
Secure Software Development through Coding Conventions and Frameworks

Takao Okubo, Hidehiko Tanaka
Fujitsu Laboratories ltd., Institute of Information Security

okubo@jp.fujitsu.com, tanaka@iisec.ac.jp

Abstract

It is difficult to apply existing software development

methods to security concerns. Using software for
security testing purposes, in particular, is hard to do.
The fact that there is a restriction on the
implementation of software affects the ease with which
security can be tested. In this paper we propose a
decision process of coding conventions for security,
mindful of testing security. Then, we apply our method
to preventing injection attacks on Web application
programs, and establish some coding conventions that
can be used against injection attacks and cross site
scripting. We also discuss security frameworks, which
are also useful as conventions.

1. Introduction

Software engineering technology has been
researched for decades, and is steadily improving.
Large numbers of development methods, such as a
waterfall model [1], UML [2] and various testing tools,
have been developed, and some of these are already
being applied to actual development fields. These
methods may not be perfect, but at least in the
development of large systems, there seems to be a
consensus that software that has been built and tested
using some methods or tools is deemed to be of
sufficient quality. However, software engineering for
security purposes has not yet reached such a level.
Almost every day SecurityFocus [3] reports on
vulnerabilities with some software or systems. And
incidents such as information leaks that have occurred
because of software vulnerabilities often make
headline news. Of course one of the reasons why these
problems occur is that not everyone is well aware of
such vulnerabilities. But even if software developers
notice such vulnerabilities, it is still not easy to
eliminate the vulnerabilities completely. The
developers may not know how to build software that is

invulnerable. The reason for these failures is that the
uniqueness of security makes it difficult to directly
apply existing development methods. With regard to
the design phase of software, most of the security
specifications are not functional, so it is not easy to
describe such specifications with conventional design
models like UMLF

1
F. The same applies to testing. Test

planners have to care about the side effects [5] of
vulnerabilities, unlike usual software bugs [6].
Black box testing is said to currently be the most

effective security testing method [7], [8]. Equivalence
partitioning and boundary value analysis [9], [10] are
the usual software black box testing methods that are
used provided there is a sufficient amount of testing
data with enough coverage. But these methods are not
useful for most types of security testing because it is
difficult to prepare testing data with enough coverage.
There are some known programming tips for

avoiding vulnerabilities [11]. “Sanitizing” is one way
to prevent attacks such as XSS. Tips are useful as a
guide for implementing some security functions. But
special care needs to be taken to avoid assuming that
such tips assure security, unless they are managed and
have been properly tested. There is a need for
collectively exhaustive and easily testable ways to
ensure security.
ISO/IEC 15408, also known as Common Criteria

(CC) [12] is a standard for building secure software. It
provides the evaluation process of implementation and
testing of software products, as a process of
specification. However, CC does not give practical
implementation and testing methods for each software
product.
Existing security technologies and research are not

enough to control software security through the
software’s development life cycle. Our goal is to find
such control methods. Our approach is to use a secure
software engineering, and we started this approach by

1 UMLsec tries to describe security with UML [4].

trying to apply current software engineering to security
concerns.

This paper focuses on the implementation phase of
software development life cycle. We use two current
software engineering methods to achieve our goal:
coding conventions and software frameworks. At first,
we propose a coding convention decision process for
security, considering testability. Next, we apply our
process to decide the proper coding conventions to
prevent three types of injection attacks—SQL injection,
OS command injection and XSSF

2
F—all well-known

security threats to Web applications. Then, we discuss
what kind of framework can be used to efficiently
prevent such attacks, and propose some new security
frameworks.

2. Coding Conventions and Frameworks
for Security

2.1. Effect of Coding Conventions on Security

Coding conventions are some rules for writing
program source codes [14]. They have been used in the
programming phase of software development. Most of
the currently used conventions are about coding style
(indentation, naming, etc.) and they mainly aim to
make software code readable and maintainable.

However, coding conventions have hardly been
adopted in an effective way in the software
development field, with regard to security. Coding
conventions are also considered to be useful for
security, but they should play a different role from the
existing conventions.

