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SUMMARY Non-malleability is an important security prop-
erty of commitment schemes. The property means security
against the man-in-the-middle attack, and it is defined and
proved in the simulation paradigm using the corresponding sim-
ulator. Many known non-malleable commitment schemes have
the common drawback that their corresponding simulators do
not work in a straight-line manner, requires rewinding of the ad-
versary. Due to this fact, such schemes are proved non-malleable
only in the stand-alone cases. In the multiple-instances setting,
i.e., when the scheme is performed concurrently with many in-
stances of itself, such schemes cannot be proved non-malleable.
The paper shows an efficient commitment scheme proven to be
non-malleable even in the multiple-instances setting, based on
the KEA1 and DDH assumptions. Our scheme has a simulator
that works in a straight-line manner by using the KEA1-extractor
instead of the rewinding strategy.
key words: Commitment scheme, Non-malleability, The KEA1
assumption, Extractability.

1. Introduction

1.1 Commitment schemes and its non-malleability

A commitment scheme, which is one of the most fun-
damental cryptographic protocols, is a two-party two-
phase protocol:

1. Commit phase:
A sender, through some interactions with a re-
ceiver if necessary, makes a commitment c =
com(m; r) to a message m with some randomness
r and sends it to the receiver.

2. Open phase:
The sender sends a decommit information m, r of
c to the receiver. The receiver determines the va-
lidity of m, r by checking c = com(m; r). If valid,
it accepts m (else rejects).

(In the paper, we focus on a string commitment rather
than a bit commitment.) Fundamental requirements
for a commitment scheme are hiding and binding prop-
erties. It is hiding when commitments c = com(m; r)
are indistinguishable among different m’s, and it is
binding when it is infeasible to generate a commitment
which can be correctly opened by distinct messages at
once.

Dolev et al. [7] defines non-malleability (NM) of a
commitment scheme, which means security against the
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man-in-the-middle (MIM) attack. Suppose an adver-
sary A is in the MIM-setting, i.e., A is in the middle of
honest left and right parties. A commitment scheme is
called non-malleable when an adversaryA, given a com-
mitment c to a message m from the left party, cannot
generate a commitment c∗ to another distinct message
m∗, which is in some polynomially-computable relation
R with m, for the right party. Here, A is supposed
to get an open message m, r of c from the left party
when it attempts to open c∗ to m∗ to the right party.
(Strictly, this is non-malleability with respect to open-
ing. When A is supposed only to commit, i.e., not given
the decommitment m, r and not required to open c∗, it
is called non-malleability with respect to commitment.
In this paper, we focus on non-malleability with respect
to opening.)

To prove non-malleability, we need a simulator
Sim of A’s behavior. Sim, alone without any help
from the left party (especially without any knowledge
of c,m, r), must generate a commitment c∗ to m∗ which
has a relation R with m with the same probability as
in the case of A in the MIM-setting.

1.2 A generic method for non-malleable commitment
schemes

Key properties for establishing non-malleability of com-
mitment schemes are equivocality and extractability. A
commitment scheme is called equivocal when one can,
using some trapdoor information, generate a commit-
ment that can be opened by any message later. A com-
mitment scheme is called extractable when one can, also
using some trapdoor information, extract the message
under the commitment without any decommit informa-
tion.

Generically, a non-malleable commitment scheme
is constructed through enhancing some primitive com-
mitment scheme to obtain equivocality and extractabil-
ity at once. If such enhancement succeeds, its non-
malleability can be proved as follows. Suppose an ad-
versary A in the MIM-setting is given. The simulator
needs to simulate the left view of A without the knowl-
edge of the real message m. In order to do that, Sim
as a left party commits to a dummy message m0 for A
through an equivocal commitment c. By equivocality,
c can be opened by the real message m later instead
of m0, so the view of A is indistinguishable from its
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real view with a true commitment to m. Next, from
the commitment c∗ generated by the simulated A, Sim
(using some trapdoor) extracts the committed message
m∗ by the extractability. Thus, Sim can find m∗ with-
out knowing the true m and its commitment c at all
with the same probability that A commits to such m∗

in the real MIM attack. This means non-malleability
of the scheme.

1.3 Known non-malleable commitment schemes

There are some known non-malleable commitment
schemes. Crescenzo et al. [2] constructed a non-
interactive and non-malleable commitment scheme.
Unfortunately, the resulting commitments are large
(i.e., O(|m|k)-bit with the message length |m| and the
security parameter k). Crescenzo et al. [3] and Fischlin
and Fischlin [8], respectively, enhanced DL (discrete-
logarithm) based Pedersen’s commitment scheme [11]
into ones with equivocality and extractability, and give
efficient non-malleable commitment schemes.

