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Abstract. Attribute-based signature scheme (ABS) is a functional vari-
ant of digital signature scheme proposed in 2008 by Maji et al. The two
basic requirements of ABS (and a hard task to achieve) is collusion re-
sistance and attribute privacy. In this paper, we employ the two-tier
signature (TTS) technique to achieve the collusion resistance. Here TTS
was proposed in 2007 by Bellare et al., where a signer receives two tier
secret keys sequentially. The secondary secret key is served as a one-
time key at the timing of signing. First, we propose a definition of an
attribute-based two-tier signature scheme (ABTTS). Then we provide
ABTTS concretely that enjoys existential unforgeability against chosen-
message attacks, collusion resistance and attribute privacy, in the stan-
dard model. For the construction, enhancing the Camenisch-Lysyanskaya
signature, we construct signature bundle schemes that are secure under
the Strong RSA assumption and the Strong Diffie-Hellman assumption,
respectively. These signature bundle schemes enable ABTTS to achieve
attribute privacy. Then, using the signature bundle as a witness in the
Σ-protocol of the boolean proof, we obtain attribute-based identification
schemes (ABIDs). Finally, by applying the TTS technique to ABIDs, we
achieve ABTTSs. A feature of our construction is that ABTTS in the
RSA setting is pairing-free.

Keywords: digital signature, attribute-based, two-tier keys.

1 Introduction

Digital signature scheme is one of the most widely recognized crypto-
graphic primitives. Since its invention, functional variants have been pro-
posed, which include attribute-based signature schemes (ABS) developed



by Guo and Zeng [12] and Maji, Prabhakaran and Rosulek [14] in 2008.
In ABS, a message m is associated with a signing policy f that is de-
scribed as a boolean formula over signers’ attributes. Then only signers
with attributes that satisfy f can make a legitimate signature σ on m.
A verifier can check whether the signature σ is valid in accordance with
the signing policy f . The two basic requirements of ABS (and a hard
task to achieve) is collusion resistance against collecting secret keys and
attribute privacy. Intuitively, ABS is called to have attribute privacy if
any cheating verifier cannot distinguish two distributions of signatures
each of which is generated by different satisfying attribute set.

A two-tier signature scheme (TTS) is a digital signature scheme pro-
posed in 2007 by Bellare et al. [3], in which a signer receives two tier secret
keys sequentially, the latter of which is served as a one-time signing key
at the timing of signing. Accordingly, two tier public keys are issued se-
quentially. These two-tier keys fit the Fiat-Shamir signature scheme and
enable it to achieve existential unforgeability against chosen-message at-
tacks (EUF-CMA) in the standard model.

Our Contribution Our first contribution is to define the syntax of an
attribute-based two-tier signature scheme (ABTTS) for the first time.
The reason why we introduce ABTTS (in a construction of ABS) is to
achieve the collusion resistance by employing the TTS technique. The
issuer of a secondary secret key can check integrity of components in a
primary secret keys so that the issuer can avoid collusion attacks.

Our second contribution is to provide ABTTS concretely that enjoys
existential unforgeability against chosen-message attacks, collusion resis-
tance and attribute privacy, in the standard model. It is interesting from
the view point of theory (and also efficiency) that our ABTTS in the RSA
setting is pairing-free.

Our Approach to Concrete Construction First, enhancing the Camenisch-
Lysyanskaya signature, we construct signature bundle schemes that are
secure under the Strong RSA assumption and the Strong Diffie-Hellman
assumption, respectively. These signature bundle schemes later enable
ABTTS to achieve attribute privacy. Then, using the signature bundle
as a witness in the Σ-protocol of the boolean proof, we obtain attribute-
based identification schemes (ABIDs). Finally, by applying the TTS tech-
nique to ABIDs, we achieve ABTTSs.

2



Table 1. Comparison of security, functionality and signature length.

Scheme Security Assump- Access Pairing Attribute Length of
Model tion Formula -Free Privacy Signature

Maji q-SDH (2λ)×
et al. [14] Std. ∧DLIN Mono. - X(info.) (51l + 2r + 18λl)

OT DLIN (2λ)×
[16] Std. ∧CR Non-m. - X(info.) (9l + 11)

Herranz q-SRSA∧[DDH in λrsa(5 + κ
λrsa

)l

[13] R.O. QR(N)]∧CR Mono. X X(comp.) +λrsa3− κ(θ − 1)

Ghadafi q-SDH∧DDH∧ (2λ)(3l + r + 3)
et al. [8] R.O. DLog∧CR Mono. - - +λ(8l + 4)

Anada [DLog∨RSAInv] (2λ̂)l

et al. [2] R.O. ∧CR Mono. X - +λ̂(4l − 1)