We have proposed a security cost estimate method
in the early phase of software development, using
limitation of implementation and testing methods
related to implementation [15]. As mentioned in the
introduction, it is difficult to test security for two
reasons:
1) With black box testing, the way the item works is
hidden from the testers. So the test case should have
sufficient variation considering the various kinds the
implementation patterns. It makes testing complicated.
2) Black-box testing tools, in particular, have a high
false positive rate, so human knowledge and input
from security experts are required to remove false
positives from the test results.

2 XSS is not usually categorized as an injection
attack[13], but this paper treats XSS as a kind of
injection attack because it shares some common
characteristics with that kind of attack. See 5.3.

We will focus on limiting the way testing is
implemented, in an attempt to solve these problems.
1) By limiting the implementation, we only need to
consider whether the testing implementation method is
allowed.
2) If the rule for limiting testing is adopted, those
implementation methods that are potentially false
positive can be treated as a violation of the rule. This
makes testing easier.
Therefore, it is just conceivable that deciding on the

proper coding conventions makes testing easier, and
makes it possible to assure a certain level of security.
Coding conventions for security have the following
two characteristics:
・ They aim to achieve a good level of security,

rather than to make software code maintainable or
readable.

・ Therefore, they require strong restrictions, which
might interfere not only with flexible coding but
also with some functional availability.

The latter are supposed to conflict with the
feasibility of other software requirements. So we need
to take care when deciding on conventions for security.
2.2. Effect of Frameworks on Security

A framework is a structure that supports the
development of software [16]. Part of it is provided as
a set of programs and libraries. It is a common
technology as coding conventions. Numbers of
framework for various platforms have been released
[17]. We think frameworks are also useful for security:
・ Frameworks offer developers with libraries of

security functions so that the developers do not
need to program such functions by themselves.

・ Frameworks can put restrictions on the way
software is developed, just like coding
conventions.

Some of the existing frameworks provide partial
security functions. For example, Struts [18], a Java
framework for Web application, has a <bean:write>
tag which outputs the JavaBean value and avoids using
the dangerous characters that are factor of XSS.
However, their effect on security is only partial. Struts
assure secure output by means of this <bean:write> tag,
but it does not prohibit other custom tags from being
used, or EL expression of JSP. In the same way as with
coding conventions, if the restrictions placed on
software development are too strong and other
functions are limited this will make the frameworks
useless. A proper degree of restriction is needed for
security frameworks.

3. A Coding Convention Decision Process

Since we regard the verification of security as
important, we prioritize those coding conventions that
can be tested more easily. The decision process of
conventions for every security requirement consists of
two parts: a system-independent decision and a
system-dependent one. Figure 1. shows the flow of the
process. In the first part 3.1., several coding
convention option sets for a security requirement are
decided by some people (possibly security experts).
The option sets are general (system-independent) and
are reused to give choices to each system development
project. In the second part 3.2., a manager of each
development project chooses one or more conventions
that fit the target system.
3.1. Deciding General Convention Options

This part is to decide on a general set of convention
options so as to enable at least one of them to be
adopted in various application systems. Its detailed
procedure is as follows:
(1) Defining the Security Requirement:

A Security requirement is defined here. For example,
“The program must prevent SQL injection.”

(2) Defining the Security Specification
 A security specification that fulfills the

requirement is defined. It is not necessary to worry too
much about how the specification is implemented.
Instead, the specification should be defined precisely
so as to ensure the requirement is achieved.
(3) Extracting Implementation Patterns

Implementations of security specification, which are
the candidate conventions, are extracted. It is
preferable to have a large number of implementation
patterns. At first the most faithful implementation of
the specification is extracted. Next, other
implementations, which do not aim at the original
specifications directly, but achieve the specification
consequentially, should be chosen.
(4) Selection/Making order of Precedence

Convention options are finally fixed here. Extracted
implementation patterns should be selected, and
ordered using the following valuation basis:
・ If it is to enable to test compliance of the

convention?
・ How high is the Accuracy of its testing?
・ How low is the possibility of conflict with other

software functions?

Figure 1. Process flow.

3.2. Choosing Conventions for each system
To select convention(s) from defined options for

each development project/system. This process should
be available to persons with insufficient security
knowledge. The persons should examine each
convention option with the following viewpoints:
・ How low is the possibility of conflict with other

software functions?
・ How low is the cost for testing the convention?

