
DESIGN AND IMPLEMENTATION OF MULTIPLE-CONTEXT

TRUTH MAINTENANCE SYSTEM WITH BINARY DECISION DIAGRAM

Hiroshi G. Okuno,

NTT Basic Research Laboratories

Nippon Telegraph and Telephone Corporation

3{1 Morinosato-Wakamiya, Atsugi

Kanagawa 243-01, JAPAN

okuno@nuesun.brl.ntt.jp,

Osamu Shimokuni, and Hidehiko Tanaka

Graduate School of Engineering

The University of Tokyo

7{3{1 Hongo, Bunkyo-ku

Tokyo 113, JAPAN

osamus@ipl.t.u-tokyo.ac.jp, and tanaka@mtl.t.u-tokyo.ac.jp

ABSTRACT

Implicit enumeration of prime implicates in Truth
Maintenance System (TMS) is investigated. CMS
(Clause Management System), an extension of
Assumption-based TMS (ATMS), that accepts any
type of justi�cation has a burden to compute all
prime implicates, since its complexity is NP-complete.
To improve the performance of multiple-context TMS
such compact representation of boolean functions. In
this paper, we propose a BDD-based Multiple-context
TMS (BMTMS) and present the design and imple-
mentation of interface between TMS and BDD. The
interface provides high level speci�cations of logical
formulas, and has mechanisms to schedule BDD com-
mands to avoid combinatorial explosions in construct-
ing BDDs. In BMTMS, most TMS operations are car-
ried out without enumerating all prime implicates.

1 INTRODUCTION

The capability of thinking with explicit multiple al-
ternatives is required by sophisticated problem solv-
ing systems such as qualitative simulation, multi-fault
diagnosis or non-monotonic reasoning. Since a consis-
tent database (data collection) is referred to as context,
the above requirement can be paraphrased as multiple

context reasoning. Multiple-context reasoning is, in
general, superior to single-context reasoning in switch-
ing contexts or comparing the results between context
[deK86a].
A problem solving system consists of an inference

engine and a truth maintenance system (TMS). The
inference engine introduces hypotheses and makes in-
ferences, while TMS records hypotheses as assump-

tions and inferences as justi�cations. TMS maintains
the inference process and enables the inference engine
to avoid futile or redundant computations [FdK93].

TMSs are classi�ed according to two properties. One
property is whether they provide a single or a multi-
ple context and the other is whether they accept Horn
clauses or general clauses as justi�cations. This clas-
si�cation is summarized in Table 1.
Justi�cation-based TMS (JTMS) is a single-context

TMS that accepts only a Horn clauses as a justi�ca-
tion. JTMS is very popular so far, because JTMS runs
very e�ciently with backtracking mechanism. The sat-
is�ability of a set of Horn clauses, or the assignment of
variables that satis�es the set of clauses, can be solved
in a linear time of the number of variables [Dow84].
However, JTMS cannot perform e�ciently reasoning
with alternatives.
Logic-based TMS (LTMS) is a single-context TMS

that accepts general clauses including disjunction or
negation. An e�cient algorithm for LTMS is a Boolean
constraint Propagation (BCP), a kind of intelligent
backtracking mechanism. First, the conjunction of jus-
ti�cations is converted to a conjunctive normal form
(CNF, or Product of Sum, POS) and decomposed to
a set of clausal forms. BCP takes a set of clausal
forms and labels each node consistently by backtrack-
ing. BCP with a set of clausal forms is complete for
Horn clauses, but not for general clauses. This incom-
pleteness is caused by being information dropped in
conversion of a clause to a set of clausal forms. To

Table 1 Classi�cation of TMS

context
single multiple

justifi- context context

cation

Horn Justi�cation-based Assumption-based

clauses TMS (JTMS) TMS (ATMS)

general Logic-based Clause Management

clauses TMS (LTMS) System (CMS)

DESIGN AND IMPLEMENTATION OF BMTMS

recover completeness, all prime implicates should be
added to the set of clausal forms, but the whole per-
formance of such a BCP deteriorates because the total
number of prime implicates is generally very large. For
example, the modeling of two containers connected by
a valve with seven observation points produces 2,814
prime implicates [FdK93]. In addition, the computa-
tional complexity of enumerating prime implicates is
NP-complete.
A multiple-context TMS is, in general, superior

to a single-context TMS in its capabilities and e�-
ciency in seeking all solutions [deK86a]. In particular,
Assumption-based TMS (ATMS), a multiple-context
TMS that accepts only Horn clauses as justi�cations
can be implemented quite e�ciently by compiling jus-
ti�cations into a network [deK86a; Oku90]. A datum
of inference engine is represented by a node and its
belief status is maintained by a label. The labels are
computed incrementally by using the network. How-
ever, ATMS has a limited power of expression. When
the problem solving system wants to handle a general
clause, it must be encoded to a set of Horn clauses
with special constructs. And some additional routines
are needed to validate the completeness of TMS op-
erations [deK86b]. This type of encoding sometimes
gives rise to the degradation of the total performance
of the system.
Clause management system (CMS) is a multiple-

context TMS that accepts general clauses including
disjunction and negation [RdK87]. In CMS, the label
of a node is computed via minimal support [RdK87].
Let � be the set of all the justi�cations and PI be a
prime implicates of �. The minimal support for the
clause C is computed as follows:

MinSup(C;�) = fSjS 2 �(C;�); S is minimalg(1)

�(C;�) = fPI � CjPI [C 6= fgg

Note that the computation of the minimal support re-
quires the enumeration of all prime implicates. This is
the main factor of intrinsic poor performance of CMS.
We have been studying an implicit enumeration of

prime implicates. Recently, a Binary Decision Dia-
gram (BDD) is proposed, which is a compact represen-
tation and provides e�cient manipulations of boolean
functions [Bry92]. Recent techniques with BDDs can
generate more than 1010 prime implicates [LCM92].
Since BDDs can represent all solutions simultaneously,
it is reasonable to use BDDs to implement a multiple-
context TMS. In this paper, we propose a BDD-based

Multiple-context TMS (BMTMS) to exploit two ways:

1) Implementing e�cient methods for enumerating
all prime implicates, and

2) Implementing TMS operations without enumer-
ating prime implicates explicitly.

{a, b}

{c, d, e}

{f, g}{b f, b g}

{b c, b d, b e}

{d f, e g}
D1

D2

D3
C13

C12

C23
x1

x2

x3

FIGURE 1 A simple constraint satisfaction prob-

lem

Madre et al. implemented ATMS by a variant of BDD
called TDG (Typed Decision Graphs), but only the
�rst issue was addressed [MC91].
The rest of the paper is organized as follows: In Sec-

tion 2, the issues of CMS are identi�ed. In Section 3,
BDDs are explained and the issues in applying BDDs
to multiple-context TMS is investigated. In Section 4,
the BMTMS is proposed and its details are described.
In Section 5, some capabilities of the BMTMS are
demonstrated. The evaluation results of the BMTMS,
and conclusions are given in Section 6 and Section 7,
respectively.

2 IDENTIFYING THE ISSUES OF CMS

In this section, the drawbacks of the ATMS and the
problems of CMS are demonstrated by using a a simple
problem [deK89] (hereafter, the simple problem) shown
in Figure 1. It has three variables, x1, x2, and x3. The
domain of each variable is D1 = fa; bg, D2 = fc; d; eg,
and D3 = ff; gg, respectively. For a pair of variables,
xi and xj , a constraint on them, Ci;j , is given as the set
of permissible combinations of values. They are C12 =
fb c; b d; b eg, C13 = fb f; b gg, and C23 = fd f; e gg.

2.1 Encoding by ATMS

In ATMS, an inference-engine's datum is repre-
sented by a TMS-node, and an assumption is a spe-
cial kind of TMS-node. A justi�cation has a set of
antecedents and a single consequence, all of which are
TMS-nodes. In other words, a justi�cation is a propo-
sitional Horn clause. An environment is represented
by a set of assumptions. A contradictory environment
is called nogood. Each TMS-node has a label, or a set of
environments, under which the node is proved valid.
The simple problem cannot encoded by ATMS itself,

because it contains disjunctions and thus is not a Horn
clause. The encoding techniques proposed by de Kleer
[deK89] is used for the encoding. The inference engine
gives the following data to ATMS:

DESIGN AND IMPLEMENTATION OF BMTMS

� A propositional symbol, xi:v. A symbol xi:v
means that a variable xi has a value v. Thus,
x1:a, x1:b, x2:c, x2:d, x2:e, x3:f , x3:g.

� A set of justi�cations, each of which encodes the
domain of a variable.

x1:a _ x1:b, x2:c _ x2:d _ x2:e, x3:f _ x3:g.

Since these clauses are not Horn ones, a disjunc-
tion is encoded by using the choose predicate as
follows:

choosefx1:a; x1:bg, choosefx2:c; x2:d; x2:eg,
choosefx3:f ; x3:gg.

� A set of justi�cations, each of which states that
each variable have only one value.

:x1:a _ :x1:b, :x2:c _ :x2:d, :x2:c _ :x2:e,

:x2:d _ :x2:e, :x3:f _ :x3:g.

These are encoded by using the nogood predicate
as follows:

nogoodfx1:a; x1:bg, nogoodfx2:c; x2:dg,
nogoodfx2:c; x2:eg, nogoodfx2:d; x2:eg,
nogoodfx3:e; x3:fg.

� A set of justi�cations, each of which encodes an
inhibited pair speci�ed by a constraint.

:x1:a _ :x2:c, :x1:a _ :x2:d, :x1:a _ :x3:e,

:x2:d _ :x3:g, � � �.

These are encoded as follows:

nogoodfx1:a; x2:cg, nogoodfx1:a; x2:dg,
nogoodfx1:c; x3:eg, nogoodfx2:d; x3:gg, � � � .

To �nd solutions that satisfy these justi�cations,
ATMS uses a label update algorithm. Since ATMS
is complete for Horn clauses but not for arbitrary log-
ical formula, ATMS fails to calculate the correct la-
bels for the above encodings. To attain completeness,
meta rules concerning choose and nogood are needed.
These meta rules perform hyperresolutions for these
predicates. Some examples of hyperresolutions are
listed below:

choosefx3:f ; x3:gg
nogoodfx2:c; x3:fg
nogoodfx2:c; x3:gg

nogoodfx2:cg

choosefx2:c; x2:d; x2:eg
nogoodfx2:cg

choosefx2:d; x2:eg

The �nal solutions are

(x1:b ^ x2:d ^ x3:f) _ (x1:b ^ x2:e ^ x3:g):

This encoding works well for the simple problem, but
does not work for all CSPs. de Kleer pointed out
that the meta rules correspond to local consistency
algorithms [deK89]. Applying a meta rule that corre-
sponds to arc-consistency algorithm is very expensive,
and thus the completeness may be ful�lled not at all
time.