One common drawback among those efficient non-
malleable schemes is the fact that their corresponding
simulators do not work in a straight-line manner, re-
quires rewinding of the adversary. Due to this fact, such
schemes are proved non-malleable only in the stand-
alone cases. In the multiple-instances setting, i.e., when
the scheme is performed concurrently with many in-
stances of itself, such schemes cannot be proved non-
malleable. In such a setting, one rewinding of A re-
cursively invokes another rewinding of A, which recur-
sively invokes another rewinding ..., eventually results
in super-polynomial time simulation.

Damg̊ard and Nielsen [6] show a universally com-
posable (in particular, non-malleable in the multiple-
instances setting) commitment scheme, which is as ef-
ficient as non-malleable schemes by [3], [8]. The key
point of the scheme is the use of the trapdoor discrete
logarithm problem. The trapdoor of the DLP (cor-
responding to the scheme’s Common Reference String
(CRS)) enables extractability without rewinding and
leads to a straight-line simulator and UC-secureness of
their scheme. Unfortunately, the trapdoor DLP needs
a non-standard assumption, called the p-subgroup as-
sumption. A more serious problem with the scheme is
that the scheme requires a very strong trust in the third
party who provides the CRS of the scheme. More pre-
cisely, the CRS of the scheme consists of the following
pieces of information:

N, EK1, EK2, . . . , EKn.

Here, N is the system-wide modulus of the form N =
P 2Q with large primes P and Q, and EKi is the (pub-
lic) key to be used for making commitments for party
Pi. That is, all parties using this protocol work in the
same modulus N with tailored commitment keys for
each of them. (So, the length of CRS is proportional to

the number of parities involved.) Now suppose that the
third party gets corrupted and the primes P and Q are
known to the adversary. Then, the adversary can ex-
tract all of the messages under all of the commitments
among all of the parities using the P and Q, just as
he/she can decrypt ciphertexts using the (master) se-
cret key. This means that the scheme requires a very
strong trust in the third party providing the CRS, and
once the third party gets corrupted all of the security
of the scheme collapses catastrophically.

1.4 Our result

We show another efficient DL-based commitment
scheme. Our scheme is the first straight-line ex-
tractable commitment scheme based on the KEA1 as-
sumption. Although our scheme may not be UC-secure,
it is proven to be non-malleable even in the multiple-
instances setting, using the straight-line extractor. Our
simulator works in a straight-line manner by using the
KEA1-extractor.

The KEA1 assumption is non-standard like the p-
subgroup assumption used in [6]. Moreover, the KEA1
can be said “more non-standard”, since it is of non-
black-box type, i.e., the assumption depends on the
code of the adversary. However, we believe especially
when all (comparable) schemes we have are proved se-
cure only under non-standard assumptions, it is de-
sirable to have several schemes proved under different
non-standard assumptions, since each of non-standard
assumptions can collapse accidentally due to its non-
standard property. So, it should be meaningful to
have another new commitment scheme proved under
the KEA1 assumption. More constructively, the use of
KEA1 assumption brings us the following merit.

As an advantage compared to the scheme of [6],
our scheme can avoid the above-mentioned catastrophic
collapse of security by corrupting the third party pro-
viding the CRS. The advantage is the effect of the
KEA1 assumption that enables extractability not only
without rewinding but also without having any system-
wide master trapdoor. In fact, in our scheme, even
if trapdoors of CRS become known to the adversary,
the adversary cannot extract messages under commit-
ments. It is because the adversary cannot obtain non-
black-box access to honest parties as the simulator does
against adversaries in the proof of security. Note that
to use KEA1-extractor one needs non-black-box access
to the target.

Our commitment scheme satisfies the following
theorem:

Theorem 1. Under the KEA1 and DDH assumptions,
the commitment scheme is non-malleable in the strong
CRS model. Moreover, the simulator works straight-
line in the strict-polynomial time.

Since our simulator works straight-line without
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rewinding, the following corollary is immediate from
the theorem:

Corollary 1. Under the KEA1 and DDH assumptions,
the commitment scheme is non-malleable in the strong
CRS model in the multiple-instance setting.

2. Definitions

First, we recall the definition of non-malleability of a
commitment scheme in the “strong” CRS model, and
the definition of the KEA1 assumption.