4. Coding Conventions against Injection
Attacks

We applied the proposed decision process to some
actual security requirements, and tried to decide on the
generalized coding convention options. This paper
presents the application of coding conventions to the
prevention of injection attacks such as SQL injection,
OS command injection or XSS. We have assumed that
there is a common coding convention set for all kinds
of injection attacks, since they are based upon the same
mechanism. The evaluation by applying the convention
set to each kind of attack will be presented in section 5.
(1) Defining the Requirements

An injection attack is executed by injecting

unanticipated data as an input to the target program.
The target program sends a command to another
external program, such as a database management
system, OS or Web browser. The command includes
user input data usually as its parameters. If the
command is changed by the input data to an
unanticipated or harmful one that causes some
detrimental effect such as information leakage or
tampering, the program is vulnerable to an injection
attack. Therefore the security requirement can be
defined as:

“The program is required not to generate the
unanticipated command even with any user input
data.”
(2) Defining the Specification

Injection attacks can be classified into two types.
Type A): Attacks using the input data that change the
command syntax. Figure 2. shows a typical example of
this type. SQL syntax can be changed by the input “’
OR A=A”, so an attacker can bypass user
authentication without obtaining the password
Type B): Attacks using the input only act as
unanticipated parameter values, and do not change the
command syntax. Input of unanticipated database table
name is an example of this type.

TFigure T 2. An example of Type A injection.

In this paper, we mainly discuss the injection of
Type A). Because most of the known injection attacks
belong to Type A), and a solution of Type B) problem
can be treated as the current software specification.

Then, the specification can be defined as the
following:

“The syntactical structure of the command should
not be changed by the user input.”
(3) Extracting Implementation Patterns

We have examined the specification defined above,
and devised the following patterns of restriction
policy:
(I) Distinguish dynamic elements of the

command such as parameters, variables, from
static elements like reserved words. When
constructing a command string, It must be
ensured that the static elements do not involve
data originally from user input. And before
the command is constructed, dynamic
elements of the command must be sanitized.
There are several methods to sanitize the
input .

(II) Be sure that the command string must be
composed of only the fixed values like
constants.

(III) Prohibit the functions/methods that call other
programs by forwarding the command
without sanitizing.

Concrete implementation patterns based on above
policies vary depending on the programming language.
We show the coding conventions with Java as an
example. JDBC provides two types of classes calling
SQL databases. One is java.sql.PrepaedStatement (and
its subclass, CallableStatement) [19], and the other is
java.sql.Statement. PreparedStatement class accepts
SQL query strings such as the following:

SELECT * FROM utable WRERE id=? AND pass=?

PreparedStatement does not allow dynamic change of

SQL queries, except the parameters that are assigned to
the position where the character “?” is placed. It
distinguishes parameters from others, and sanitizes the
parameter strings. So, with regard to
PreparedStatement, we only have to take care of the
strings except parameters.

Table 1. shows the candidate Java coding
conventions (implementation patterns) to achieve the
specification.
(4) Selecting/Making order of Precedence:

The extracted candidate conventions are examined
for the feasibility/accuracy of testing and less conflict
with other functions.
Policy (I), (II) and Java convention (a), (b), (c)

require dataflow analysis for testing. Policy 3) and (d),
(e) require syntax analysis. Generally, dataflow
analysis is feasible, but its accuracy is lower than
syntax analysis. The order by probability of conflict is
(III) > (II) > (I) and (e) > (d) > (c) > (b) > (a).
Therefore we recommend the Java convention in the
order of (d) > (e) > (a) > (c). We cannot determine the
recommendation order of (b) because its accuracy
depends on the validity of the sanitizing code.

5. Evaluation and Discussion of
Frameworks

In this section we evaluate the coding convention
options decided in section 3. First, we verify that the
conventions are feasible for practical application
programs. Then, we consider another approach in
terms of frameworks.

5.1. SQL Injection:
5.1.1. Evaluation of Conventions
We have verified the feasibility of the proposed

conventions with the open source program codes found
by Bugle [20]. Bugle can find open source files that
are suspected of containing various bugs, including

Table 1.