2.2 Encoding by CMS

The simple problem is directly encoded by logical
expressions. In CMS encoding, the same propositional
symbols as ATMS are used. The domain of each vari-
able is encoded as X1, X2, and X3. The select-one
type constraint that each variable has only one value is
encoded by C1, C2, and C3. The constraints between
two variables are directly encoded.

X1 = x1:a _ x1:b

X2 = x2:c _ x2:d _ x2:e

X3 = x3:f _ x3:g

C1 = (x1:a ^ :x1:b) _ (:x1:a ^ x1:b)

C2 = (x2:c ^ :x2:d ^ :x2:e) _ (:x2:c ^ x2:d ^ :x2:e)

_(:x2:c ^ :x2:d ^ x2:e)

C3 = (x3:f ^ :x3:g) _ (:x3:f ^ x3:g)

C12 = (x1:b ^ x2:c) _ (x1:b ^ x2:d) _ (x1:b ^ x2:e)

C13 = (x1:b ^ x3:f) _ (x1:b ^ x3:g)

C23 = (x2:d ^ x3:f) _ (x2:e ^ x3:g)

F = X1 ^X2 ^X3 ^ C1 ^ C2 ^ C3

^C12 ^ C13 ^ C23 (2)

The simple problem is encoded as F . The prime im-
plicates of F are

:x2:d _ :x3:g, x2:d _ x3:g, :x3:f _ x2:d,
x3:f _ :x2:d, :x2:e _ :x2:d, x3:f _ x2:d,
:x2:e _ :x2:d, ...

Let Goal be the goal literal. The simple problem
is thus encoded as F � Goal. The label of the Goal
literal is computed by Equation (1) and the following
results are obtained:

(x1:b^x2:e^x3:g^:x1:a^:x2:c^:x3:d^:x3:f) � Goal

(x1:b^x2:d^x3:f^:x1:a^:x2:e^:x2:c^:x3:g) � Goal

Thus, the solution is obtained as the label of the literal
Goal, that is,

fx1:b ^ x2:e ^ x3:g ^ :x1:a ^ :x2:c ^ :x3:d ^ :x3:f ;
x1:b ^ x2:d ^ x3:f ^ :x1:a ^ :x2:e ^ :x2:c ^ :x3:gg.

Since the labels in ATMS satis�es four properties |
soundness, completeness, consistency, and minimality
|, they can be computed incrementally and e�ciently

DESIGN AND IMPLEMENTATION OF BMTMS

(x1 ^ :x2) _ x3

10 10 1 101

x3 x3 x3 x3

2x

1x

2x

0 1

FIGURE 2 Tree representation

x1 ^ x3, (x1 ^ :x2) _ x3, :x2 _ x3

10

x3

2x

1x
0

1

2
x

1x
0

1

x3
o

o

0

1x

0

x3

2x

1x
0

1o

o

o

o

(a) ROBDD (b) Negated edges (c) SBDD

FIGURE 3 ROBDD and its variants

[deK86a]. On the other hand, the labels are computed
in batch in CMS by enumerating all prime implicates,
because no algorithms are proposed so far to get all
prime implicates incrementally. The label of a node
plays a key role for e�cient processing in ATMS, while
it is one source of ine�ciency in CMS. To cope with
CMS's ine�ciency due to enumeration of prime impli-
cates, we exploit BDDs in the following two ways in
the next section.

1) TMS operations without using labels, and

2) e�cient enumeration of prime implicates.

3 Binary Decision Diagram (BDD)

3.1 Representing logical functions

Akers proposed a Binary Decision Diagram (BDD)
[Ake78] as a compact representation of boolean (log-
ical) functions, and Bryant invented e�cient algo-
rithms for manipulating them [Bry86]. Boolean func-
tions can be represented by a tree. For example, the
logical function, ((x1 ^ :x2) _ x3), is represented by a
tree, where a node represents a variable and two kinds
of leaves represent 0 and 1 (Figure 2). Two edges of
each node are called 0-edge and 1-edge, which repre-
sent the value when the variable associated with the
node takes 0 and 1, respectively.
By �xing the order of variables, say, x1; x2; x3

(where x1 is the uppermost variable), sharing leaves
and duplicate nodes, and removing redundant nodes,
this tree can be transformed into an ROBDD (Reduced
Ordered BDD) (Figure 3-(a)). An ROBDD gives a
canonical form of a boolean function, and thus equiv-
alent functions are represented by the same ROBDD.
Various techniques have been invented to reduce the
size of BDDs. One is a negated edge, which is indicated
as a small circle attached to an edge (Figure 3-(b)).
Another example is a Shared BDD (SBDD), which
shares BDDs among many functions. Three functions

share BDDs (Figure 3-(c)). Hereafter, BDD refers to
SBDD with negated edges.
A BDD is constructed incrementally by the ap-

ply function instead of reducing a tree representa-
tion. Suppose var-order returns the order of a vari-
able. Then, the apply function is de�ned recursively
as follows:

apply(bdd1,bdd2,operation) =
8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

� if var-order(bdd1's root) = var-order(bdd2's
root), create a node by performing the opera-
tion to get a 0-edge and 1-edge.

