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ABSTRACT

We propose interactive beautification, a technique for rapid
geometric design, and introduce the technique and its algo-
rithm with a prototype system Pegasus. The motivation is to
solve a problem with current drawing systems: toomany com-
plex commands and unintuitiveprocedures to satisfy geomet-
ric constraints. The Interactive beautification system receives
the user’s free stroke and beautifies it by considering geomet-
ric constraints among segments. A single stroke is beautified
one after another, preventing accumulation of recognition er-
rors or catastrophic deformation. Supported geometric con-
straints include perpendicularity, congruence, symmetry, etc.,
which were not seen in existing free stroke recognition sys-
tems. In addition, the system generates multiple candidates
as a result of beautification to solve the problem of ambigu-
ity. Using this technique, the user can draw precise diagrams
rapidly satisfying geometric relations without using any edit-
ing commands.

Interactive beautification is achieved by three sequential pro-
cesses: 1) inferring underlining geometric constraints based
on the spatial relationships among the input stroke and the ex-
isting segments, 2) generating multiple candidates by com-
bining inferred constraints appropriately, and 3) evaluating the
candidates to find the most plausible candidate and to remove
the inappropriate candidates. A user study was performed us-
ing the prototypesystem, a commercial CAD tppl, and an OO-
based drawing system. The result showed that users can draw
required diagrams more rapidly and more precisely using the
prototype system.

KEYWORDS: Drawing programs, sketching, pen-based com-
puting, constraints, beautification.

Figure 1: A diagram drawn on the prototype system
Pegasus: this diagram was drawn without any editing
commands such as rotation, copy, or gridding.

INTRODUCTION

Commercial Object-Oriented (OO) drawing editors such as
MacDraw and CAD systems have various editing commands
and special interaction modes. A user can construct a dia-
gram with geometric constraints by combining these com-
mands appropriately. For example, symmetry can be achieved
by the combination of duplication, flipping, and location ad-
justment, while perpendicularity can be achieved by duplica-
tion and 90 degree rotation. In addition, CAD systems of-
ten have special interaction modes such as a mode for draw-
ing perpendicular lines. However, invoking these commands
or switching to the special editing modes requires additional
overhead, and selection of appropriate commands or interac-
tion modes is difficult, especially for novice users [13].

To solve these problems, we propose a new interaction tech-
nique for drawing, interactive beautification. Interactive beau-
tification is a technique for rapid construction of geometric di-
agrams (an example is shown in Figure 1) without using any
editing commands or special interaction modes. Interactive
beautification can be seen as an extension of free stroke vec-
torization [7] and diagram beautification [19]. It receives a
user’s free stroke and beautifies the stroke considering vari-
ous geometric constraints among segments. The intuitiveness
of the technique allows novice users to draw precise diagrams
rapidly without any training.



Interactive beautification is characterized by the following three
features; 1) stroke by stroke beautification, 2) automatic in-
ference and satisfaction of higher level geometric constraints,
and 3) generation and selection of multiple candidates as a re-
sult of beautification. These three features work together to
achieve rapid and intuitive drawing, avoiding the problem of
ambiguity.

Interactive beautification is currently implemented on a pro-
totype system named Pegasus (an acronym for “Perceptually
Enhanced Geometric Assistance Satisfies US!”), and user eval-
uations using it shows promising results. This paper intro-
duces interactive beautification, and describes the implemen-
tation of the prototype system in detail.

The remainder of this paper is organized as follows: the next
section describes related work in diagram drawing on com-
puters. Then, we describe the technique as seen by the user
using several examples. We describe the algorithm of the
technique in detail, and introduce the prototype system Pe-
gasus. A user study performed to confirm the effectiveness
of the technique is described. Finally, we consider the limita-
tion of our current implementation and conclude the paper.

RELATED WORK
At a glance, the system may seem similar to existing sketch-
based interfaces including commercial products such as Ap-
ple Newton, GO Penpoint, and free stroke drawing mode in
typical drawing editors (SmartSketch, Corel Draw, etc.). These
systems convert free strokes into vector segments and satisfy
primitive geometric constraints such as connection. The dif-
ference is that interactive beautification considers complex,
global constraints such as parallelism, symmetry, or congru-
ence, which enhances the range of geometric models. In ad-
dition, the generation and selection of multiple candidates is
unseen in the existing systems.