Convention Candidates against Injection
Attacks

No. Convention Candidates
(a) Prohibit using the value originally from

user input for parameters of (*) methods
that set the command string.

(b) Be sure to sanitize the parameters of (*)
methods, if the methods do not sanitize
them.

(c) Be sure that the parameters of (*)
methods use the values originally from
constants or literal strings only.

(d) Be sure that the parameters of (*)
methods use the constants or literal
strings only.

(e) Prohibit the use of (*) methods.
(*) for example, methods setting SQL statements are:
java.sql.Statement#executeXXX(): first argument,
java.sql.Statement#addBatch(): first argument,
java.sql.Connection#prepareStatement(): first argument,
java.sql.Connection#prepareCall(): first argument.

SQL injection. We have examined 185 files. In about
84% of the files, the vulnerable code calling the SQL
with Statement class, can be written with a fixed string,
or with a parameterized PreparedStatement. For these
programs Java convention (d) (Table 1.) can be
adopted. In addition, 8% of the files are programs that
act as SQL Web client. These programs permit
arbitrary SQL invocation, which cannot exclude the
SQL injection by nature. Therefore we can disregard
this type. In the rest of the files, the SQL command
changes dynamically by the number of loop iterations
or conditional branch. TFigure T 3. shows an example.

This kind of coding appears in programs that have to
build complicated search conditions. In this case,
PreparedStatement with fixed strings cannot be used.
So project managers of such systems have to adopt
convention (b) or (c), for which testing is less accurate
than for (d).

5.1.2Discussion of Frameworks

PreparedStatement class in Java partly meets the
requirement for a security framework. It offers the
sanitizing library to programmers, and it also restricts
the SQL query as the form of parameterized prepared
statement. .Net, Perl and some other programming
languages also have the same prepared statement
mechanism as PreparedStatement. However, some
application programs cannot use the fixed prepared
statement if SQL command strings have to be changed
dynamically (such as shown in Figure 3.). In order to
make such programs secure, programmers have to
code sanitizing routines by themselves, or use more
complicated and inaccurate testing.

If a framework is able to provide automatic
sanitizing for all kinds of commands that the
specification requires, it will be an ideal security
framework. So we propose the classes shown in Figure
4. as library classes for a security framework. The
classes are written with Java 5, and they can be

migrated to other languages.
PreparedStatement is usually a fixed string, but

SecureStatement (Figure 4.(a)) constructs a SQL query
string of PreparedStatement at each query execution.
Programmers add the string using the add() method,
which distinguishes parameters from fixed values
internally. Even if an attacker inputs data like “‘ OR
A=A”, the string is not defined as a fixed value, so it is
treated as a parameter, and then sanitized inside
PreparedStatement class. ReservedSQL class (Figure
4.(b)) is used to identify the reserved words.
Programmers may define the fixed parameters, such as
calling a table name “enum”, like ReservedSQL. It is
also useful for preventing Type B injection.

With these classes, Figure 3. code can be rewritten
as shown in Figure 5. If the user inputs three pairs of
keys and values, the following prepared statement is
created dynamically.

SELECT * FROM table=xxtbl WHERE id=aaa AND
key1=? AND key2=? AND key3=?

In this case SQL injection is protected by the

Statement stmnt;
Srting query = "SELECT *
FROM table=xxtbl
WHERE id="
 + request.getParameter("ID");
for int (i=1; i< keys.length; i++) {
query+= " AND "keys[i] + "=" + values[i];
}
stmnt.executeQuery(query);
}

Figure 3. An example of code in which the

SQL command changes dynamically.

import java.sql.*
import java.util.*;

public class SecureStatement {
 static final PLACE_HOLDER "?";
 private StringBuffer stmnt;
 private ArrayList params;
 private Connector conn;

 SecureStatement(Connector conn) {
 stmnt = new StringBuffer();
 params = new ArrayList();
 }

 public void add(Object arg) {
 if(arg instanceof Enum) {
 stmnt.append(arg.toString());
 } else if(arg instanceof String) {
 params.add(arg);
 stmnt.append(PLACE_HOLDER);
 } else {
 throw new IllegalTypeException();
 }
 }

 public void execute() {
 PreparedStatement pstmnt =
conn.prepareStatement(stmnt);
 for (int i = 0; i < params.size(); i++) {
 setObject(params.get(i));
 }
 pstmnt.executeQuery();
 }
}

Fig. 4. (a) SecureStatement class.

prepared statement mechanism.
Next, consider the case in which a programmer adds

a fixed element of SQL that is not defined as “enum”.
The added value is treated as the parameter inside
SecureStatement class, so a SQL syntax error may
occur when building a prepared statement. Therefore
this case is not a cause for SQL injection vulnerability.

