
A Dual-Length Path-Based Predictor for Thread Prediction

Niko Demus Barli, Luong Dinh Hung, Hideyuki Miura,
Shuichi Sakai and Hidehiko Tanaka

Graduate School of Information Science and Technology, The University of Tokyo.
7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan

{niko,hung,hide-m,sakai,tanaka}@mtl.t.u-tokyo.ac.jp

1 Introduction
In speculative multithreading (SpMT) architectures
which exploit thread level parallelism from a sequential
program, predicting and spawning threads that follow
a correct control flow is a major performance factor.
Strategies for this control speculation issue can be di-
vided into two approaches. The first approach is to sup-
port a limited control speculation, in which threads may
only be spawn at specific points in the program. For ex-
ample: loop iterations, function call and returns, or con-
trol equivalent points. This approach minimizes thread
misprediction by only speculating at highly predictable
places. The second approach is a more aggressive one,
in which threads are predicted and spawned as soon as
possible. This latter approach bears a larger potential
for performance improvement, given that the thread pre-
dictor is sufficiently accurate.

This paper targets architectures that use the latter
approach. It first studies the predictability of thread ad-
dresses using a dynamic path-based predictor. The re-
sults show that, in an alias free situation, a high predic-
tion accuracy can be achieved by including sufficiently
long path information. However, the requirements for
prediction table entries are also increasing almost expo-
nentially when longer path information included. For
a finite size table, there are cases when a longer path,
due to capacity aliasing, leads to a severely deteriorated
accuracy.

To overcome the problem, this paper introduces a
dual-length path-based prediction technique. We com-
bine two path-based predictors: one predictor is indexed
using a shorter path information, while the other predic-
tor is indexed using a longer path information. A selec-
tion table is added to dynamically select which predic-
tor’s outcome to use. The rationale behind this hybrid
technique is to have the shorter path predictor, which
has lower capacity requirements, to redeem the situa-
tion when the longer path predictor suffers from a severe
capacity aliasing. Furthermore, by manipulating predic-
tor’s table update policy, threads that can be accurately
predicted by one predictor can be filtered out from con-
taminating the other predictor. Simulation results show
that the combined effect significantly improves the ac-
curacy of thread prediction.

2 Related Work
In general, thread prediction is very similar to branch
prediction. There are differences in that there is basi-
cally no concept of taken/not-taken and that the infor-
mation of intra-thread branches is unavailable in thread
prediction. Nevertheless, the wealth idea of branch cor-
relation, combining predictors, aliasing reduction, and
other branch prediction techniques can be borrowed.

Using pattern of recent branches outcomes has been
a successful approach for achieving a high branch pre-
diction accuracy [12,13]. Alternatively, a path-based ap-
proach for branch correlation has also been proposed and
shown to achieve a similar prediction accuracy [8]. In the
context of Multiscalar’s thread prediction, Jacobson et.
al. has shown that path-based approach achieves higher
prediction accuracy compared to the pattern-based ap-
proach [4]. In this paper, we also base our thread pre-
diction investigation on a path-based approach.

McFarling introduced the concept of combining dif-
ferent branch predictors to form a hybrid predictor [6].
Using hybrid predictors whose components have differ-
ent path history length has also been reported [3]. This
paper applies the concept of using different path history
length components of hybrid predictors in thread pre-
dictions, and further explores the possibility of reducing
aliasing by manipulating predictor’s updating policy.

While hybrid predictors dynamically select one of the
components for each prediction, branch classification [1],
predictor with elastic history buffer [11], and variable
length path-based branch prediction [10], use execution
profile for classifying and associating each static branch
to an optimal prediction mechanism.

3 Methodology
Throughout this paper, we employed a static method to
partition a sequential program into threads. A thread
is a connected subgraph of the program’s control flow
graph with exactly one entry point. Overlapped regions
shared by two or more threads may not exist. Thread
boundaries were put at function invocations, returns,
and at innermost loop iterations by a compiler. For the
remaining parts of the program, thread boundaries were
placed so that the resulting threads have a maximum
size. For Spec95int applications, the resulting threads
had an average dynamic size ranging from 14 to 21 in-
structions.

Simulations were conducted using traces generated
by a speculative multithreading simulator. The bench-
mark used in simulations are eight applications from
Spec95int suite. Input for each application was modi-
fied to keep the trace size within reasonable size (100M -
200M instructions). When presenting simulation results,
we will use harmonic mean for measuring the “average”
of prediction accuracy.

We assumed an idealized predictor update timing:
before predicting a succeeding thread, the predictor is
properly updated using the most recent thread informa-
tion. When a thread exited from a return instruction, we
excluded the succeeding thread from the trace. Threads
that follow a thread exiting from a return instruction
is best predicted using a return address stack, which is
however beyond the scope of this paper.