Gesture based systems [1][23][20][18] also employ free stroke
input, but they convert input strokes into independent primi-
tives, while interactive beautification converts them into sim-
ple line segments satisfying geometric relations. Gross et al.
pointed out the importance of context in solving the problem
of ambiguity[10], which has influenced our idea.

Beautification systems [19][4][16] are basically batch-based,
which can lead to unwanted results because of ambiguity in
the user’s input. Interactive beautification prevents such re-
sults by interactively presenting multiple candidates and re-
questing the user’s confirmation.

While interactive beautificationsystems control the placement
of two vertices (start and end) simultaneously, many exist-
ing drawing systems assist the placement of a vertex by con-
trolling the movement of the mouse cursor. Snap Dragging
systems[3][9] extends gravity-activegrids by lettingusers spec-
ify various geometric relations, and some systems such as
Rockit[15] and Aldus Intellidrawautomatically infer possible
gridding constraints. Compared to these techniques, the ad-
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Figure 2: Basic operation of interactive beautification

vantages of interactive beautification are as follows: 1) Free
Stroke drawing is more intuitive and less cumbersome than
careful manipulation of the cursor, especially for a pen-based
interface[2]; and 2) The system can gather more information
from a free stroke trace than cursor placement. For example,
equality of interval between parallel lines cannot be detected
from the placement of a single vertex.

Rockit is similar to our system in that both automatically in-
fer possible constraints and provide easy access to alternative
possibilities. However, Rockit is suitable for specification of
perpetual spatial relationships among movable objects, while
we focus on construction of static line-based illustrations.

Saund et al.’s work [21] shares our motivation, to support nat-
ural human perception of underlying spatial structures, but
does not support the construction of precise diagrams.

Constraintbased systems [11][5][22][6] facilitate the construc-
tion of complex diagrams with many constraints, but require
considerable amount of effort to specify the constraints. In-
teractive beautification aims at an opposite goal: to reduce the
effort by focusing on relatively simple diagrams.

INTERACTIVE BEAUTIFICATION
Basically, interactive beautification is a freestroke vectoriza-
tion system; it receives a freestroke and converts it into a vec-
tor segment, inferring and satisfying geometric constraints.

First, the user draws an approximate shape of his desired seg-
ment with a freestroke using a pen or a mouse (Figure 2a).
Then, the system infers geometric constraints the input stroke
should satisfy by checking the geometric relationship among
the input stroke and existing segments (Figure 2b). Finally,
the system calculates the placement of the beautified segment
by solving the simultaneous equations of inferred constraints,
and displays the result to the user (Figure 2c). In addition, the
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Figure 3: Supported geometric relations

system generates multiple candidates to deal with the ambi-
guity of the freestroke (Figure 2d).

The characteristics of interactive beautification are 1) stroke
by stroke beautification, satisfyinghigher level constraints such
as congruence, perpendicularity, or symmetry, and 2) gener-
ation and selection of multiple candidates. We describe the
details of the interaction in the following subsections.

Stroke by Stroke Beautification Satisfying Geometric Con-
straints

This subsection describes how diagrams are constructed us-
ing stroke by stroke free stroke beautification, satisfying vari-
ous geometric constraints. To make it simple, we assume that
the system generates only one candidate as a result of beauti-
fication in this subsection. The next subsection describes the
generation of multiple candidates in detail.

a) b)

Figure 4: Example use of interval equality among seg-
ments

Figure 3 shows some examples of supported constraints, in-
put strokes, and beautified segments & feedback. Figures 3a,b
describe the connection constraint. If the user draws a free
stroke whose start or end point is located near a vertex of an
existing segment, the system automatically detects the adja-
cency and connects the point to the vertex or the body of a
segment.

Figures 3c,d illustrate parallelism and perpendicularity con-
straints. The system compares the slope of the input stroke
and those of existing segments, and if it finds an existing seg-
ment with approximately the same slope, it makes the slope
of the beautified segment identical to the detected slope. Sim-
ilarly, if the system finds an existing segment approximately
perpendicular to the input stroke, it converts the stroke into a
precisely perpendicular segment.

Figure 3e shows vertical and horizontal alignment constraints.
When a free stroke is drawn, the system individually checks
the x and y coordinates of the vertices of the input stroke, and
makes the coordinates precisely identical to the existing ones
if they are near.