� if var-order(bdd1's root) > var-order(bdd2's
root), create a node with apply(bdd1's 0-edge,
bdd2, operation) for the 0-edge, and
apply(bdd1's 1-edge, bdd2, operation) for the
1-edge.

� otherwise,
apply(bdd2, bdd1, operation).

This de�nition can be explained as performing log-
ical operations on the Shannon expansion. Suppose
that the Shannon expansions of functions f and g are
as follows:

f = (:x ^ fjx=0) _ (x ^ fjx=1), and
g = (:x ^ gjx=0) _ (x ^ gjx=1).

The logical AND of f and g, f ^ g, is computed as

(:x ^ (fjx=0 ^ gjx=0)) _ (x ^ (fjx=1 ^ gjx=1)).

The computational cost of the logical AND is in the
order of the product of the numbers of nodes of both
BDDs. Most functions can be executed in the same
order. In addition, the apply function can be imple-
mented e�ciently by using a node hash table and a
result cache (hash table). Since the result cache stores
recent results of apply functions, redundant computa-
tions may be avoided if the cache hits. Since BDD is a
compact representation of boolean functions and many
usual boolean operations are performed e�ciently with
BDDs, BDD is commonly used in VLSI CAD systems.

DESIGN AND IMPLEMENTATION OF BMTMS

Table 2 Comparison of size of BDDs

Constraint ordering (2) (3) �

Variable ordering Best Best �

Maximum size of intermedi-

ate BDDs
101 31

Size of �nal BDD 24 30

� Both constraint and variable ordering are determined by

the CCVO heuristics.

The simple problem of the previous section can be
solved directly by creating the BDD for F by using
Equation (2). However, this BDD is an implicit repre-
sentation of solutions and all the paths from the root
of the BDD to the leaf of 1 should be enumerated to
get the explicit representations of solutions.

3.2 Issues in using BDD

Applying BDDs to TMS has four main issues:

1) Variable ordering

2) Constraint ordering

3) Encoding by logical functions

4) Compatibility with existing systems

The number of nodes of a BDD, or the size of BDD,
is determined by variable order. The minimum (best)
size of 2-level AND-OR circuit of n variables is in the
linear order of n, while the worst size is in the order of
2n. Therefore the optimal variable order under which
the size of BDD is minimum is very important. How-
ever, the computational complexity of �nding the opti-
mal variable order is NP-complete. This is well-known
problem and many heuristics to �nd a near-optimal
variable ordering is proposed.
However, constraint order is essential to avoid com-

binatorial explosions [Oku94]. In creating the BDD for
F , nine constraints, X1, ..., C23, are used. Consider
two constraint orderings below:

X1 ^X2 ^X3 ^ C1 ^ C2 ^ C3 ^ C12 ^ C13 ^ C23 (2)

X1 ^ C1 ^X2 ^ C2 ^ C12 ^X3 ^ C3 ^ C13 ^ C23 (3)

The size of BDDs created by (2) and (3) is shown in
Table 2. The size of intermediate BDDs is a�ected
by constraint order. The importance of constraint
ordering is discovered by applying BDDs to solve
combinatorial problems. Okuno proposed the CCVO
(Correlation-based Constraint and Variable Ordering)
heuristics to �nd a near-optimal constraint ordering.
The CCVO �rst calculates the correlation of variables
between constraints and then determines constraint
ordering. Variable ordering is determined the �rst
time a variable is used by constraint ordering.

data TMS node

inference justification

contradiction nogood

hypothesis assumption

Problem Solving System

ATMS/CMSInference
 Engine

BDD

SBDD
graph

in C, BEM, ...

BDD
in Common Lisp

SBDD
graph

in
te

rf
ac

e

A

BC

BDD-based Multiple-context TMS

FIGURE 4 Structure of BMTMS

Another problem of constraint ordering occurs in
applying BDDs to TMS, because constraints or jus-
ti�cations are given incrementally. Therefore, a new
method of determining constraint ordering is required.
The third issue is concerning the expressive power

of logical functions. In this paper, arithmetic boolean
functions are used [Min93a]. A select-one type con-
straint can be easily encoded by them. For example, a
constraint that variable x2 has one and only one value
of its domain, that is X2 ^ C2, can be encoded by

x2:c + x2:d + x2:e == 0 (4)

The �nal issue is that the interface between BDD
and TMS should be compatible with existing systems,
since many applications are developed and it costs very
expensive to re-implement them from scratch.

4 Design of BMTMS

In this section, the BDD-based Multiple-context

TMS (BMTMS), is proposed to cope with the above
issues. The whole system is depicted in Figure 4.
BMTMS provides three interfaces to various kinds of
existing systems:

1) interface to ATMS/CMS (
A in Figure 4),

2) interface to extensions of ATMS such as consumer
architecture [deK86b] (
B in Figure 4), and

3) interface to inference engine (
C in Figure 4).

These interfaces are only conceptual and thus
treated uniformly within the BMTMS, since it can ma-
nipulate any logical formulas.