The coding convention (d) will be enough for all
programs, if these classes are included into the
framework, because even if a dynamic changing query
is needed, programmers can construct the query as a
fixed string with Figure 4. classes. All other SQL
query calling classes can be replaced with
SecureStatement class. So the coding conventions can
be simpler, such as “Use SecureStatement class only”,
which also makes the testing easier.

In other programming languages that have a
parameterized prepared statement mechanism, libraries
such as Figure 4. classes are useful for security
frameworks. In other languages without prepared
statement mechanisms or sanitizing, such mechanisms
must also be implemented in the security framework as
Figure 4. classes.
5.1.3. Comparison with Other Measures

In this section we compare our convention and
framework solution with other measures against SQL
injection.
a) Advice or Convention to Use a Prepared
Statement

This advice is a popular measure for preventing
SQL injection. As mentioned above, a prepared
statement provides a parameterized structure and a
sanitizing function, which are useful for preventing
attacks. However, this measure contains the following
two problems:
・ A prepared statement cannot be applied to a

program that requires dynamically changing SQL
query (see 5.1.2.).

・ If a programmer writes a program with improper
usage of a prepared statement string, the program
becomes vulnerable to SQL injection. An
example of code containing such improper usage
is shown in Figure 6. In Figure 6, the prepared
statement string is composed of user input data
that are not treated as parameters and thus not
sanitized.

Our conventions and frameworks provide solutions
for the problems above. For the first problem, Figure 4
classes enables programmers to write a dynamically
changing SQL query execution program with
PreparedStatement. For the second, coding convention
(d) and Figure 4 classes limit each component part of
the query string to a fixed value. So, coding like that
shown in Figure 6. can be detected as an error with our
frameworks.
b) Advice or Convention to Validate and Sanitize
All the User Input Data

This advice is also popular as a). However with the
viewpoint of testing, there are two problems.
・ Dataflow analysis is needed to confirm the

adherence of the convention.
・ The safety-level of this measure depends not only

public final enum ReservedSQL {
 SELECT("SELECT"),
 INSERT("INSERT"),
 UPDATE("UPDATE"),
 DELETE("DELETE"),
 CREATE("CREARE"),
 DROP("DROP"),
 WHERE("WHERE"),
 AND("AND"),
 OR("OR"),
 BLANK(" ");
 QUOTE("\'");
.....

 private String name;
 private ReservedSQL (String name) {
 this.name = name;
 }

 public String toString() {
 return name;
 }
}

Fig. 4. (b) ReservedSQL class.

SecureStatement stmnt;

// fixed part of the SQL query
stmnt.add(myConstant.FIXEDSQL);
stmnt.add(request.getParameter(“ID”))

for int (i=1; i< keys.length; i++) {
stmnt.add(ReservedSQL.BLANK);
stmnt.add(ReservedSQL.AND);
stmnt.add(ReservedSQL.BLANK);
stmnt.add(keys[i]);
stmnt.add(ReservedSQL.EQUAL);
stmnt.add(values[i]);
}
stmnt.execute();
}

Figure 5. The rewritten code of Figure 3.
with Figure 4. classes.

on making sure all user input data are validated
and sanitized, but also on how they are validated
and sanitized. It requires the programmers’
precise knowledge of inappropriate characters.

For the first problem, the proposed convention set
offers convention options that can be tested with the
analysis easier than dataflow analysis (e.g. (d)). For the
second, the Fig. 4 classes render the programmers’
code of sanitizing unnecessary, since the framework
does all of it. Even if neither the programming
language nor the libraries have a sanitizing function,
we propose that the security framework must provide
the function.

