser Prof. S. Crespi-Reghizzi, Polytechnic of
Milan, 1996

R. McNaughton, S. Papert. Counter-free au-
tomata. M.1.T. Press, Cambridge, MA, 1971

M. Perles, O. Rabin, E. Shamir. The theory
of definite automata. 1.E.E.E. Trans. Electronic
Computers EC-12, 1963, pp.233-243

R. E. Tarjan. Depth first search and linear
graph algorithms. SIAM J. Computing, 1, 146-
60, 1972

10

[15]

[16]

A. Potthoff, W. Thomas. Regular tree languages
without unary symbols are star free. in 9th
International Conference on Fundamentals of
Computation Theory, Zoltan E’Jsik7 ed., Lecture
Notes in Compute Science 710 (1993), pp. 396-
405

M. Steinby. A theory of language varieties. in
Tree Automata and Languages, M. Nivat and
A. Podelski (editors), Elsevier Publ., 1992, pp.
57-81

Y. Zalcstein. Locally testable languages. J. Com-
puter and System Sc., Vol. 6, 1972, pp. 151-167