Our ABTTS [q-SRSA∨q-SDH] (2λ̂)2l

Std. ∧CR Mono. X X(info.) +λ̂2l

Comparison: Security, Functionality and Signature Length We
compare our ABTTS with previously proposed schemes from the view
point of security, functionality and signature length. The comparison is
summarized in Table 1 with notations as follows. A prime of bit length
λ (the security parameter in the discrete logarithm setting) is denoted
by p. Though a pairing map e should be analysed for the asymmetric bi-
linear groups [11], we simply evaluate the symmetric case in which both
source groups are Gp of order p. We assume that an element of Gp is
represented by 2λ bits. l and r mean the number of rows and columns
of the share-generating matrix for monotone access formula f (that is,
an access structure), respectively. CR means the collision resistance of an
employed hash function. q-SDH means the Strong Diffie-Hellman assump-
tion with q-type input for bilinear groups [4]. DLIN means the Decisional
Linear assumption for bilinear groups [16]. DDH means the Decisional
Diffie-Hellman assumption for a cyclic group [8]. DLog means the Dis-
crete Logarithm assumption for a cyclic group [8]. q-SRSA means the
Strong RSA assumption with q-type input [13]. DDH in QR(N) means
the Decisional Diffie-Hellman assumption for quadratic residues modulo
N (the RSA modulus) [13]. “info.” means information-theoretic security
and “comp.” means computational security. λrsa means the security pa-
rameter in the RSA setting, and λ̂ means the security parameter in either
the RSA setting or the discrete logarithm setting.

First, note that our scheme assumes the secondary secret key and
the secondary public key are issued as one-time keys at the timing of
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signing. This means the signer and the verifier should be on-line and they
need to verify a certificate of the secondary public key. One possibility
of executing such a process is to use Online Certificate Status Protocol
(OCSP) by RFC 6990 [9].

The scheme of [16] has advantages in the security model, access for-
mula and information-theoretically secure attribute privacy, whereas our
ABS realizes shorter length of signature (less than a half). The scheme
of [13] is in the RSA setting and its security parameter λrsa is almost
10 times longer than λ in the DLog setting. For example, λrsa = 2048 is
almost equivalent to λ = 224-bit security [17]. (θ is the threshold value
of the threshold-type access structure. κ is explained in the work [13].)
Therefore, our ABS in the DLog setting realizes shorter length of a sig-
nature.

2 Preliminaries

The security parameter is denoted as λ. Bit length of a string x is denoted

as |x|. The expression “a
?
= b” returns a value 1 if a = b and 0 otherwise.

The expression “a
?
∈ S” returns a value 1 if a ∈ S and 0 otherwise.

Σ-protocol [6, 7] A Σ-protocol on a binary NP relation R is a public
coin 3-move protocol between interactive PPT algorithms P and V on
initial input (x,w) ∈ R for P and x for V. x and w are called a statement
and a witness, respectively. P sends the first message called a commitment
Cmt, then V sends a random bit string called a challenge Cha, and P
answers with a third message called a response Res. Then V applies a
decision test on (x,Cmt,Cha,Res) to return accept (1) or reject (0).
If V accepts, then the triple (Cmt,Cha,Res) is said to be an accepting
conversation. Cha is chosen uniformly at random from the challenge space
ChaSp(1λ) := {1, 0}l(λ) with l(·) being a super-log function.

The Σ-protocol is written by a PPT algorithm Σ as follows. Cmt←
Σ1(x,w): the process of selecting the first message Cmt according to the
protocol Σ on input (x,w) ∈ R. Similarly we denote Cha ← Σ2(1λ),
Res ← Σ3(x,w,Cmt,Cha) and b ← Σvrfy(x,Cmt,Cha,Res). The Σ-
protocol must possess the three properties: completeness, special sound-
ness and honest-verifier zero-knowledge [6, 7]. As a zero-knowledge proof-
of-knowledge system, we denote Σ as ZKPK[γ : Γ ], where γ is a knowl-
edge to be proved and Γ is the condition that γ should satisfy.
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Signature Bundle Scheme [14] A signature bundle (a credential bun-
dle in [14]) scheme SB is an extended notion of a signature scheme. It
consists of three PPTs: SB = (SB.KG,SB.Sign,SB.Vrfy).

SB.KG(1λ) → (PK, SK). Given 1λ as input, it returns a public key PK
and a secret key SK.

SB.Sign(PK, SK, (mi)
n
i=1) → (τ, (σi)

n
i=1). Given PK, SK and messages

(mi)
n
i=1, it returns a tag τ and signatures (σi)

n
i=1. n is bounded by a

polynomial in λ.

SB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1)) → 1/0. Given PK, messages (mi)

n
i=1,

a tag τ and signatures (σi)
n
i=1, it returns 1 or 0.

A PPT adversary F tries to make a forgery ((m∗i )
n∗
i=1, (τ

∗, (σ∗i )
n∗
i=1)).