4.1 Interface functions

The criteria of designing the primitive functions
is whether they can be implemented e�ciently with
BDDs.

1) BDD primitive functions:

bddand, bddor, bddnot, bddrstr0, bddrstr1, � � �

DESIGN AND IMPLEMENTATION OF BMTMS

Each function corresponds to a primitive opera-
tion of BDDs, and take BDDs as its arguments.
For example, (bddrstr0 BDDf x) computes a
BDD restricted to the case that x has value of 0,
that is, fj

x=0

.

2) Variable ordering:

variable-order speci�es the variable order.

3) Logical operations:

land, lor, lxor, imply, lnot, � � �

These functions accept any number of arguments.

4) Arithmetic logical operations:

l* (multiplication), l+ (addition), l/ (quotient),
l% (remainder), l- (subtraction), l<< (left-shift)
l== (equal to), ...

These operations are implemented by simulating
arithmetic logic unit (ALU) operations [Min93a].
Equation (4) is encoded by

(l== (l+ x2:c x2:d x2:e) 0).

5) BDD graph operations:

forall, exists, 1-path, � � �

forall is universal quanti�er and exists is ex-
istential quanti�er. Consider a function, f , is ex-
pressed in Shannon expansion,

f = (:x ^ fjx=0) _ (x ^ fjx=1):

Universal quanti�er 8xf is computed by

8xf = fjx=0 ^ fjx=1 :

Or (bddand (bddrstr0 f x) (bddrstr1 f x)).
Existential quanti�er 9xf is computed by

9xf = fjx=0 _ fjx=1 :

Or (bddor (bddrstr0 f x) (bddrstr1 f x)).

1-path enumerates all the paths from the root of
a BDD to the leaf of 1.

6) Output functions:

sop returns a sum of products, which is a set of
irredundant prime implicants. And pos returns
a product of sums, which is a set of irredundant
prime implicates.

7) User de�ned data types:

In addition to system-de�ned binary and inte-
ger data, the user can de�ne any data type by
defentity.

(defentity datatype

(slot1 slot2 � � �)
(:exclusive-p))

A slot can be accessed by a function datatype-

slotname. If :exclusive-p is speci�ed, elements
of a data de�ned by defentity hold exclusively.
An operation for a data type is de�ned as follows:

(defop (operation datatype)

argument-list . body)

Its name is datatype-operation.

8) Select function:

(choice-of p1 � � � pn) selects one element exclu-
sively from the set. This function can be encoded
by (lor p1 � � � pn) and (l== (l+ p1 � � � pn) 1).

9) Addition of Constraints

(add-constraint l C) adds a constraint C to
the logical formula l. This is conceptually the
same as (setq C (land C l)).

4.2 TMS Data Representation

Four kinds of nodes in TMS are encoded as follows:

1) Premise: the variable itself.

2) Contradiction: This node is used to represent
a nogood relation in ATMS. It is not needed in
the BMTMS, since a nogood relation can be rep-
resented by a logical formula.

3) Assumption: An assumption variable is intro-
duced to express environments in the BMTMS,
but is not discriminated from other nodes in
BDDs.

4) Normal node: a variable itself.

Constraints between nodes are represented straight-
forward as follows:

� Justi�cation, n1; � � � ; nk ! c, (c is an arbitrary
clause), is encoded by

(imply (land n1 � � � nk) c).

� nogoodfn1,� � �,nkg is encoded by

(lnot (land n1 � � � nk)).

� classfn1; :::; nkg, that selects one element from a
set of nodes is encoded as follows:

(choice-of n1 � � � nk).

4.3 TMS operations

Let � be a logical AND of all justi�cations and d be
a node. An environment E is expressed by an AND of
assumption variables, a1^ :::^ak. Implementations of
some main TMS operations are listed below:

1) Check whether all justi�cation are not con-
sistent.

If the BDD for � reduces to 0, all justi�cations
are not consistent.

2) Check whether node d is consistent with
environment E: node-consistent-with(d, E)

If the BDD for � ^ d ^ a1 ^ � � � ^ ak reduces to 0,
node d is not consistent with environment E.

DESIGN AND IMPLEMENTATION OF BMTMS

3) Compute the label of node d:
tms-node-label(d).

Let a1; a2; ::: be assumption variables, and
d1; d2; ::: be normal variables. The label of d is
computed as follows:

(1) Construct the BDD for � = (8d1; d2; :::(� �
d)). (2) Enumerate all prime implicates of � that
contain d. This enumeration is described in Sec-
tion 4.4. (3) Compute fX jX � d of a prime
implicateg, and this set is the label of d.

If the justi�cations are restricted to Horn clauses
(as in ATMS), the step (2) can be replaced with
pos(�), which runs much faster.

4) Check the status of node d: in-node?,
out-node?, true-node?, false-node?

Let a1; a2; ::: be assumption variables, and
d1; d2; ::: be normal variables. Construct the BDD
for (� � d). If the BDD reduces 1 or 0, the
node status of d is :TRUE and :FALSE, respectively.
Otherwise, construct the BDD for 8d1; d2; :::(� �
d). If the BDD is not 0, the node status of d
is :IN. Otherwise it is :OUT. (In addition, if the
node status of :d is :OUT, the node status of d is
:UNKNOWN.)

5) Force an assumption true or false.

