
Static granularity optimization of a

committed-choice language Fleng

Takuya Araki and Hidehiko Tanaka

School of Engineering, the University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.

faraki,tanakag@mtl.t.u-tokyo.ac.jp

Abstract. The committed-choice language Fleng can extract much par-
allelism easily even from irregular programs using data
ow synchroniza-

tion. However, there is a large overhead because the granularity of ex-

ecution is very �ne. If granularity of a program is coarsened, such an
overhead can be reduced. This can be attained by fusing several goals

into one goal, but this may cause deadlock. In this paper, we propose a

safe goal fusion algorithm that statically optimizes granularity of a Fleng
program. We implemented the algorithm and evaluated it on a parallel

computer PIE64. The evaluation shows that enough speedup can be at-

tained by this method.

1 Introduction

Committed-choice languages can extract much parallelism easily even from pro-

grams with irregular parallelism such as symbolic computation. This is achieved

by single assignment variable and data
ow synchronization.

However, the granularity of execution is so �ne that overheads of parallel

execution, such as context switching, synchronization, and communication, is

large. Therefore, to reduce these overheads is the key of e�cient implementation

of these languages.

Because the main source of the overhead is �ne grain execution, the overhead

can be reduced by making granularity coarse. However, it is not easy to make

granularity coarse, because that may cause deadlock.

In this paper, we present a safe goal fusion algorithm. The basic idea of

the algorithm is derived from separation constraint partitioning [4]. We imple-

mented the algorithm for a committed-choice language Fleng [3] and evaluated

its e�ectiveness on a parallel computer PIE64.

2 Committed-choice language Fleng

Fleng is a kind of parallel symbol processing language. Its ancestor is Prolog

and the syntax is similar to it. However, the semantics is very di�erent from

Prolog, because a Fleng program doesn't backtrack. GHC and KL1 [8] are other

examples of committed-choice languages.

The characteristics of Fleng are:



{ execute all goals in parallel

{ synchronize using single assignment variable

These make it possible to extract much parallelism easily.

Take a short program for example:

foo(A; R)
| {z }

head

:- add(A; 1;B); mul(B; 2; R)
| {z }

body

This is a de�nition of a predicate foo that executes R = (A + 1) * 2. A de�ni-

tion of a predicate consists of clauses. In this case, it consists of only one clause.

A Clause is separated by \:-"; the left side of a clause is called a \head", and

right side is called a \body".

The unit of computation is called a goal. If an initial goal foo(A,R) is given,

this goal is rewritten into add(A,1,B) and mul(B,2,R). These two goals are

executed in parallel. But in this case, mul cannot be executed before the value

of B is calculated. Thus, the execution of mul is suspended if B is not bound.

When B is bound by add, mul is activated. To realize this mechanism, variables

are single assignment variables and the value of the variable cannot be changed.

Branch can be expressed as follows:

foo(true,R):- R = 1.

foo(false,R):- R = 0.

This program consists of two clauses. This program means, if the �rst ar-

gument is true then executes R = 1, if it is false then executes R = 0. Like

the previous example, if the �rst argument is not bound, the goal is suspended.

When it is bound, the goal is activated and branches according to the value.

Arithmetic operations are de�ned such as:

add(#A,#B,R):- compute(+,A,B,R).

Here, \#" means that the predicate waits for the variable with \#" to be bound.

compute is executed without suspension and it can be compiled into a few as-

sembly codes. The input arguments of compute should be bound, which is guar-

anteed by \#"s of the head in this case. If there is a sequence of computes, they

are executed sequentially.

3 Goalfusion

3.1 Problem of goalfusion

We propose goalfusion as a coarsening method of Fleng programs. Goalfusion

is a method that fuses goals into one goal, but the method cannot always be

applied.

For example:



foo(U,V,R,S):- add(U,U,R), mul(V,V,S).

add(#A,#B,R):- compute(+,A,B,R).

mul(#A,#B,R):- compute(*,A,B,R).

This program executes R = U + U and S = V * V. add and mul are fused

into one goal:

foo(U,V,R,S):- add_mul(U,V,R,S).

add_mul(#U,#V,R,S):- compute(+,U,U,R), compute(*,V,V,S).