Here τ∗ is called a target tag. An existential forgery by a chosen-message
attack is defined by:

Expreuf-cma
SB,F (1λ,U)

(PK, SK)← SB.KG(1λ), ((m∗i )
n∗
i=1, (τ

∗, (σ∗i )
n∗
i=1))← FSBSIGN (PK)

If SB.Vrfy(PK, (m∗i )
n∗
i=1, (τ

∗, (σ∗i )
n∗
i=1)) = 1

then Return Win else Return Lose

Giving a vector of messages (mi)
n
i=1, F queries SBSIGN (PK, SK, ·) for a

valid signature bundle (τ, (σi)
n
i=1). τ

∗ should be different from any queried
tag τ , or, whenever τ∗ is equal to a queried tag τ , it should hold that
{m∗i }n

∗
i=1 6⊆ {mi}ni=1 for any queried (mi)

n
i=1. The advantage of F over

SB in the experiment of existential forgery by chosen-message attack is

defined as Adveuf-cma
SB,F (λ,U)

def
= Pr[Expreuf-cma

SB,F (1λ,U) returns Win].

Definition 1 SB is called existentially unforgeable against chosen-message
attack if, for any PPT F , Adveuf-cma

SB,F (λ,U) is negligible in λ.

Access Structure [10] Let U = {ati}ui=1 be an attribute universe.
|U| = u is bounded by a polynomial in λ (U is called a small universe).

Let f = f(Xat1 , . . . , Xata) be a monotone boolean formula over U =
{Xat}at, where boolean connectives are AND-gate (∧) and OR-gate (∨).
In this paper, we assume that no NOT-gate (¬) appears in f . In other
words, we consider only a monotone access formula f .4 We denote the set
of subscripts (that is, attributes) {at1, . . . , ata} as At(f) and the arity a
as arity(f), respectively. For S ∈ 2U , we evaluate the boolean value of f at

4 This limitation can be removed by adding negation attributes to U for each attribute
in the original U though the size of the attribute universe |U| doubles.
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S as: f(S)
def
= f

(
Xat ← [at

?
∈ S]; at ∈ At(f)

)
∈ {1, 0}. We call a boolean

formula f with this map an access formula over U . An access formula
corresponds to a signing policy in the case of attribute-based signatures.

An access formula f can be represented by a finite binary tree Tf .
Each inner node corresponds to an AND-gate (∧) or OR-gate (∨) in
f . Each leaf node l corresponds to a term Xat (not a variable Xat)
in f in one-to-one way. For a finite binary tree T , we denote the root
node, the set of all nodes, the set of all leaf nodes, the set of all inner
nodes (all nodes excluding leaf nodes) and the set of all tree-nodes (all
nodes excluding the root node) as r(T ), Node(T ), Leaf(T ), iNode(T )
and tNode(T ), respectively. Then an attribute map ρ(·) is defined as:

ρ : Leaf(T ) → U , ρ(l)
def
= (at that corresponds to l). If ρ is not injective,

then we call the case multi-use of attributes.

Attribute-Based Identification Scheme [1] An attribute-based iden-
tification scheme, ABID, consists of four PPT algorithms: (ABID.Setup,ABID.KG,P,V).
ABID.Setup(1λ,U) → (PK,MSK). Given the security parameter 1λ

and an attribute universe U , it returns a public key PK and a master
secret key MSK.
ABID.KG(PK,MSK, S)→ SKS. Given the public key PK, the master
secret key MSK and an attribute set S ⊂ U , it returns a secret key SKS

that corresponds to S.
P(PK,SKS) and V(PK, f). P and V are interactive algorithms called
a prover and a verifier, respectively. P takes as input the public key PK
and the secret key SKS . Here the secret key SKS is given to P by an
authority. V takes as input the public key PK and an access formula f . P
is provided V’s access formula f by the first move. P and V interact with
each other for at most constant rounds. Then, V returns its decision 1 or
0. When it is 1, we say that V accepts P for f . When it is 0, we say that V
rejects P for f . We demand correctness of ABID that for any λ, for any S
and for any f such that f(S) = 1, Pr[(PK,MSK)← Setup(1λ,U); SKS ←
KG(PK,MSK, S); b← 〈P(PK,SKS),V(PK, f)〉 : b = 1] = 1.

An adversary A tries to make a verifier V accept with an access for-
mula f∗ of his choice. Here f∗ is called a target access formula. A con-
current attack is defined by:

ExprmtcaABID,A(1λ,U)

(PK,MSK)← ABID.Setup(λ,U), (f∗, st)← AKG,Pj |
qprv
j=1 (PK,U)

b← 〈A(st),V(PK, f∗)〉, If b = 1 then Return Win else Return Lose
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Giving an attribute set Si, A queries KG(PK,MSK, ·) for the secret key
SKSi . In addition,A invokes provers Pj(PK, SK·), j = 1, . . . , q′prv, . . . , qprv,
by giving a pair (Sj , fj). Acting as a verifier with an access formula fj , A
interacts with each Pj(PK, SKSj ) concurrently. In the above we consider
the adaptive target f∗. In key-extraction queries, each attribute set Si
must satisfy f∗(Si) = 0. In interactions with each prover, f∗(Sj) = 0.
The advantage of A over ABID in the game of concurrent attack is de-

fined as Advca
ABID,A(λ)

def
= Pr[ExprmtcaABID,A(1λ,U) returns Win]. ABID is

called secure against concurrent attacks if, for any PPT A, Advca
ABID,A(λ)

is negligible in λ.