These functions are implemented by

retract-assumption(ai or :ai), which are en-
coded as follows: (add-constraint ai or :ai �).

4.4 Prime implicates

In the research of boolean and switching functions,
a prime implicant which is in the form of product of
literals is usually used. (A literal is either a symbol or
a negated symbol). E�cient algorithms for obtaining
all prime implicants are proposed [CM92].
On the other hands, in truth maintenance, con-

straint satisfaction and logic programming, a prime

implicate which is in the form of sum of literals is usu-
ally used. Since a conjunctive normal form is dual to a
disjunctive normal form, a set of prime implicates can
be computed by performing the duality operation on
a set of prime implicants.
In other words, given a logical function f(x), let

�f(�x) be a function gotten by exchanging _ with ^ and
vice versa, and by replacing every literal with its nega-
tion, simultaneously. Then all the prime implicates for
�f(�x) are computed. Finally, exchanging ^ with _ and
replacing every literal with its negation simultaneously
computes every prime implicate.
The resulting set of prime implicates is enough for

computing the label of a node, although it is not com-
plete in the sense that any tautology such that (y_:y)
is a prime implicate,

A B C

FIGURE 5 Two-pipe system ([FdK93, p.466])

In the BMTMS, all the prime implicates are com-
puted directly from BDDs. The key point of the al-
gorithm is that a BDD can be interpreted as another
expansion on f .

f = (xk _ fjx
k
=0

) ^ (:xk _ fjx
k
=1

),

The prime implicates of the function f can be ob-
tained by combining the prime implicates of two sub-
functions fjx

k
=0

and fjx
k
=1

. The algorithm recursively
computes prime implicates. This algorithm is a dual
version of Coudert's [CM92]. Intermediate sets are
maintained by Zero-Suppressed BDDs [CMF93], which
are well suited for the set representation [Min93b].

4.5 Label enumeration

In the BMTMS, it has been shown that all TMS
operations concerning labels except tms-node-label

can be implemented without enumerating prime impli-
cates. Although such enumeration is needed at least
by abduction reasoning or dependency-directed search
[RdK87], we guess that it is not so often in other ap-
plications. If this is true, many applications can be
implemented by BDDs very e�ciently.

4.6 Constraint and variable ordering

The constraint ordering algorithm used in the
BMTMS is simpler than CCVO. The BMTMS does
not construct a BDD for class constraints immediately
when they are given to the system. Instead, adding
those to the system is delayed until some variable of
the class is used by some constraint. Variable ordering
is determined the �rst time when it is used by such a
constraint similar to that of CCVO.

5 APPLICATIONS OF BMTMS

In this section, some capabilities of the BMTMS are
demonstrated in qualitative simulation.
Consider the system that has two pipes, A and C,

which are connected by a joint, B (Fig.5). The pres-
sure and
ow in the system can be modeled by the
following qualitative equations [deK91]:

[dPA]� [dPB] = [dQAB];

[dPB]� [dPC] = [dQBC];

[dQAB] = [dQBC];

DESIGN AND IMPLEMENTATION OF BMTMS

where [dx] denotes the sign (+, 0, -) of dx
dt
.

First, the sign data type and its operations are de-
�ned as follows:

(defentity sign

(positive zero negative)

(:exclusive-p t))

(defop (- sign) (s)

(make-sign (sign-minus s)

(sign-zero s) (sign-plus s)))

(defop (+ sign) (s1 s2)

(let ((xp (sign-plus s1))

(x0 (sign-zero s1))

(xm (sign-minus s1))

(yp (sign-plus s2))

(y0 (sign-zero s2))

(ym (sign-minus s2)))

(make-sign

(bddnot

(lor (bddand x0 ym) (bddand x0 y0)

(bddand xm y0) (bddand xm ym)))

(bddnot

(lor (bddand xp yp) (bddand xp y0)

(bddand x0 yp) (bddand x0 ym)

(bddand xm y0) (bddand xm ym)))

(bddnot

(lor (bddand x0 yp) (bddand x0 y0)

(bddand xp yp) (bddand xp y0))))))

(defop (sign =0) (s) (sign-zero s))

Since the sign is de�ned with :exclusive-p, the op-
eration =0 is speci�ed quite simply instead of the fol-
lowing complicated de�nition:

(land (lnot (sign-plus s))

(sign-zero s)

(lnot (sign-minus s)))

The logical formula that express (x + y = 0) is de-
�ned as follows: (we use logical formula for economy
of space.)

(ym ^ :yp ^ :y0 ^ :xm ^ xp ^ :x0) _

(:ym ^ yp ^ :y0 ^ xm ^ :xp ^ :x0) _

(:ym ^ :yp ^ y0 ^ :xm ^ :xp ^ x0)

where indexes, p; 0;m, indicate three slots of the sign
data type, respectively.
Let C be a Lisp variable that holds the constraint

set. The above qualitative equations are encoded as
follows:

(setq Pa (make-sign) Pb (make-sign)

Pc (make-sign) Qab (make-sign)

Qbc (make-sign))

(add-constraint

(sign-= (sign-- Pa Pb) Qab) C)

(add-constraint

(sign-= (sign-- Pb Pc) Qbc) C)

(add-constraint

(sign-= Qab Qbc) C)

Now, consider the situation that the pressure at A
is increasing and one at C is not changing. This fact
is encoded as follow:

(setq Constraint

(land Constraint

(sign-plus Pa)

(sign-zero Pc)))

(add-constraint Constraint C).