1



Direct-mapped tagless tables were used during ex-
periments. For an n-length path-based predictor table,
we concatenate address bits from the latest n threads,
and fold (using bitwise XOR) the concatenated bits to
form index for the table. The notation is, for example,
12-8-8-8|3|: we concatenate 12-bit address from the cur-
rent thread, 8-bit address from the next three threads,
and fold the resulting bits by three, generating a 12-bit
index.

4 Dual-Length Path-Based Pre-
dictor

4.1 Predictability
Fig. 1 shows prediction accuracy achieved using path-
based approach, given an alias free table and complete
thread address information for the path. High predic-
tion accuracy is theoretically achievable if sufficiently
long path information is incorporated. However, when
we lengthen the path, the number of table entries re-
quired for prediction is also increasing almost exponen-
tially (fig. 2). For three applications of Spec95int, using
a path length of four requires more than 10k entries.
Assuming that each entry holds a 32-bit address, a 4k-
entry table has already occupied 32-kB of space. Thus,
although the predictability is high, limitation on table
size may restrict the final accuracy achieved.

Predictability

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

path length

H
it
 R
a
te
 (
%
)

harmean

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

Figure 1: Predictability using path information

Table Size

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

path length

N
o
.
 
o
f
 
E
n
t
r
ie
s

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

Figure 2: No. of entries used in prediction table

For a finite size table, the accuracy can be considered
as a function of path length and application’s footprint.
While longer path is advantageous for small applications,
severe capacity aliasing may occur in large applications.
Fig. 3 shows prediction accuracy for two representative
applications using a 4k-entry table. For n-th thread
in the path m bits of address is concatenated, where
m=max(12-2n,4). The concatenating result is folded as
needed to form a 12-bit index. The figure shows that,
although in li lengthening the path from one to four in-
creased the prediction accuracy by 11%, in case of go, it
decreased the accuracy by 7.5%.

099.go

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

path length

h
it
 r
a
te
 [
%
]

finite ideal

130.li

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

path length

h
it
 r
a
te
 [
%
]

finite ideal

Figure 3: Accuracy for finite size table

4.2 Combining Predictors
Predictability study in the previous section has indicated
that, for a finite size table the optimal path length varies
following footprint characteristics of the program. The
penalty incurred when missing the optimal point is not
negligible. Thus, it is difficult to optimize a fixed single-
length predictor to cover a wide range of applications.

This observation leads us to the idea of combining
two path-based predictors with different path length. A
selection table indexed by the address of current thread
is added. This table contains 3-bit saturating counters
with the counter’s MSB bit serves as a selection bit.
When one of the predictor predicted correctly and the
other predictor missed the prediction, the counter is in-
cremented or decremented accordingly. The logic be-
hind this hybrid approach is to prepare both a longer
path (high-predictability high-aliasing) predictor and a
shorter path (low-predictability low-aliasing) predictor.
Applications that can take advantage of a longer path
length can be predicted with high accuracy, while the
ones suffering from severe aliasing may still be rescued.

4.3 Reducing Aliasing

Aliasing, specifically capacity aliasing, is the origin of
the problem that prevents the path-based predictor from
achieving higher prediction accuracy. While combining
predictors of different path length helps to adaptively ad-
just the prediction to its optimal performance, another
possible approach to increase prediction accuracy is to
reduce the aliasing itself.

A number of dealiased branch predictors have been
proposed in the past. Skewed predictor [7] uses ma-
jority vote from odd number of component predictors
to produce final prediction. This predictor exploits the
characteristics that in a lightly aliased situation, if an
entry in one predictor is aliased, there is little possibil-
ity that the other tables are also aliased. Agree [9] and
Bimode [5] predictor avoid destructive aliasing by trying
to store identical prediction bits in the same table. Fil-
ter predictor [2] filters highly biased branches and uses
BTB instead of PHT to predict these branches, thus,
reducing aliasing in the PHT.

We explored the possibility of reducing aliasing in the
hybrid predictor by manipulating prediction table up-
date policy. In the original hybrid predictor approach,
both component predictors are always checked for pre-
diction miss and updated when a miss occured. How-
ever, for branches that can be predicted correctly in one
predictor, updating the other table introduces unneces-
sary contamination. To reduce this contamination, we

2



investigated the following two update policies in addi-
tion to the original update policy (we call the original
policy as Hybrid-Always).

• Hybrid-Partial: Confidence counter (2-bit reset-
ting counter) is added into each entry of the se-
lection table. The counter is incremented in the
case of prediction hit and the selection counter is
already saturated. When the confidence counter is
also saturated, only the currently selected predic-
tion table is checked and updated. The counter is
reset when a miss occurred.

• Hybrid-Lazy: Prediction tables are checked and
updated only when the selected prediction missed.
In case of hit, the unselected table is not updated
even if its prediction would have missed.

5 Evaluations
Fig. 4 shows prediction accuracy for single scheme pre-
dictors with path length of one (4k-entry, index=12|1|)
and four (4k-entry, index=12-8-8-8|3|), and prediction
accuracy for variations of dual-length hybrid predictors
that combined predictors with path length of one (2k-
entry, index=11|1|) and four (2k-entry, index=11-8-7-
7|3|). A 4k-entry selection table is used in hybrid pre-
dictors constituting approximately 10% additional bits.
Hit rate for an ideal predictor of path length four is also
shown as references.