Figures 3f,g illustrate congruence and symmetry constraints.
When a new input stroke is drawn, the system searches for
a segment almost congruent to the stroke among the exist-
ing segments. If such a segment is found, the system makes
the input stroke exactly congruent to the segment (Figure 3f).
Similarly, the system searches for a segment that is similar to
the vertically or horizontally flipped input stroke. If such a
segment is found, the system makes the input stroke exactly
congruent to the flipped one (Figure 3g).

Figure 3h describes interval equality. This relation is detected
by comparing the interval between the input stroke and an
existing line segment parallel to the stroke, and intervals be-
tween existing parallel segments. This mechanism can be
used to draw a pipe with a constant width or to draw cross
stripes or grids (Figure 4). Construction of these diagrams
is particularly difficult with menu-based systems, where the
user must copy, rotate, and move the segments.

In actual drawing, the geometric constraints described above
are combined and work together to produce a precise dia-
gram. In Figure 5a, relations such as connection, perpendic-
ularity, and y-coordinate alignment are simultaneously satis-
fied. In Figure 5b, interval equality, y-coordinate alignment
and flipped congruence (symmetry) work together to gener-
ate the arch (the unnecessary line fragments can be removed
easily by an ‘erasing’ gesture, which is explained later).
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Figure 5: Construction of a diagram with many con-
straints
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Figure 6 illustrates how a symmetric diagram is constructed
using interactive beautification. For each input stroke, the
system infers appropriate constraints and returns a beautified
segment. Notice that, except for the slope sides which con-
stitute the arrowhead, the symmetry for the rest of the ar-
row shape is achieved solely by locally defined relationships
(alignment, congruence and connection constraints) without
resorting to some special constraints to achieve global sym-
metry.

Generation and Selection of Multiple Candidates
The inherent difficulty with any freestroke recognition sys-
tem is that a freestroke is ambiguous in nature. The user draws
an input stroke with an intended image in mind, and the sys-
tem must infer the intended image based on the shape of the
freestroke. However, it is not an easy problem to reconstruct
the intended image from the ambiguous input stroke. For ex-
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Figure 7: Interaction with multiple candidates: the user
can select a candidate by tapping on it, and satisfied
constraints are visually indicated.

ample, when the system observes an input stroke shown in
Figure 7a, it is difficult to guess which segment in Figure 7b
is the one the user intended. Existing systems do not consider
these multiple possibilities, and just return a single segment
as a result. If the user is not satisfied with the result, he must
draw the stroke again, but the revised stroke may also fail.

To solve the problem, interactive beautification infers all pos-
sible candidates and allows the user to select one among them
(Figure 7c). If the user is not satisfied with the primary can-
didate, he can select other candidates by tapping on them di-
rectly (Figure 7e). During the selection, the system visually
indicates what kinds of constraints are satisfied by the cur-
rently selected candidate. Visualized constraints ensure that
the desired constraints are precisely satisfied. In addition, they
assist the selection of a candidate in a cluttered region, where
it is difficult to find the desired one. The selection completes
when the user taps outside the candidates or draws the next
stroke (Figure 7d,f).

Generation of multiple candidates, together with visualiza-
tion of the satisfied constraints, greatly reduces the failure in
recognition, and makes it possible to construct complex di-
agrams such as Figure 1 using freestroke only. Additional
overhead caused by candidate selection is minimized because
the user can directly go to the next stroke without any addi-
tional operation when the primary candidate is satisfactory.

Auxiliary Interfaces
In addition to free stroke drawing and selection by tapping,
the current system supports a floating menu and an erasing
gesture. The floating menu is a button on the screen, and the



Figure 8: Erasing gesture and trimming operation

user can place the button anywhere by dragging it. Menu
commands appear when the user taps on the button, similar
to a pie menu [12]. Currently, ‘clear screen’ and ‘undo’ com-
mands are implemented in the menu.

The erasing gesture is made by scribbling. If the system de-
tects the gesture, it deletes the nearest line segment to the
start point of the scribbling gesture. As the system partitions
the line segments at every cross point and contact point be-
forehand, the user can easily trim the unnecessary fragments
(Figure 8). Trimming is a frequently used operation on any
drawing system, and this easily accessible trimming opera-
tion greatly contributes to the efficient construction of com-
plex geometric diagrams.