In this case, add and mul are fused into add mul, and the overhead of goal in-

vocation and synchronization is reduced. However, this transformation is wrong.

In the original program, if foo(1,Tmp,Tmp,S) is called, it is rewritten into

add(1,1,Tmp) and mul(Tmp,Tmp,S). Then Tmp is bound to 2 by add, S is bound

to 4 by mul.

But in the transformed program, foo(1,Tmp,Tmp,S) is rewritten into add mul

(1,Tmp,Tmp,S); add mul(1,Tmp,Tmp,S) waits for Tmp to be bound forever.

Thus, transformed program causes deadlock. That means this transformation

changed the semantics of the program, so such a transformation should be

avoided.

Why the fusion of add and mul causes deadlock? Figure 1 shows the data
ow

graph of the original program and the transformed program.

In the data
ow graph of the original program, mul depends on add through

Tmp, which is an argument of foo. This dependency does not always exist. This

kind of dependency is called a potential dependency [4]. This dependency makes

a cyclic dependency after goalfusion. A Cyclic dependency means that the goal

depends on its own output, which causes deadlock. The original program does

not cause deadlock because it does not have any cyclic dependencies.

1

add

Tmp

mul

S

1

add_mul

Tmp

Tmp

Tmp

S

Fig. 1. Data
ow graph

g

f

Ah

B

C

f_h

g

AC f_g_h

h

B

C

f_g

Fig. 2. Algorithm of goalfusion



3.2 Algorithm of goalfusion

To avoid deadlock, cyclic dependencies should be avoided. So the basic idea of the

algorithm is: two goals can be fused only when there is no indirect dependency

between these goals. This is because indirect dependencies always make cyclic

dependencies when these two goals are fused.

Consider �gure 2 for example; it is a data
ow graph of a program. A, B and

C are variable and f, g and h are goals. In this program, f and g cannot be fused

because g indirectly depends on f through h. If f and g are fused, the indirect

dependency makes a cyclic dependency.

On the other hand, f and h are safely fused into f h. Though h depends on f,

the dependency is direct. The direct dependency disappears after fusion because

the dependency exists inside of the fused goal.

Then f h and g can be fused into one goal likewise.

Brief sketch of the algorithm is as follows:

1. Select one clause.

2. Analyze dependencies in the clause (described in section 3.3).

3. Fuse two goals if there are no indirect dependencies between them.

4. Repeat 2-3 until any two goals cannot be fused.

Here, potential dependencies and dependencies which go through one or more

other goals are treated as indirect dependencies.

3.3 Dependency analysis

In order to fuse two goals, it is necessary to guarantee that there is no indirect

dependency between these goals. In this section, we will describe how to analyze

dependencies in a program.

Mode inference In a Fleng program, it is not known from syntax whether

an argument is used as input or output. To analyze dependencies precisely, in-

put/output mode information is needed. [9] describes a mode inference method

including structured data, but we did simple mode inference that does not in-

clude structured data. The algorithm is borrowed from [9].

The algorithm is based on the following ideas:

1. If a variable is output of a goal, the variable is input of other goals that share

the variable.

2. If a variable is input of all goals except one goal, the variable is output of

the goal.

Variables whose mode cannot be inferred are treated as both input and out-

put to analyze dependencies safely.

Detection of dependency In this section, we will describe how to detect de-

pendencies from each program element.



Body goals: If a body goal cannot be reduced until an argument variable is

bound, the goal directly depends on the variable (and the variable is input of

the goal); and if an argument variable is guaranteed to be bound after a goal is

reduced (by compute or =), the variable directly depends on the goal (and the

variable is output of the goal).

In addition, a body goal may make dependencies from any input variables to

any output variables, because sub goals of the goal may make dependencies.

Of course, sub goals may not make dependencies; but in order to detect

potential dependencies safely, dependencies from all input variables to all output

variables should be assumed.

If the de�nition of a body goal is known, the information is propagated using

inter-clause analysis described below.

Uni�cation: Unifying variable with atomic value does not make a dependency.