Strong RSA Assumption [5] Let p = 2p′ + 1 denote a safe prime (p′

is also a prime). Let N denote the special RSA modulus; that is, N = pq
where p = 2p′+1 and q = 2q′+1 are two safe primes such that |p′| = |q′| =
λ − 1. We denote the probabilistic algorithm that generates such N at
random on input 1λ as RSAmod. Let QRN ⊂ Z∗N denote the set of quadratic
residues modulo N ; that is, elements a ∈ Z∗N such that a ≡ x2 mod N for
some x ∈ Z∗N . The strong RSA assumption [5] states that for any PPT A,
the following advantage is negligible in λ: Advsrsa

RSAmod,S(λ,U) := Pr[N ←
RSAmod(1λ), g

$← QRN , (V, e)← A(N, g) : e > 1 ∧ V e ≡ g mod N ].

Strong Diffie-Hellman Assumption [4] Let p denote a prime of bit
length λ. Let e : G1 × G2 → GT denote bilinear groups of order p,
where G1 is generated by g, G2 is generated by h and GT is generated by
e(g, h) 6= 1GT . We denote the probabilistic algorithm that generates such
parameters params := (p,G1,G2,GT , e) on input 1λ as BlGrp. Let q de-
note a number that is less than a fixed polynomial in λ. The strong Diffie-
Hellman assumption [4] states that for any PPT A, the following advan-

tage is negligible in λ: Advsdh
BlGrp,S(λ,U) := Pr[params ← BlGrp(1λ), α

$←
Zp, (u, e)← A(params, (g, gα, gα

2
, . . . , gα

q
, h, hα)) : uα+e = g].

3 Syntax of Attribute-Based Two-Tier Signature Scheme

In this section, we propose a definition of syntax of an attribute-based two-
tier signature scheme (ABTTS). Then, we define a chosen-message attack
(CMA) on ABTTS where an adversary makes an existential forgery, and
we define the existential unforgeability (EUF) against CMA.
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3.1 Definition: Syntax of ABTTS

An attribute-based two-tier signature scheme, ABTTS, consists of five PPTs:
ABTTS= (ABTTS.Setup,ABTTS.KG,ABTTS.SKG,ABTTS.Sign,
ABTTS.Vrfy).
ABTTS.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ

and the attribute universe U , it returns a master secret key MSK and a
public key PK.
ABTTS.KG(MSK,PK, S) → SKS . Given the master secret key MSK,
the public key PK and an attribute set S ⊂ U , it returns a secret key
SKS that corresponds to S.
ABTTS.SKG(MSK,PK,SKS , f) → (SSKS,f ,SPKf ). Given the master
secret key MSK, the public key PK, a secret key SKS and an access
formula f , it returns a pair (SSKS,f ,SPKf ) of a secondary secret key and
a secondary public key.
ABTTS.Sign(PK, SKS , SSKS,f , SPKf , (m, f)) → σ. Given the public
key PK, a secret key SKS , a secondary secret key SSKS,f , a secondary
public key SPKf and a pair (m, f) of a message m ∈ {1, 0}∗ and an access
formula f , it returns a signature σ.
ABTTS.Vrfy(PK, SPKf , (m, f), σ) → 1/0. Given the public key PK, a
secondary public key SPKf , a pair (m, f) of a message and an access for-
mula and a signature σ, it returns a decision 1 or 0. When it is 1, we say
that ((m, f), σ) is valid. When it is 0, we say that ((m, f), σ) is invalid.
We demand correctness of ABTTS that, for any λ, any U , any S ⊂ U and
any (m, f) such that f(S) = 1, Pr[(MSK,PK)← ABTTS.Setup(1λ,U),
SKS ← ABTTS.KG(MSK,PK, S), (SSKS,f ,SPKf )
← ABTTS.SKG(MSK,PK,SKS , f), σ ← ABTTS.Sign(SKS ,PK,SSKS,f ,SPKf , (m, f)),
b← ABS.Vrfy(PK, SPKf , (m, f), σ) : b = 1] = 1.

3.2 Security against Chosen-Message Attacks on ABTTS

A PPT adversary F tries to make a forgery ((m∗, f∗), σ∗) that consists of
a message, a target access formula and a signature. The following experi-
ment Expreuf-cma

ABTTS,F (1λ,U) of a forger F defines the chosen-message attack
making an existential forgery.