ALGORITHM

This section describes the algorithm of interactive beautifi-
cation in detail. From a programmer’s point of view, the in-
teractive beautification system works as follows (Figure 9);
1) When the user finishes drawing and lifts the pen from the
tablet, the system first checks whether the stroke is an erasing
gesture or not. 2) If the input stroke is not an erasing gesture,
the beautification routine is called. It receives the stroke and
the scene description as input and returns multiple candidates
as output. Then, the generated candidates are indicated to the
user, allowing him to select one. 3) The settlement routine is
called when the user finishes selection, that is, starts to draw
the next stroke or taps on outside the candidates. The settle-
ment routine adds the selected candidate to the scene descrip-
tion and discards all other candidates. 4) If an erasing gesture
is recognized, the erasing routine detects the segment to be
erased and removes the segment from the scene. The settle-
ment routine is called after the erasing routine to refresh the
scene description. The settlement routine also performs some
preliminary calculations to accelerate the beautification pro-
cess (sorting the vertex coordinates, for example).

We now describe the algorithm of the beautification routine
in detail. The beautification routine consists of three sepa-
rate modules (Figure 10). First, a constraint inference module
infers the underlining constraints the input stroke should sat-
isfy. Next, a constraint solver generates multiple candidates
based on the set of inferred constraints. Finally, an evaluation
module evaluates the certainty of generated candidates and
selects a primary candidate. The separation of the constraint
inference and the constraint solving remarkably improves the
efficiency of multiple candidates generation, because the sys-
tem performs the most time-consuming task of checking all
combinations of segments only once, instead of performing
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Figure 9: Operational model of interactive beautifica-
tion
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the task for each candidate.

Constraints are represented as numerical equalities binding
four variables (coordinates of the new segment). The con-
straint inference module communicates the inferred geomet-
ric relations in a form of numerical equalities, and the con-
straint solver solves the simultaneous equations. Figure 11
shows the currently supportedgeometric relations and the cor-
responding numerical equalities.

Constraint Inference module

First, the system searches the table of parameters of all the ex-
isting segments, in order to find values that are ‘adjacent’ to
those of the input stroke and generates constraints that would
constrain the parameters of the input stroke variables. To be
specific, the system examines and compares the 5 parame-
ters of the input stroke (x, y coordinates of start/end vertex,
and the slope of the stroke). As a result, constraints to rep-
resent geometric relations such as x and y coordinate align-
ment, parallelism, and perpendicularity, are generated. As the
parameters of all segments in the scene are sorted in the set-
tlement routine, the computational complexity of this routine
is O(logn) while n is the number of existing segments. Per-
pendicular segments are found by storing 90 degrees rotation
of the existing slopes.
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Next, all the segments in the scene are examined to find var-
ious geometric relations between the existing segments and
the input stroke, such as congruence, connection and symme-
try. In addition, to find the equality of intervals among seg-
ments, this routine calculates the interval between the input
stroke and each approximately parallel segment in the scene,
and searches for stored intervals that are adjacent. The com-
putational complexity of this routine is O(n logn).

This two-phased constraint inference process generates a set
of constraints to be satisfied. To reduce unnecessary overhead
in constraint solving, the system checks for duplicationwhen-
ever a new constraint is created during the inference.

Constraint Solver

After the constraint inference, the system calculates the coor-
dinates of the beautified segment based on the inferred con-
straints. As the inferred constraints are usually over-constrained
(they cannot be under-constrained because all variables are
automatically bound to the original coordinates of the input
stroke), the system searches for all the possible combinations
of inferred constraints to generate multiple candidates.

The constraint solver is a modification of the equality solver
of CLP(<)[14] with an extension to generate multiple candi-
dates from over-constrained equalities. Similar to the equal-
ity solver of CLP(<), the initial state consists of an empty val-
uation, and the system tries to apply the constraints one by
one to the intermediate valuation. The difference is that the
system maintains a set of valuations instead of a single val-
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Figure 12: Algorithm for constraint solving

uation, and the new valuation is added to the valuation set
without discarding the previous valuation when a constraint
is successfully applied.