However, unifying variable with variable should be treated to make dependencies

of both directions. For example, A = B is treated to make dependencies from A

to B and that from B to A. Actually A does not depend on B and vice versa; but

A = B may be used as a path of dependencies.

Unifying variable with structured data is more complex. For example, A =

fB,Cg (fB,Cg means a vector which consists of two elements, B and C) should be

treated to make dependencies from A to B and C, and those from B and C to A,

because this uni�cation may be also used as paths of dependencies.

For example:

foo(...):- A = {B,C}, bar(A,A1), A1 = {X,Y}, ...

bar({B,C},A1):- add(B,B,X), mul(C,C,Y), A1 = {X,Y}.

In the de�nition of foo, X depends on B and Y depends on C. These dependencies

cannot be detected unless dependencies from B and C to A and those from A1 to

X and Y are assumed.

Head: The caller site (i.e. head) may make dependencies between arguments.

The �rst example whose body goals cannot be fused is of this type.

While analyzing dependencies, a head and body goals are alike in the sense

that both may make dependencies between arguments. So a head can be treated

in the same way as a body goal during mode inference and dependency analysis.

However, the inferred mode of a head is reversed to what is seen from the outside.

For example:

foo(U,V,R,S):- add(U,U,R), mul(V,V,S).

This program is same as the �rst example whose body goals cannot be fused.

Figure 3 shows the data
ow graph of this program including the head, which

is represented in italic. Inferred mode of the head foo is: R and S are input and

U and V are output (The mode of foo seen from outside is: U and V are input

and R and S are output).

This data
ow graph shows that there are indirect dependencies from R to V

and from S to U, which indicates that add and mul cannot be fused.



add foo mul

U

S

V

R

Fig. 3. Dependencies through a head

add

X

Y

bar

Fig. 4. Removal of a potential dependency
that is contradicted by a certain depen-

dency

Removal of contradicted dependencies Analyzed dependency may contain

dependencies that cannot exist.

For example:

foo(...):- bar(Y,X), add(X,X,Y),...

In the dependency analysis, a dependency from Y to X is detected from a body

goal bar; but there cannot be such a dependency. Because add makes a depen-

dency from X to Y certainly, if Y depends on X, the program is in deadlock. If

the given program is right and runs without deadlock, there cannot be such a

dependency (Fig. 4).

In this study, we used the method described in [4]: remove potential depen-

dencies that are contradicted by certain dependencies. Here, dependencies that

consist of only direct dependencies (and dependencies that are propagated as cer-

tain dependencies by inter-clause analysis) are treated as certain dependencies.

Other dependencies are treated as potential dependencies.

3.4 Inter-clause analysis

We described analysis within a clause so far. We will describe inter-clause anal-

ysis in this section.

There are two directions of passing information in inter-clause analysis: from

a callee to a caller (bottom-up) and from a caller to a callee (top-down). But

in the current implementation, top-down information propagation is not imple-

mented to avoid complexity, though it can be implemented almost in the same

way as bottom-up method.

And there are two kinds of information to pass: input/output modes and de-

pendencies between variables. Dependencies are classi�ed into certain dependen-

cies and potential dependencies. This classi�cation is used to remove potential

dependencies that is contradicted by certain dependencies.

If the information varies according to the conditional branch, the information

should be merged to be safe.

Dependencies are analyzed from the top goal and the call tree is traversed

in the depth-�rst order. The goal already analyzed is memorized and analysis



is stopped when the goal was already analyzed; it avoids in�nite loop while

analyzing (mutually) recursive goals.

For example:

foo(U,V,R,S):- add(U,U,R), mul(V,V,S).

bar(...):- foo(U,V,R,S),...

The information analyzed in foo is propagated to bar as follows.

The input/output mode of foo can be inferred using the method described

above. However, because the analyzed mode is what is seen from body goals,

the mode needs to be reversed. In this case, U and V are input, and R and S are

output.

The dependencies to pass is what is analyzed without head. This is the de-

pendencies made inside of foo. In this case, certain dependencies from U to R

and V to S are analyzed. There are no other potential dependencies.