Finally, the result shows that the BDDs for
(imply C (sign-plus Qab)), and
(imply C (sign-plus Qbc))

reduce to 1. This means that both [dQAB] and [dQBC]
are +, that is, the pressures at the interfaces between A
and B, and between B and C are increasing. Note that
this computation does not need enumerating prime im-
plicates.
On the other hand, in QPE, every qualitative equa-

tion is expanded to a set of clausal form and all the pro-
hibited combination are enumerated [deK91]. Then,
all the prime implicates are computed. The �nal step is
to apply the BCP to the set of all the prime implicates,
which computes the labels of [dQAB] and [dQBC].

6 EVALUATION OF BMTMS

The current BMTMS system is implemented in Lisp
and has two BDD packages (see Figure 4). One BDD
package is implemented in C, which is called Boolean
Expression Manipulator, BEM-II [Min93a]. This im-
plementation of the BMTMS is referred to BMTMS

with BDD in C. Another BDD package is written in
Lisp and this implementation of the BMTMS is re-
ferred to BMTMS with BDD in Lisp. The timing data
is measured on the SPARCStation10 with 128 MBytes
of main memory.

6.1 Evaluating interface
A

N-Queens problem Two implementations of the
BMTMS are compared with the ATMS which is im-
plemented in Lisp. Two kinds of N-Queen problem
programs by ATMS are used; one is by label update,
and the other is by interpretation construction. Both
programs computes column by column. The timing
results of N-Queen problem programs are shown in
Figure 6. The BMTMS with BDD in Lisp is much

DESIGN AND IMPLEMENTATION OF BMTMS

� � BMTMS with BDD in C
� � BMTMS with BDD in Lisp
� � Label Update with ATMS
� � Interpretation Construction with ATMS

 Madre and Coudert [IJCAI-91]

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|0.0

|
|

|
||

||
||0.1

|
|

|
||

||
||1.0

|
|

|
||

||
||10.0

|
|

|
||

||
||100.0

|
|

|
||

||
||1000.0

|
|

|
||

||
||10000.0

|
|

|

 Number of Queens

 T
im

e
(s

ec
)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

FIGURE 6 N-Queen problem results

slower than the ATMS. The reasons are twofold. (1)
The algorithm of N-Queens is di�erent. If the most
fair algorithm by ATMS, which creates only one goal,
installs all the justi�cations that justify the goal, and
then computes labels, is used, it runs much slower
than the BMTMS with BDD in Lisp and can get so-
lutions only up to 6-Queen problem [Oku90]. (2) The
BDD is not considered suitable for Lisp due to Lisp's
memory management. Usually e�cient implementa-
tions of BDD use only main memory, while such mem-
ory management is di�cult in Lisp systems [Bry92;
MIY91]. The BMTMS with BDD in C shows a good
performance for large n.

Minimal cover This benchmark was used by Madre
and Coudert [MC91]. The timing results of minimal
cover are shown in Figure 7. The �gure shows that the
overheads of the BMTMS with BDD in Lisp exceed
those of the BMTMS with BDD in C. This is caused
by the overheads of Lisp runtime system.

6.2 Evaluating interface
B : ATMS trace �le

We use an ATMS trace �le generated by consumer
architecture [deK86b], for which de Kleer's ATMS
could not compute the labels. Both BMTMS im-
plementations succeed in constructing BDDs by the
constraint ordering algorithm. However, they fail in
constructing BDDs due to combinatorial explosions,
when the constraint and variable ordering mechanism
is not used. The ordering algorithm is very simple, but
proved e�ective.

� � BMTMS with BDD in C
� � BMTMS with BDD in Lisp

 Madre and Coudert [IJCAI-91]

| |
1

| | | | | | | | |
10

| | | | | | | | |
100

|0.01

|
|

|
|

|
|

||
|0.10

|
|

|
|

|
|

||
|1.00

|
|

|
|

|
|

||
|10.00

|
|

|
|

|
|

||
|100.00

|
|

 Number of supporting environments

 T
im

e
(s

ec
)

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

FIGURE 7 Minimal Cover results

6.3 Evaluating interface
C : Qualitative
simulation

As described in the previous section, qualitative sim-
ulation of the two pipe system can be e�ectively com-
puted by the BMTMS without enumerating all the
prime implicates. However, this is a preliminary result
and full assessment should be done by implementing
the full set of QPE by the BMTMS.

7 CONCLUSIONS

In this paper, a new multiple-context truth mainte-
nance system called BMTMS is proposed and its de-
sign and implementation is presented. The key idea
of the BMTMS is to use BDDs to avoid enumerating
prime implicates in manipulating general clauses. The
two issues in applying BDDs to multiple-context TMSs
are pointed out; variable ordering, and constraint or-
dering. To cope with these issues, the BMTMS sched-
ules the constraint ordering by considering the depen-
dency of variables and justi�cations (or constraints).
The BMTMS also provides three level interface to ex-
isting problem solving and TMS systems so that BDD
can be used in \plug-and-play" manner. Since the logi-
cal relations are stored in BDDs and most TMS opera-
tions can be performed without enumerating all prime
implicates, the BMTMS runs e�ciently. The BMTMS
enumerates all prime implicates directly from BDDs.
In addition, the capability of de�ning a data type and
its operations makes it easy to implement applications
with the BMTMS.
Future work includes implementation of the full

QPE system with the BMTMS to demonstrate it

DESIGN AND IMPLEMENTATION OF BMTMS

power and open a new load to intelligent systems.
Applying the BMTMS to various sophisticated expert
systems is also an interesting area.