Figure 12 shows how the solver works using a simplified ex-
ample with two variables and four constraints. First, the solver
creates an empty valuation (1), and then, applies the first con-
straint (x=1) to the valuation. Naturally, the constraint is
successfully applied and a new valuation is created (1,-)(2).
Note that the initial valuation (-,-) is preserved instead of
being replaced by the new valuation (3). When the solver
tries to apply the constraint(x-y=0) to the valuation(1,2),
the application fails and no new valuation is created (4). On
the other hand, the constraint can be successfully applied to
the empty valuation (-,-), creating a new valuation with
a suspended (delayed) constraint (5). The suspended con-
straints are solved when enough variables are groundor enough
equalities are given (6). Identical valuations are detected and
unified by the solver to prevent redundant calculations (7).
Finally, the system returns the fully grounded valuations as
multiple candidates (8).

To improve efficiency, intermediate valuations are stored in a
tree structure whose root node is the initial empty valuation.
This representation is natural because every valuation is cre-
ated as a child of another valuation with additional grounded
variables or additional suspended constraints. If a constraint
fails to be applied to a valuation, it means that the constraint
cannot be applied to all of its descendants, and the system can
avoid wasteful calculations.

The basic method to solve simultaneous equations is Gaus-
sian elimination, because the current implementationsupports
only linear equations. Other algorithms (e.g. Newton’s method
[8][11]) would be required to support non-linear constraints,
such as line length equality or tangency of curved segments.
Pair equalities for such constraints as connection to a vertex,
congruence, and interval equality (see Figure 11) are bound



by an and condition; both equalities fail if one of them is not
satisfied.

In summary, our constraint solver is a multi-way numerical
equality solver with an extension to generate multiple solu-
tions efficiently from over-constrained constraints. The com-
plexity of computation isO(2n), but is substantially reduced
by pruning wasteful calculations using a tree structure and
unifying identical intermediate valuations, and has not caused
problems in interaction so far in our prototype system.

Candidate evaluation module
The evaluation process must follow the solver because it is
necessary to consider the resulting coordinates as well as the
satisfied constraints to calculate the certainty of a candidate.
That is, candidates located close to the input stroke should
be scored highly, but the location is unknown until the con-
straints are solved.

Currently, we use an ad-hoc scoring function to calculate the
certainty of candidates considering type of satisfied constraints
and the distance between resulting coordinates and original
input stroke. A candidate with the highest score is selected
as a primary one, and those whose scores are under a specific
threshold are discarded.

PROTOTYPE SYSTEM PEGASUS
The prototype system, Pegasus, is being developed with Mi-
crosoft Visual Basic and Visual C++ on Windows 95. The
user interface part of the code that manages the input oper-
ations and visual feedback is written in Visual Basic for ease
of implementation and frequent revision. The beautification
routine is written in Visual C++ to accelerate the most time
consuming process.

Pegasus runs on any PC where Windows 3.1/95 is in opera-
tion. However, as Pegasus is basically designed for pen based
input, it is developed and tested mainly on portable pen com-
puters (Mitsubishi AMiTY SP) and a pen-based electronic
blackboard system (Xerox Liveboard). As pen based free stroke
input and mouse based free stroke input have considerably
different characteristics, the preprocessor of the recognition
algorithm needs to be tuned differently depending on the in-
put device (pen or mouse).

Figure 13 briefly illustrates the processing performance of the
current beautification routine. This data was recorded dur-
ing the construction process of Figure 1 on a PC/AT machine
(Pentium 75MHz). Recorded time is not very accurate be-
cause of the coarse sampling rate of the system call, but ap-
proximately 80% of the beautifications finished within 100
msec, sufficient for interactive drawing. The number of gen-
erated candidates are usually small, where 62% of beautifi-
cations generated less than 5 candidates. However, in some
cases (17%) the system generated more than 20 candidates,
which made candidate selection difficult.

We show some of the pictures that have been produced on
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Figure 13: Time spent in the beautification routine and
the number of generated candidates during the con-
struction of Figure 1.

Figure 14: Diagrams for physics and mathematics

Pegasus. Figure 14 illustrates the usage of the technique in
classrooms. Menu-based operations have deterred the use of
precise diagrams on electronic whiteboards during oral com-
munications, but the simplicity of interactive beautification
may encourage the use of more precise diagrams. Figure 15
shows 3D illustrations. The construction of these diagrams is
achieved using parallelism and congruence among segments.
It is notable that these diagrams are easily constructed using
rather simple constraints, instead of some special techniques
for 3D models. Figure 16(left) shows an example of geomet-
ric design. The widths of the ring and spokes are all iden-
tical, which may be difficult for conventional editors. Fig-
ure 16(right) gives an example of symmetric illustration. As
horizontal symmetry is achieved without any additional oper-
ation, a designer can concentrate on design itself, instead of
struggling with complex operations.