65

70

75

80

85

90

95

100

0
9
9
.g
o

1
2
4
.m
8
8
k
si
m

1
2
6
.g
cc

1
2
9
.c
o
m
p
re
ss

1
3
0
.l
i

1
3
2
.i
jp
e
g

1
3
4
.p
e
rl

1
4
7
.v
o
rt
e
x

h
a
rm
ea
n

h
it
 r
a
te
 [
%
]

Single-PathLen=1

Single-PathLen=4

Hybrid-Always

Hybrid-Partial

Hybrid-Lazy

Ideal-PathLen=4

Figure 4: Hit rate for 4k-entry prediction table

The results show considerable improvement achieved
by hybrid predictors over the single scheme predictors.
Especially in the case of go, gcc, and vortex, in which
capacity aliasing is prohibitive, improvement over single
scheme predictor with path length of four is significant.
In average, Hybrid-Always outperforms single scheme
predictor (path length of four) by 2.4%. Hybrid-
Partial and Hybrid-Lazy further improve the predic-
tion accuracy by 0.6% and 0.7% respectively.

65

70

75

80

85

90

95

256 512 1024 2048 4096 8192 16384

Table No.of Entries

H
it
 R
a
te
 [
%
]

Single-PathLen=1

Single-PathLen=4

Hybrid-Always

Hybrid-Partial

Hybrid-Lazy

Figure 5: Average hit rate vs. prediction table size

Fig. 5 shows the average hit rate when prediction ta-
ble size varied from 256 to 16k entries. The effect of
aliasing reduction, especially in Hybrid-Lazy predic-
tor, is increasing for smaller table size. When the table
gets larger, the advantages of hybrid approach over sin-
gle scheme predictor with path length of four is dimin-
ishing. At this point, we should consider longer path
length for the components of the hybrid predictors.

6 Conclusion
The predictability of threads achieved using path-based
approach is fairly high if sufficiently long path informa-
tion is incorporated. However, long path information
may lead into severe aliasing problem in programs with
large footprint. To solve this problem, this paper intro-
duced a dual-length path-based predictor in which two
predictors with different path length are combined to
form a hybrid predictor. The hybrid approach allows us
to exploit higher predictability of the longer path pre-
dictor when the aliasing is not prohibitive. At the same
time, the shorter path predictor provides backup when
the aliasing is becoming severe. Furthermore, aliasing
can be reduced by filtering unnecessary update to pre-
diction tables of the hybrid predictor. Evaluation results
showed the combined effect significantly improved the
prediction accuracy over single scheme predictors.

References
[1] P.-Y. Chang. Branch Classification: a New Mechanism for

Improving Branch Predictor Performance. In Proc. of the
27th MICRO, pages 22–31, 1994.

[2] P.-Y. Chang, M. Evers, and Y. N. Patt. Improving Branch
Prediction Accuracy by Reducing Pattern History Table In-
terference. In Proc. of the 1996 PACT, pages 48–57, 1996.

[3] K. Driesen and U. Holzle. Accurate Indirect Branch Predic-
tion. In Proc. of the 25th ISCA, pages 167–178, 1998.

[4] Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Con-
trol Flow Speculation in Multiscalar Processors . In Proc. of
the 3rd HPCA, pages 218–229, 1997.

[5] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge. The Bi-mode
Branch Predictor. In Proc. of the 30th MICRO, pages 4–13,
1997.

[6] S. McFarling. Combining Branch Predictors. Technical Re-
port TN-36 Digital Western Research Lab., 1993.

[7] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and
Capacity Aliasing in Conditional Branch Predictors. In Proc.
of the 24th ISCA, pages 292–303, 1997.

[8] R. Nair. Dynamic Path-Based Branch Correlation. In Proc.
of the 28th MICRO, pages 15–23, 1995.

[9] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The
Agree Predictor: A Mechanism for ReducingNegative Branch
History Interference. In Proc. of the 24th ISCA, pages 284–
291, 1997.

[10] J. Stark, M. Evers, and Y. N. Patt. Variable Length Path
Branch Prediction. In Proc. of the 8th ASPLOS, pages 170–
179, 1998.

[11] M.-D. Tarlescu, K. B. Theobald, and G. R. Gao. Elastic
History Buffer: A Low-Cost Method to Improve Branch Pre-
diction Accuracy. In Proc. of the 1997 ICCD, pages 82–87,
1997.

[12] T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Branch Pre-
diction. In Proc. of the 24th MICRO, pages 51–61, 1991.

[13] T.-Y. Yeh and Y. N. Patt. Alternative Implementations of
Two-Level Adaptive Branch Prediction. In Proc. of the 19th
ISCA, pages 124–134, 1992.

3