5.2. OS Command Injection
5.2.1. Evaluation of Conventions
If there are command calling methods or functions

that have parameterized mechanism such as a prepared
statement, the convention (d) (Table 1.) can be adopted.
Unfortunately, no such methods or functions are
provided, so we have to adopt other conventions
without any security frameworks.
Java is rather more secure than C, C++, PHP and Perl

where some functions can execute the parameter string
as a shell script. A Java method for execution of
external OS command, Runtime#exec() [22] does not
call a shell program. Therefore, in Java the typical OS
command injection using shell script such as shown in
Figure 7. does not occurF

3
F Furthermore, Java provides

Runtime#exec() which uses the string array as its
argument. Its mechanism prevents some kinds of
injections to some degree, but does not prevent them
completely because Runtime#exec() with string array
does not distinguish between parameters and static
elements.

5.2.2. Discussion of Frameworks

A mechanism that distinguishes parameters from
static elements, such as a prepared statements, is
needed for a security framework, if the program passes
some dynamic data to an external program. The ideal
security framework is supposed to analyze the syntax
of input data, identify and sanitize parameters like
SecureStatement. However, in order to achieve this, it
needs to analyze not only the syntax of all the OS
commands but also that of all the user commands, and
this is not realistic.

If project managers can limit the kinds of commands

3 If you call “/bin/sh”, “-exec” you can execute the
shell script including pipe and redirection.

that are supposed to be called by the program, the
reserved words that are allowed to be used can be
defined as constants like ReservedSQL.
5.2.3. Comparison with Other Measures

In the same way as with SQL injection, advice or
conventions to validate and sanitize all the user input
data is a popular measure for OS command injection.
So if the security framework mentioned above is
achieved, out conventions and frameworks have an
advantage of testability and flexibility over the current
advice.
5.3. XSS
5.3.1 Evaluation of Conventions
XSS has the same characteristics as other injection

attacks. All we need to do is consider the HTML
structure of the response, regardless of the SQL
command/OS command.
The basic idea of the proposed conventions is also

useful for XSS, but we have to be careful for sanitizing,
since the manner of sanitizing varies depending on the
context. If the target data are output in the text area
like body text, you should avoid using the three
characters. “<”, “>”, and “&”. If they are output as tag

String query;
query = “SELECT * FROM utable WHERE user=“;
query += request.getParameter(“ID”);
query += “ AND password=“
query+= request.getParameter(“Password”);

connector.prepareStatement(query);
query.execute();

Fig. 6. Improper usage of
PreparedStatement.

Figure 7. An example of OS command
injection.

attribute values of HTML, you should avoid using “<”,
“>”, “&”, and “, ”. If they are URL attributes, the data
must be URL-formed, and so on.
The right output method/function must be used

according to the context.
5.3.2. Discussion of Frameworks

If there is no framework, the solution is rather
simpler, because programmers can manipulate the
entire construction of response HTML. A secure
framework is required to prepare a method or function
for each output context. Table 2. shows an example of
the Java output methods.
5.3.3. Comparison with Other Measures

Some frameworks like Struts not only make Web
application development easier, but also provide
sanitizing functions. However such existing
frameworks do not meet our requirements for security
framework. Contrary to our expectations, they make
the situation more complicated. Frameworks like Struts
prepare the response JavaServer Pages (JSP) file, so a
programmer cannot know directly which part of the
JSP file they are trying to output as data. Syntax
analysis of JSP is necessary to know the context of the
writing data.

JSP has some other problems:
--Expression Language (EL) directly outputs the

value. It is advisable to prohibit the use of EL.
--It is advisable to prohibit the use of scriptlets, for

the same reason as EL.
--It is probably advisable to avoid using custom tags

until it has been confirmed safe to do so..

6. Conclusion

It has been claimed that coding conventions are
important for security, but this area has hardly been
discussed. In this paper, we showed such conventions

are useful for secure software development, and
proposed a convention decision process considering
testability and functional conflicts. Then, we clarified
general coding convention options for injection attacks
based on the proposed decision process. Next, we
evaluated the feasibility of the coding conventions.
Because of their common characteristics, the proposed
convention options are basically useful, but they must
be customized to a certain extent for each type of
attack. We also proposed the desired security functions
of a framework that complements the flaws of the
conventions. The proposed secure frameworks are not
only programming tips like others. Security
frameworks have a close connection with security
coding conventions. They complement each other. So
when project managers have to make programs secure
they have to consider both of them. Furthermore, the
security framework and security conventions are useful
not only for implementing security functions, but also
for making testing easier.