Expreuf-cma
ABTTS,F (1λ,U) :

(PK,MSK)← ABTTS.Setup(1λ,U)

((m∗, f∗), σ∗)← FABTTSKG,ABTTSSPK,ABTTSSIGN (PK)

If ABTTS.Vrfy(PK, SPKf , (m
∗, f∗), σ∗) = 1

then Return Win else Return Lose
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In the experiment, F issues key-extraction queries to its oracleABTTSKG,
secondary public key queries to its oracle ABTTSSPK and signing queries
to its oracleABTTSSIGN . Giving an attribute set Si, F queriesABTTSKG(MSK,PK, ·)
for a secret key SKSi . Giving an attribute set S and an access formula
f , F queries ABTTSSPK(MSK,PK,SK·, ·) for a secondary public key
SPKf . Giving an attribute set Sj and a pair (mj , fj) of a message and an
access formula, F queries ABTTSSIGN (PK,SK·, SSK·,·,SPK·, (·, ·)) for a
valid signature σ when f(Sj) = 1. As a rule of the two-tier signature, each
published secondary public key SPKf can be used only once to obtain a
signature [3].

f∗ is called a target access formula of F . Here we consider the adaptive
target case in the sense that F is allowed to choose f∗ after seeing PK and
issuing three queries. Two restrictions are imposed on F : 1) f∗(Si) = 0 for
all Si in key-extraction queries; 2) (m∗, f∗) was never queried in signing
queries. The numbers of key-extraction queries and signing queries are
at most qke and qsig, respectively, which are bounded by a polynomial

in λ. The advantage of F over ABTTS is defined as Adveuf-cma
ABTTS,F (λ,U)

def
=

Pr[Expreuf-cma
ABTTS,F (1λ,U) returns Win].

Definition 2 (EUF-CMA of ABTTS) ABTTS is called existentially un-
forgeable against chosen-message attacks if, for any PPT F and any U ,
Adveuf-cma

ABTTS,F (λ,U) is negligible in λ.

Then we define attribute privacy of ABTTS.

Definition 3 (Attribute Privacy of ABTTS) ABTTS is called to have
attribute privacy if, for all (PK,MSK) ← ABS.Setup(1λ,U), for all
message m, for all attribute sets S1 and S2, for all signing keys SKS1 ←
ABS.KG(PK,MSK, S1) and SKS2 ← ABS.KG(PK,MSK, S2), for all
secondary keys (SSKS1,f ,SPKf )← ABTTS.SKG(MSK,PK,SKS , f) and
(SSKS2,f ,SPKf ) ← ABTTS.SKG(MSK,PK,SKS , f) and for all access
formula f such that [f(S1) = 1 ∧ f(S2) = 1] ∨ [f(S1) 6= 1 ∧ f(S2) 6= 1],
two distributions
σ1 ← ABTTS.Sign(PK,SKS1 ,SSKS1,f ,SPKf , (m, f)) and
σ2 ← ABTTS.Sign(PK,SKS2 ,SSKS2,f ,SPKf , (m, f)) are identical.

4 Σ-protocol for Monotone Access Formula

In this section, we enhance the identification protocol by Okamoto [15]
to the boolean proof system Σf proposed by Anada et al. [2].
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4.1 Our Language Lf

We assume R to be an NP-relation. Let R(·, ·) : ({1, 0}∗)2 → {1, 0} denote

the relation-function which returns (x,w)
?
∈ R. Let f = f((Xij )

a
j=1) be a

boolean formula over boolean variables {Xi}i.

Definition 4 (Language for f) The relation Rf and the corresponding
language Lf for a boolean formula f are:

Rf
def
= {

(
x = (xij )

a
j=1, w = (wij )

a
j=1

)
∈ {1, 0}∗ × {1, 0}∗; f(R(xij , wij )

a
j=1) = 1},

Lf
def
= {x ∈ {1, 0}∗; ∃w, (x,w) ∈ Rf}.

We consider hereafter the case that w is divided into (wij )
a
j=1 = (eij , sij )

a
j=1.

(In/after the next section, we will consider the special case that eij , j =
1, . . . , a, are all equal to a single element e. The common component e
will be a tag τ of a signature bundle. )

4.2 Our Σ-protocol Σf for Lf

Our Σ-protocol Σf is a zero-knowledge proof-of-knowledge ZKPK[w :=
(wρ(l))l := (eρ(l), sρ(l))l, l ∈ Leaf(Tf ) : x := (equations)] for the language
Lf , where the equations are for all the leaf nodes:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

sρ(l)
ρ(l),2, l ∈ Leaf(Tf ). (1)

In the above equation, Zρ(l) is represented by (eρ(l), sρ(l)) to the base
(Zρ(l),1, Zρ(l),2). A prover P(x,w, f) and a verifier V(x, f) execute our
Σ-protocol in the following way.