Acknowledgments

The authors thank Mr. Yuji Kukimoto of UCB, Dr.
Shin'ichi Minato of NTT LSI Laboratories, and Mr.
Hideki Isozaki of NTT Basic Research Laboratories
for their discussions. The �rst author also thanks Dr.
Ken'ichiro Ishii and Dr. Norihiro Hagita of NTT Basic
Research Laboratories for their supports.

References

[Ake78] S.B., Akers. Binary Decision Diagrams. IEEE
Transactions on Computer, Vol. C-27, No. 6,
pages 509{516, 1978.

[Bry86] R.E. Bryant. Graph-based algorithm for
Boolean function manipulation. IEEE Trans-

actions on Computer, Vol. C-35, No. 5, pages
677{691, 1986.

[Bry92] R.E. Bryant. Symbolic Boolean Manipu-
lations with Ordered Binary Decision Dia-
grams. Computing Surveys, Vol. 24, No. 3,
pages 293{318, ACM, 1992.

[CM92] O. Coudert, and J.C. Madre. Implicit and In-
cremental Computation of Primes and Essen-
tial Primes of Boolean Functions. In Proceed-

ings of the 29th Design Automation Confer-

ence (DAC), pages 36{39, ACM/IEEE, 1992.

[CMF93] O. Coudert, J.C. Madre, and H. Fraisse.
A New Viewpoint on Two-Level Logic Mini-
mization. In Proceedings of the 30th Design

Automation Conference (DAC), pages 625{
630, ACM/IEEE, 1993.

[deK86a] J. de Kleer. An Assumption-based TMS. Ar-
ti�cial Intelligence, 28:127-162, 1986.

[deK86b] J. de Kleer. Extending the ATMS. Arti�cial
Intelligence, 28:163-196, 1986.

[deK89] J. de Kleer. A Comparison of ATMS and CSP
Techniques. In Proceedings of the Eleventh In-
ternatioal Joint Conference on Arti�cial In-

telligence (IJCAI), pages 290{296, 1989.

[deK91] J. de Kleer. Compiling Devices: Locality in
a TMS. In Faltings, B. and Strauss, P. (eds):
Recent Advances in Qualitative Physics, MIT
Press, 1991.

[Dow84] W.F. Dowling and J.H. Gallier. Linear time
algorithms for testing the satis�ability of

propositional horn formulas. Journal of Logic
Programming, vol.3, pages 267{284, 1984.

[FdK93] K. Forbus, and J. de Kleer. Building Problem
Solvers, MIT Press, 1993.

[LCM92] B. Lin, O. Coudert, and J.C. Madre. Sym-
bolic prime generation for muliple-valued
functions. In Proceedings of the 29th Design

Automation Conference (DAC), paages 40{
44, ACM/IEEE, 1992.

[MC91] J.C. Madre, and O. Coudert. A logically com-
plete reasoning maintenance system. In Proc.

of the Twelfth Internatioal Joint Conference

on Arti�cial Intelligence (IJCAI), pages 294{
299, 1991.

[MIY91] S. Minato, N. Ishiura, and Y. Yajima. Shared
Binary Decision Diagram with Attributed
Edges for E�cient Boolean Function Manip-
ulation. In Proceedings of the 27th Design

Automation Conference (DAC), pages 52{57,
IEEE/ACM, 1990.

[Min93a] S. Minato. BEM-II: An arithmetic Boolean
expression manipulator using BDDs. IEICE

Transactions of Fundamentals, Vol. E76-A,
No. 10, pages 1721{1729, 1993.

[Min93b] S. Minato. Zero-Suppressed BDDs for
Set Manipulation in Combinatorial Prob-
lems. In Proceedings of the 30th Design Au-

tomation Conference (DAC), pages 272{277,
ACM/IEEE, 1993.

[Oku90] H.G. Okuno. AMI: A New Implementa-
tion of ATMS and its Parallel Processing (in
Japanese). Journal of Japanese Society for

Arti�cial Intelligence, Vol.5, No.3, pages 333{
342, 1990.

[Oku94] H.G. Okuno. Reducing Combinatorial Explo-
sions in Solving Search-Type Combinatorial
Problems with Binary Decision Diagrams (in
Japanese). Transactions of Information Pro-

cessing Society of Japan Vol.35, No.5, pages
739{753, 1994.

[OST96] H.G. Okuno, O. Shimokuni, and H. Tanaka.
Binary Decision Diagram based Multipli-
Context Truth Maintenance System BMTMS
(in Japanese). Journal of Japanese Society

for Arti�cial Intelligence, Vol.10, No.2, 1996.

[RdK87] R. Reiter, and J. de Kleer. Foundations of
Assumption-Based Truth Maintenance Sys-
tem. In Proceedings of National Conference

on Arti�cial Intelligence (AAAI), pages 183{
188, 1987.