We have noticed that the existing frameworks,
which provide partial security functions do not always
contribute to a good level of security. The reason is
that the existing framework design (which is not
specialized for security) lacks the concept of testability.

Developing conventions set for other security
requirements, and the empirical evaluation of the
proposed coding conventions and frameworks remain
as future tasks.

References

[1] W. Royce, “Managing the Development of Large
Software Systems”, Proceedings of the IEEE WESCON,
IEEE Press & Proceedings of the Ninth International
Conference on Software Engineering, IEEE Press, 1970.
[2] Unified Modeling Language, Object Management Group,
http://www.uml.org/.
[3] (2007 December 17).SecurityFocus [Online]. Available:
http://securityfocus.org/

Table 2.
HTML Output Methods with Java (part)

Method function Argument Sanitizing rule
outputText() output text String text escape < > &
outputURL output url attribute String tagname

String url
tagname should be a fixed value
 url should be a fixed value

outputAttribute() output attribute String tagname
String attribute

tagname should be a fixed value
 attribute should be a fixed value

outputEvent() output event
attribute

String tagname
String attribute

tagname should be a fixed value
 attribute should be a fixed value

outputScript() output javascript String script/
parameter

script should be a fixed value
parameter should be a fixed value

[4] J. Jürjens, Secure Systems Development with UML,
Springer, 2004.
[5] H. H. Thompson, "Why security testing is hard", Security
& Privacy Magazine, IEEE Volume: 1 Issue: 4 July-Aug.
2003, pp. 83- 86.
[6] B. Potter and G. McGraw, "Software security testing",
Security & Privacy Magazine, IEEE Volume: 2 Issue: 5
Sept.-Oct, 2004, pp. 81- 85.
[7] G. McGraw, "Testing for security during development:
Why we should scrap penetrate-and-patch", IEEE Aerospace
and Electronic Systems, 1998.
[8] C. Weissman, "Penetration Testing, Information security:
an integrated collection of essays, IEEE Computer Society
Press, Silver Springs, MD, 1995.
[9] C. Karner, J. Falk and H. Q. Nguyen, Testing Computer
Software Second Edition, International Thomson Computer
Press, 1993.
[10] B. Beizer, Software Testing Techniques, 2nd Edition,
Van Nostrand Reinhold, 1990.
[11] (2007 December 17). Secure Programming.com
[Online]. Available: http://secureprogramming.com/
[12] (2007 December 17). Common Criteria for Information
Technology Security Evaluation v2.3 [Online]. Available:
http://www.commoncriteriaportal.org/public/developer/index
.php?menu=2
[13] (2007 December 17). Category: OWASP Top Ten
Project [Online]. Available:
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
[14] (2007 December 17). Code Conventions for the Java
Programming Language [Online]. Sun Microsystems.
Available: http://java.sun.com/docs/codeconv/

[15] T. Okubo, Y. Nakayama, Y. Wataguchi and H. Tanaka,
"A Study on Software Development Method which Fulfills
Specified Security Requirements" Computer Security
Symposium 2006, pp.387-392 (in Japanese).
[16] R. E. Johnson and B. Foote, “Designing reusable
classes.” Journal of object-oriented programming 1(2), 1988,
pp.22-35.
[17] (2007 December 17).Framework. Wikipedia the free
encyclopedia [Online]. Available:
http://en.wikipedia.org/wiki/Framework
[18] (2007 December 17). Struts [Online]. the Apache
Software Foundation. Available: http://jakarta.jp/struts/
[19] (2007 December 17). JavaServer Pages [Online]. Sun
Microsystems. Available: http://java.sun.com/products/jsp/
[20] (2007, December 17). java.sql.PreparedStatement
[Online]. Sun Microsystems. Available:
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStat
ement.html
[21] (2007, December 17). Bugle [Online]. Available:
http://www.cipher.org.uk/index.php?p=projects/bugle.project
[22] (2007 December 17) java.lang.Runtime [Online]. Sun
Microsystems. Available:
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runtime.ht
ml

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