P(x,w, f). To prove the knowledge of those representations (eρ(l), sρ(l)),
P computes the first message, a commitment (Cmtl)l, as follows. Let
Z̄ be the exponent domain for the above expression. To do the compu-

tation honestly at a leaf l, P chooses ηe,l, ηs,n
$← Z̄, and puts Cmtl :=

Z
ηe,l
ρ(l),1Z

ηs,n
ρ(l),2. To simulate the computation at a leaf l, P chooses ηe,l, θs,l

$←
Z̄, and in addition, (cn)n, cn ∈ Z̄. Here (cn)n are chosen in accordance with
the so called boolean proof system of Anada et al. [2]. Then P puts for

each leaf l θe,l := ηe,l + cleρ(l), and Cmtl := Z−clρ(l)Z
θe,l
ρ(l),1Z

θs,l
ρ(l),2. P sends

(Cmtl)l to a verifier V.

V(x, f). Receiving (Cmtl)l, V(x, f) chooses the second message: a chal-

lenge Cha
$← Z̄, uniformly at random, and sends Cha to P.
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P(x,w, f). Receiving Cha, P completes to compute the third message;
that is, P completes the division (Chan := cn)n such that Char(Tf ) =
Cha, and a response (Resl := (θe,l, θs,l))l with θe,l := ηe,l+ cleρ(l), θs,l :=
ηs,l + clvl. P sends (Chal)l and (Resl)l to V.
V(x, f). Receiving (Chal)l and (Resl)l, V checks the integrity of the
division (Chal)l. Then V verifies:

Cmtl
?
= Z−clρ(l)Z

θe,l
ρ(l),1Z

θs,l
ρ(l),2, l ∈ Leaf(Tf ). (2)

According to the division rule of Anada et al. [2], the integrity of (Chal =
cl)l can be checked as follows: From the leaves to the root, and at every
inner node n ∈ iNode(Tf ) as well as its two children ch1, ch2;

• If n is an AND node (∧), then verify cch1
?
= cch2 . If so, put cn := cch1 .

• Else if n is an OR node (∨), then just put cn := cch1 + cch2 .

• If n is the root node, then verify cn
?
= Cha.

• Repeat until all n ∈ iNode(Tf ) are verified.

Our Σf can be shown to possess the three requirements of Σ-protocol:
completeness, special soundness and honest-verifier zero-knowledge.

5 Signature Bundle Scheme in RSA

In this section, we propose a signature bundle scheme in the RSA set-
ting by extending the Camenisch-Lysyanskaya signature scheme [5]. We
first construct the scheme. Then we discuss its EUF-CMA security. (The
scheme in the discrete logarithm setting is proposed in Appendix A.)

5.1 Construction of Our SB in RSA

Our signature bundle scheme SB = (SB.KG,SB.Sign,SB.Vrfy) is de-
scribed as follows. Let lM be a parameter. The message spaceM consists
of all binary strings of length lM. Let n = n(λ) denote the maximum
number of messages made into a bundle, which is a polynomial in λ.
SB.KG(1λ) → (PK, SK). Given 1λ, it chooses a special RSA modulus
N = pq of length lN = λ, where p = 2p′ + 1 and q = 2q′ + 1 are

safe primes. For i = 1 to n, it chooses gi,0, gi,1, gi,2
$← QRN . It puts

PK := (N, (gi,0, gi,1, gi,2)
n
i=1) and SK = p, and returns (PK, SK).

SB.Sign(PK,SK, (mi)
n
i=1) → (τ, (σi)

n
i=1). Given PK,SK and messages

(mi)
n
i=1 each of which is of length lM, it chooses a prime e of length
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le = lM + 2 at random. For i = 1 to n, it chooses an integer si of length
ls = lN + lM + l at random, where l is a security parameter, and it
computes the value Ai:

Ai := (gi,0g
mi
i,1 g

si
i,2)

1
e . (3)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)
n
i=1).

SB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1)) → 1/0. Given PK, (mi)

n
i=1 and a sig-

nature bundle (τ, (σi)
n
i=1), it verifies whether the following holds: e := τ

is of length le and for i = 1 to n: Aei = gi,0g
mi
i,1 g

si
i,2.

5.2 Security of Our SB in RSA

Theorem 1 (EUF-CMA of Our SB in RSA) Our signature bundle scheme
SB is existentially unforgeable against chosen-message attacks under the
Strong RSA assumption.

6 Attribute-Based ID Scheme in RSA

In this section, we combine two building blocks to obtain our attribute-
based identification scheme; that is, the Σ-protocol Σf in Section 4.2 and
the signature bundle scheme SB in Section 5.1.