EXPERIMENT

This section describes an experiment performed to evaluate
the interactive beautification using the prototypesystem com-
pared to existing drawing systems in some diagram drawing
tasks. We were particularly interested in whether or not in-
teractive beautification would improve the task performance
time (rapidness) and the completeness of the geometric con-
straint satisfaction in the diagrams (precision). A similar ex-
periment is presented in [13], but this experiment is focused
on evaluation of the technique, while the previous paper in-
tended to clarify the problems of existing drawing editors.



Figure 15: Three-dimensional illustrations

Figure 16: Geometric illustrations

Method
Systems The experiment was conducted on a Mitsubishipen
computer AMiTY SP (i486DX4 75MHz, Win95). Alongwith
our prototype system, we used a CAD system (Auto Sketch
by AutoDesk Inc.) and an OO-based drawing system (Smart
Sketch by FutureWave Software Inc.) The CAD system is
used as a representative for precise geometric design systems,
and the OO-based editor is selected as a representative for
easy-to-use rapid drawing editors.

Task Subjects were required to draw three diagrams shown
in Figure 17 using the editors. They were instructed to 1)
draw as rapidly as possible, satisfying the required geometric
relations as much as possible, 2) to quit drawing when draw-
ing time exceeds the limit of 5 minutes, and 4) give the com-
pletion of drawing priority over the complete constraint sat-
isfaction, if it appears to be too difficult.

Subjects 18 student volunteers served as subjects in the ex-
periment. They varied in their proficiency in using comput-
ers and each software. 8 subjects were accustomed to typical
window-based GUIs, but other subjects had little experience
with computers.

Procedure To avoid the effect of learning, the order of ed-
itor usage was changed for each subject in a balanced way.
The experiment consisted of 18 (subjects) � 3 (systems) �
3 (diagrams) = 162 diagram drawing sessions in total. Each
session lasted less than 5 minutes and they were video-recorded
and examined later.

Prior to performing the experiment with each system, each
subject was given a brief explanation of each system and a
practice trial. This tutorial session lasted 5 - 10 minutes vary-
ing among systems and subjects. The CAD system generally

parallelism (b,d)

perpendicularity (a,b)

a

b c

d

connection

symmetry (triangle)

symmetry (horns)

connection (all vertices)

(all vertices)

connection (all vertices)

parallelism (slopes)

parallelism (horizontal lines)

parallelism (a,c)

vertical and horizontal alignment interval equality between
                 the parallel lines

Figure A Figure B Figure C

Figure 17: The diagrams used in the experiment, and
required geometric relations

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

T
im

e 
(s

ec
.)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

T
im

e 
(s

ec
.)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

T
im

e 
(s

ec
.)

CAD Pegasus

Fig. A

Fig. B

Fig. C

Draw

Subjects
(sorted)

Figure 18: Drawing time required for each task: Each
column corresponds to a drawing session of a subject.
The order of subjects is sorted by the time required.

required more tutorial time than the others.

Result and discussion
Rapidness Figure 18 shows the time required for each sub-
ject to complete each task. Each column corresponds to a
drawing session of a subject. The order of subjects is sorted
by the drawing time. As the drawing time was limited to
300sec., drawing sessions which exceeded the limit are indi-
cated as 300sec. The time required with the prototype system
was clearly shorter than with other systems, and all sessions
finished within the limit, while many sessions exceeded the
limit with the CAD system and the OO-based drawing editor.

Figure 19 shows how many sessions finished within the limit.
Many subjects failed to finish drawing tasks within the limit
using the CAD system and the OO-based editor, while all sub-
jects finished drawing using our prototype. Whether the re-
quired constraints are precisely satisfied or not is not consid-
ered in this graph.

It is impossible to calculate the exact mean drawing time and
the mean variance because the recorded drawing time was
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Figure 19: The ratio of finished sessions: this figure
shows in how many sessions subjects finished drawing
within 300sec. among each 3� 18 = 54 sessions.
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Figure 20: Estimation for time required for a subject to
draw the three diagrams: the prototype system exhibits
considerable advantage.

limited to 300sec., but Figure 20 gives an approximation of
the mean drawing time. Drawing time is averaged for each
diagram-editor combination over those sessions that finished
within the limit, and the averaged time for each editor is summed
to estimate “total drawing time for a subject to draw three dia-
grams on each editor.” According to the calculations, subjects
were able to draw the three diagrams at least 48 % faster than
the OO-based editor and 54 % faster than the CAD system.
As the averages do not include sessions exceeding 300sec.,
the actual differences are greater.