It is notable that the propagated dependency information indicates that de-

pendencies from U to S and from V to R do not exist. It cannot be known only

from the mode information.

4 Implementation and evaluation

4.1 Implementation

We implemented this method as a preprocessor of a compiler. It inputs a Fleng

program and outputs a Fleng program whose granularity is coarsened. The pre-

processor is about 6,000 lines of a Fleng program.

And the Fleng compiler is extended to manage conditional branch within

a goal in order to fuse goals that branches at heads. This branch is described

as (Cond --> Then; Else). This branch assumes that all variables needed to

evaluate Cond are bound, and it is compiled into a simple branch operation like

procedural languages.

In addition, if a goal can be executed without suspension, it is inlined.

An example of transformation is as follows:

abs(A,R):-

greater(A,0,IsGt), abs1(IsGt,A,R).

abs1(true,A,R):- R = A.

abs1(false,A,R):- sub(0,A,R).

This program is transformed into:

abs(A,B):- C = 0, greater_abs1(A,C,B).

greater_abs1(#A,#B,C) :-

compute(>,A,B,D),

((D == true)--> C = A; E = 0, compute(-,E,A,C)).



Table 1. Benchmark programs

Binary size (byte) Compilation time (sec)
Program Code size Input size

Original Optimized Original Optimizing

queen 55 9-Queens 8925 7918 3.58 7.04

primes 39 2000 7076 7367 2.87 5.00

qsort 31 10000 4365 5373 2.55 14.1

fme 1175 queen 194110 170054 135 539

4.2 Evaluation

We evaluated this method on the Parallel Inference Engine PIE64 [1]. PIE64

is a parallel computer that is designed to execute Fleng programs e�ciently.

PIE64 has 64 processor elements and is a distributed shared memory machine,

that is, the address space is global. The processor of PIE64 supports multi-

context processing with which latency of communication can be hidden. The

interconnection network supports automatic load balancing, and the speed of

the network is relatively high.

Execution time used to calculate relative speed is an average of 3 executions

excluding garbage collection time.

The granularity of the transformed program is made to be as coarse as possi-

ble though the implementation allows to specify the granularity of the program.

This is because even the coarsest granularity was �ner than the optimal granu-

larity.

Compilation time was evaluated on a workstation (Sun Ultra 1).

We selected \queen", \primes", \qsort" and \fme" as benchmark programs.

Queen is a program that solves N-Queens problem. Primes is a prime number

generator that uses Eratosthenes' sieve. Qsort is a quick sort program. Fme

is a program that expands macros of Fleng program; it is a practical Fleng

application. The input of fme is queen whose macros are not expanded. These

programs except queen have relatively small parallelism.

Table 1 shows binary size and compilation time of benchmark programs.

Binary size was expected to increase because new predicate de�nition was added.

However, it did not increase very much and even decreased in two programs. This

is because the optimizer removes predicates that became unused after goalfusion.

Compilation time increased 2 to 6 times. We think this increase is reasonable

considering the complex data
ow analysis.

Figure 5{8 show the speedup by granularity optimization. X-axis of the graph

shows the number of processors, and Y-axis of the graph shows the relative

speed normalized by the speed of the original program with one processor. The

optimized programs except fme are 2 to 9 times faster than the original programs

irrespective of number of processors. Optimized fme ran about 1.2 times faster

than the original program. We think the limited speedup is due to the di�culty

of global analysis of a large program.