6.1 Construction of Our ABID in RSA

ABID.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ

and an attribute universe U , it chooses a special RSA modulus N =
pq, p = 2p′ + 1, q = 2q′ + 1 of length lN = 2λ. For at ∈ U , it chooses

gat,0, gat,1, gat,2
$← QRN and a hash key µ

$← Hashkeysp(1λ) of a hash
functionHashµ with the value in Zp. It puts PK := (N, (gat,0, gat,1, gat,2)at∈U , µ,U)
and MSK := p. It returns PK and MSK.
ABID.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute
subset S, it chooses a prime e of length le. For at ∈ S, it computes

aat ← Hashµ(at), sat
$← Z of length le, Aat := (g0g

aat
1 gsat2 )

1
e . It puts

SKS := (e, (sat, Aat)at∈S).
P(SKS ,PK, f) and V(PK, f) execute Σf with the following precompu-

tation. For at ∈ At(f), P chooses rat
$← Z of length le. If at ∈ S then

s′at := sat + erat, A
′
at := Aatg

−rat
2 . Else s′at

$← Z of length le, A
′
at

$← Z∗N .
P puts Zat := gat,0g

aat
at,1, Zat,1 := A′at, Zat,2 := gat,2. Then the state-

ment for Σf is x := (xat := (Zat, Zat,1, Zat,2))at and the witness is

12



w := (τ := e, (wat := s′at)at), where at ∈ At(f) for x and w. P sends
the randomized values (A′at)at to V for V to be able to compute the state-
ment x.

After the above precomputation, P and V can execute Σf for the
language Lf . In other words, P and V execute ZKPK[(e, s′ρ(l))l, l ∈
Leaf(Tf ) : equations], for the language Lf , where equations are: Zρ(l) =

Zeρ(l),1Z
s′
ρ(l)

ρ(l),2, l ∈ Leaf(Tf ). Note that V verifies whether the following ver-
ification equations hold or not for all the leaf nodes:

Cmtl
?
= Z−clρ(l)Z

θe,l
ρ(l),1Z

θs′,l
ρ(l),2, l ∈ Leaf(Tf ). (4)

V returns 1 or 0 accordingly.

6.2 Security of Our ABID in RSA

Claim 1 (Concurrent Security of Our ABID under a Single Tag)
Our ABID is secure against concurrent attacks if our signature bundle
scheme SB is existentially unforgeable against chosen-message attacks and
if the extracted values e by the extractor of the underlying Σ-protocol Σf

is a single value.

Note that Claim 1 is needed only as intermediate result. That is, the
assumption that the extracted value e is a single value is assured by the
two-tier keys issuer, ABTTS.SKG, in the next section.

7 Attribute-Based Two-Tier Signature Scheme in RSA

In this section, we construct our ABTTS concretely. By applying the
method of two-tier keys to our ABID in the last section, we attain the
ABTTS scheme. Our ABTTS enjoys EUF-CMA, collusion resistance and
attribute privacy, in the standard model.

The critical point is that the secondary key generator ABTTS.SKG
can issue a legitimate statement x for the boolean proof system Σf . Hence
our ABTTS can avoid collusion attacks on secret keys.

7.1 Construction of Our ABTTS in RSA

ABTTS.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ

and an attribute universe U , it chooses a special RSA modulus N =
pq, p = 2p′ + 1, q = 2q′ + 1 of length lN = 2λ. For at ∈ U , it chooses

13



gat,0, gat,1, gat,2
$← QRN and a hash key µ

$← Hashkeysp(1λ) of a hash
functionHashµ with the value in Zp. It puts PK := (N, (gat,0, gat,1, gat,2)at∈U , µ,U)
and MSK := p. It returns PK and MSK.

ABTTS.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute
subset S, it chooses a prime e of length le. For at ∈ S, it computes

aat ← Hashµ(at), sat
$← Z of length le, Aat := (g0g

aat
1 gsat2 )

1
e . It puts

SKS := (e, (sat, Aat)at∈S) and returns SKS .

ABTTS.SKG(MSK,PK,SKS , f) → (SSKS,f , SPKf ). Given MSK, PK,
the secret key SKS and an access formula f , it first checks whether the
components eρ(l) in SKS , ρ(l) ∈ S, are equal to a single value e or not. If
it is false, then it aborts. Then it computes the statement for Σf , x :=
(xat := (Zat, Zat,1, Zat,2))at, and the witness w := (τ := e, (wat := s′at)at),
where at ∈ At(f) for x and w. Then it runs the prover P according to Σf

as ((Cmtl)l, st)← P(SKS ,PK, f). Then it puts SSKS,f := (w,Cmt ‖ st)
and SPKf := (x,Cmt). It returns SSKS,f and SPKf .

ABTTS.Sign(PK, SKS , SSKS,f , SPKf , (m, f)) → σ. Given PK, SKS ,
the secondary secret key SSKS,f , the secondary public key SPKf , and
a pair (m, f) of a message in {1, 0}lM and an access formula f , it com-
putes Cha← Hashµ((A′at)at ‖ (Cmtl)l ‖ m). Then, it runs the prover P
according to Σf as ((Chal)l, (Resl)l ← P((Cmtl)l ‖ Cha ‖, st). Finally,
it returns the signature σ := ((A′at)at, (Cmtl)l, (Chal)l, (Resl)l).