Precision Even if task performance time might be improved,
the benefit could be nullified if the precision of the resulting
diagrams is considerably worse. Figure 21 shows how many
sessions finished satisfying all the required geometric rela-
tions shown in Figure 17. The sessions where the subjects
finished drawing within 300sec. but failed to satisfy the re-
quired geometric relations completely are not counted. It is
interesting to see that the OO-based system is superior to the
CAD system in time performance, but the opposite holds true
concerning the precision, which is in accordance with the nat-
ural expectation. Our prototype system showed better perfor-
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Figure 21: The ratio of diagrams where required con-
straints are perfectly satisfied: this graph shows in
how many sessions subjects successfully satisfied
all the required geometric constraints among each
3� 18 = 54 sessions.

mance in both criteria than either the CAD or OO-based sys-
tem.

We must note, however, that this experiment is still a prelimi-
nary evaluation. Many important aspects of diagram drawing
are not accounted for, such as line pattern variation, scaling,
rotation, etc. Curves, circles, and text did not appear in the di-
agrams. Also, various kinds of diagrams must be considered,
such as node-link diagrams, informal illustrations, complex
mechanical diagrams, etc. In spite of these limitations, this
preliminary experiment clearly shows a promising potential
of the interactive beautification system, particularly its sig-
nificant advantage in rapid and precise construction of simple
geometric diagrams. Time performance and constraint satis-
faction rate were considerably improved, even though inter-
active beautification is rather new for the subjects compared
with other systems.

LIMITATIONS AND FUTURE WORK
One unsolved problem with interactive beautification is that it
is difficult to select the intended candidate among many over-
lapping candidates. This problem becomes serious when one
draws complex diagrams. Possible solutions are to reduce the
number of generated candidates and to improve the user inter-
face for candidate selection.

The number of candidates can be reduced by restricting the
number of inferred constraints in the constraint inference mod-
ule and the number of valuations in the constraint solving
module, and removing the unwanted candidates in the evalu-
ation module. Various heuristics and user adaptation may be
required to find intended constraints and candidates.

Improvement of the user interface is also required. One solu-
tion is to magnify the cluttered region to help the user to dis-
tinguish the desired one from the others. Another technique is
to let the user specify the reference segment and display those
candidates that satisfy constraints related to the specified ref-



erence segment.

We plan to implement curves, text, and line pattern variations
to see whether interactive beautification can work as an es-
tablished interaction technique. Implementation of arcs and
curves give rise to various difficulties, but is strongly desir-
able because satisfaction of curve-related constraints is espe-
cially difficult with conventional menu based editors.

We would like to perform more user studies to answer various
questions: what kinds of constraints are required for rapid ge-
ometric design, how fast users can master the effective use of
the technique, and to what extent the generation of multiple
candidates facilitates the interaction, etc.

Integration of interactive beautification into 3D scene con-
struction systems such as [24] is also being considered. The
most challenging issue may be how to display half-constructed
3D models and multiple candidates withoutconfusing the user.

SUMMARY
We have proposed interactive beautification, a technique for
rapid geometric design. The beautification system receives a
free stroke and converts it into a precise segment. The tech-
nique is characterized by stroke-by-strokebeautification, recog-
nition of global geometric constraints, and generation and se-
lection of multiple candidates, which make the technique suit-
able for precise geometric design preserving considerable dex-
terity. Our prototype system, Pegasus, is implemented on
pen computers, and user evaluations showed promising re-
sults. The beautification process consists of three indepen-
dent modules, constraint inference, constraint solving, and
candidate evaluation, which achieves efficient generation of
multiple candidates.

This technique can be used for geometric modeling on tradi-
tionalCAD systems, butmore informal pen-based rapid draw-
ing of simple diagrams seems to be the most promising tar-
get. To be specific, interactive beautification appears to be an
ideal technique for note-taking on pen-based PDA systems
and graphical explanation on electronic whiteboards during
meeting or in classrooms. Finally, this technique can be used
to support creative design processes [17], which has been done
with traditional pen and paper rather than on computers be-
cause of complex operations.
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