¶ îòââëð

­

®­­

¯­­

°­­

±­­

²­­

³­­

­ ®­ ¯­ °­ ±­ ²­ ³­

  ìã íïìàâððìïð

Ï
â
éÞ
ñæ
ó
â
ð
í
â
â
á

ÌïæäæëÞé

Ìíñæêæ÷âá

Fig. 5. Speedup of 9 queens

íïæêâð ¯­­­

­

®­

¯­

°­

±­

²­

­ ®­ ¯­ °­ ±­ ²­ ³­

  ìã íïìàâððìïð

Ï
â
éÞ
ñæ
ó
â
ð
í
â
â
á

ÌïæäæëÞé

Ìíñæêæ÷âá

Fig. 6. Speedup of primes

îðìïñ ®­­­­

­

°

³

¶

®¯

®²

®µ

­ ®­ ¯­ °­ ±­ ²­ ³­

  ìã íïìàâððìïð

Ï
â
éÞ
ñæ
ó
â
ð
í
â
â
á

ÌïæäæëÞé

Ìíñæêæ÷âá

Fig. 7. Speedup of qsort

ãêâ

­

¯

±

³

µ

®­

®¯

­ ®­ ¯­ °­ ±­ ²­ ³­

  ìã íïìàâððìïð

Ï
â
éÞ
ñæ
ó
â
ð
í
â
â
á

ÌïæäæëÞé

Ìíñæêæ÷âá

Fig. 8. Speedup of fme

5 Related work

Execution model of lenient functional languages such as Id is similar to that

of committed-choice languages. Same kind of optimization as our work is also

studied in the �eld of functional languages [5, 6, 7, 4]. Separation constraint

partitioning (SCP) [4] is the latest algorithm of Id to make large threads from

data
ow graphs; it strongly in
uenced our study.

The basic algorithm of our study is substantially same as SCP. SCP uses

data
ow graphs as input, but our algorithm runs on the Fleng source code

level. That makes it possible to process other source code level optimizations

simultaneously. For example, if goalfusion enables any goals to be inlined, they

are inlined. In addition, a transformed program is correct after every step of our

algorithm, though it is not true in SCP.

On committed-choice languages, there is a study of sequentialization of pro-

grams [2]. In this study, they limit the programs to a class called \fully moded,

feedback free". Feedback free means that there is no dependency through a



head. It seems that their limitation is very strict; especially to limit programs

to \feedback free" makes it impossible to write many kinds of programs.

6 Conclusion

In this paper, we proposed, implemented and evaluated a granularity optimiza-

tion method of a committed-choice language Fleng. In this study, we used the

goalfusion method to coarsen granularity of a program. An algorithm of goalfu-

sion was proposed. We implemented and evaluated the algorithm. Several times

speedup in small programs and about 1.2 times speedup in a realistic program

were attained.

The reason of relatively small speedup in a realistic program seems to be due

to di�culty of global analysis. Future work will focus on developing a granularity

coarsening method for larger programs.

References

1. T. Araki, Y. Hidaka, H. Nakada, H. Koike, and H. Tanaka. System integration of

the parallel inference engine PIE64. In Workshop on Parallel Logic Programming

attached to International Symposium on Fifth Generation Computer Systems 1994,

Dec. 1994.

2. B. C. Massey and E. Tick. Sequentialization of parallel logic programs with mode
analysis. In 4th International Conference on Logic Programming and Automated

Reasoning. LNCS 698, pages 205{216. Springer-Verlag, 1993.

3. M. Nilsson and H. Tanaka. Fleng Prolog - the language which turns supercomput-

ers into Prolog machines. In Logic Programming '86, LNCS 264, pages 170{179.

Springer-Verlag, 1989.

4. K. E. Schauser, D. E. Culler, and S. C. Goldstein. Separation constraint partition-
ing { a new algorithm for partitioning non-strict programs into sequential threads.

In POPL '95, pages 259{271. ACM, 1995.

5. K. E. Schauser, D. E. Culler, and T. von Eiken. Compiler-controlled multithreading
for lenient parallel languages. In FPCA '91, LNCS 523, pages 50{72. Springer-

Verlag, 1991.

6. K. R. Traub. Multi-thread code generation for data
ow architectures from non-
strict programs. In FPCA '91, LNCS 523, pages 73{101. Springer-Verlag, 1991.

7. K. R. Traub, D. E. Culler, and K. E. Schauser. Global analysis for partitioning

non-strict programs into sequential threads. In LFP '92, pages 324{334. ACM,

1992.

8. K. Ueda and T. Chikayama. Design of the kernel language for the parallel inference

machine. The Computer Journal, 33(6):494{500, December 1990.
9. K. Ueda and M. Morita. A new implmentation technique for 
at GHC. Technical

report, ICOT, 1990. TR-560.

This article was processed using the LaTEX macro package with LLNCS style