ABTTS.Vrfy(PK, SPKf , (m, f), σ) → 1/0. Given PK, the secondary
public key SPKf , a pair (m, f) and a signature σ, it first computes the
statement for Σf , x := (xat := (Zat, Zat,1, Zat,2))at, and the witness
w := (τ := e, (wat := s′at)at), where at ∈ At(f) for x and w. Then it
computes Cha ← Hashµ((A′at)at ‖ (Cmtl)l ‖ m). Then, it runs the veri-
fier V according to Σf as acc or 0← V(PK, f, (Cmtl)l ‖ Cha ‖ (Resl)l).
It returns 1 or 0 accordingly.

7.2 Security of Our ABTTS in RSA

Theorem 2 (EUF-CMA of Our ABTTS in RSA) Our attribute-based
two-tier signature scheme ABTTS is existentially unforgeable against chosen-
message attacks under the Strong RSA assumption in the standard model.

Theorem 3 (Attribute Privacy of Our ABTTS in RSA) Our attribute-
based two-tier signature scheme ABTTS has attribute privacy.
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8 Conclusions

We defined the attribute-based two-tier signature scheme (ABTTS). Then
we provided ABTTS concretely that enjoys EUF-CMA, collusion resis-
tance and attribute privacy, in the standard model.

Acknowledgements Concerning the first and the second authors, this
work is partially supported by Grants-in-Aid for Scientific Research; Re-
search Project Number:15K00029.

References

1. H. Anada, S. Arita, S. Handa, and Y. Iwabuchi. Attribute-based identification:
Definitions and efficient constructions. In ACISP 2013, volume 7959 of LNCS,
pages 168–186. Springer, 2013.

2. H. Anada, S. Arita, and K. Sakurai. Attribute-based signatures without pairings
via the fiat-shamir paradigm. In ASIAPKC2014, volume 2 of ACM-ASIAPKC,
pages 49–58. ACM, 2014.

3. M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures,
and fiat-shamir without random oracles. In Public Key Cryptography - PKC 2007,
10th International Conference on Practice and Theory in Public-Key Cryptography,
Beijing, China, April 16-20, 2007, Proceedings, pages 201–216, 2007.

4. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT 2004, volume 3027 of LNCS, pages
223–238. Springer, 2004.

5. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
Security in Communication Networks, Third International Conference, SCN 2002,
Amalfi, Italy, September 11-13, 2002. Revised Papers, pages 268–289, 2002.

6. R. Cramer. Modular Designs of Secure, yet Practical Cyptographic Protocols. PhD
thesis, University of Amsterdam, Amsterdam, the Netherlands, 1996.

7. I. Damg̊ard. On σ-protocols. In Course Notes,
https://services.brics.dk/java/courseadmin/CPT/documents, 2011.

8. A. El Kaafarani, L. Chen, E. Ghadafi, and J. H. Davenport. Attribute-based
signatures with user-controlled linkability. In Cryptology and Network Security
- 13th International Conference, CANS 2014, Heraklion, Crete, Greece, October
22-24, 2014. Proceedings, pages 256–269, 2014.

9. I. E. T. Force. Request for comments: 6960. http://tools.ietf.org/html/rfc6960.
10. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. In ACM-CCS ’06, volume 263, pages
89–98. ACM, 2006.

11. R. Granger, T. Kleinjung, and J. Zumbrägel. Breaking ’128-bit secure’ supersingu-
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A Signature Bundle Scheme in Discrete Log

Our pairing-based Signature Bundle Scheme, SB = (SB.KG,SB.Sign,SB.Vrfy),
is described as follows.
SB.KG(1λ)→ (PK,SK). Given 1λ, it executes a group generator BlGrp(1λ)

to get (p,G1,G2,GT , e(·, ·)). For i = 1 to n, it chooses gi,0, gi,1, gi,2
$←

G1, h0
$← G2, α

$← Zp and it puts h1 := hα0 . It puts PK := ((gi,0, gi,1, gi,2)
n
i=1, h0, h1)

and SK := α, and returns (PK,SK).
SB.Sign(PK,SK, (mi)

n
i=1) → (τ, (σi)

n
i=1). Given PK,SK and messages

(mi)
n
i=1 each of which is of length lM, it chooses e

$← Zp. For i = 1 to n,

it chooses si
$← Zp, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 g

si
i,2)

1
α+e . (5)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)
n
i=1).

SB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1))→ 1/0. Given PK, (mi)

n
i=1 and (τ, (σi)

n
i=1),

it verifies whether the following holds: e(Ai, h
e
0h1) = e(gi,0g

mi
i,1 g

si
i,2, h0), i =

1, . . . , n.

Theorem 4 (EUF-CMA of Our SB in Discrete Log) Our signature
bundle scheme SB is existentially unforgeable against chosen-message at-
tack under the Strong Diffie-Hellman assumption.

Our ABID and ABTTS in the discrete logarithm setting will be given in
the full version.
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