2.1 Non-malleable commitment in the strong CRS
model

Definition 1 (non-malleable commitment in the
strong CRS model). Let Com be a commitment
scheme. Let A be any probabilistic polynomial-time ad-
versary and R be any nontrivial polynomial-time com-
putable relation over message space M. Here, non-
triviality of R means that R doesn’t contain any reflex-
ive pair (x, x). Define two experiments Expreal

Com(A, R)
and Expsim

Com(A, R) as follows (k is a security param-
eter, L and R denotes an honest sender and receiver,
respectively):

Expreal
Com(A, R) :

σ, σ∗ ← {0, 1}k; m ←M;
L commits to m for A by Com with c under CRS σ;
A commits for R by Com with c∗ under CRS σ∗;
L sends decommit m, r of c to A under σ;
A sends decommit m∗, r∗ of c∗ to R under σ∗;
Output R(m, m∗)

Expsim
Com(A, R) :

σ∗ ← {0, 1}k; m ←M;
A commits for R by Com with c∗ under CRS σ∗;
A sends decommit m∗, r∗ of c∗ to R under σ∗;
Output R(m, m∗)

A commitment scheme Com is said to be non-
malleable (with respect to open) if for any A there exists
some probabilistic polynomial-time algorithm Sim such
that for any R we have

Pr[Expreal
Com(A, R) = 1]−Pr[Expsim

Com(Sim,R) = 1] < ε(·)
with some negligible function ε.

The above definition of the non-malleability of
commitment schemes is the standard one (used in, e.g.,
[3], [8]) with the exception that we are using a “strong”
CRS model, that is, CRS’s are randomly and indepen-
dently chosen for the left and right sessions. The strong
CRS model is common in UC-setting, as used in the
scheme of [6]. On the while, note that schemes of [3], [8]

use a “weak” CRS model, where a single CRS is shared
among the two sessions. As seen later, our commit-
ment scheme is non-malleable only in the strong CRS
model, not in the weak CRS model. We believe there
are scenarios where the strong CRS model is meaning-
ful, for example, the case where some portions of CRS
are prepared for every receivers, as in [6].

A commitment scheme is called non-malleable in
multiple-instance setting when it is non-malleable even
if many instances of the commitment scheme are per-
formed concurrently in the presence of the MIM adver-
sary A. The adversary A receives polynomially-many
commitments c1,..,cn from left parties and manages to
make relating commitments c∗1,..,c

∗
n for right parties.

The formal definition is a straightforward extension of
Definition 1 and is omitted.

2.2 The KEA1 assumption

The KEA1 assumption [1], [9] for group G = 〈g〉 means
that it is possible only when one knows b to generate a
pair (gb, gab) for a randomly selected ga.

Definition 2 (The KEA1 Assumption [1]). Let
G be a probabilistic polynomial-time algorithm (p.p.a.)
which on the input of a security parameter k, outputs a
prime number q of k bits and a generator g of a group
of order q. For any string w and any p.p.a.’s G, H, H∗,
an experiment Expw

G,H,H∗ is defined as follows.

Expw
G,H,H∗ :

(q, g) ← G(1k); a
$← Zq; A = ga;

(B, W ) ← H(q, g, A, w);
b ← H∗(q, g, A, w);
If W = Ba, B 6= gb then return 1; Else return 0.

G is called to satisfy the KEA1 assumption if
for any w and any adversary H there exists an
extractor H∗ with the negligible Advw

G,H,H∗(k) =
Pr[Expw

G,H,H∗(k) = 1].

3. Our commitment scheme

We describe our commitment scheme and show its hid-
ing and binding properties. The proposed scheme uses
a technique similar to a “twin encryption technique”
[4], [12] and uses {q, g0, h0, g1, h1, σ} as CRS. The q in
the CRS is a prime order of group G with a generator
g. We assume the KEA1 assumption for G. The rest
of CRS are generated as follows:

g0
$← 〈g〉; e1

$← Zq, g1 = ge1
0 ;

d0
$← Zq, h0 = gd0

0 ; d1
$← Zq, h1 = gd1

1 ; σ $← {0, 1}l.

σ is CRS for a non-interactive zero-knowledge argument
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system Π = (l, P, V, S = (S1, S2)) for the NP-language
{(g, h, j, k) | ∃b ∈ Zq, j = gb, k = hb} of DH tuples on
G.

Commitment: S commits to message m(∈ Zq)
for R as follows:

1. R randomly chooses b0, b1 ∈ Z∗q , and computes
j0 = gb0

0 , k0 = hb0
0 , j1 = gb1

1 , k1 = hb1
1 . Then, R

computes ZK proof πi ← P ((gi, hi, ji, ki), bi, σ) for
i = 0, 1. R sends j0, k0, j1, k1, π0, π1 to S.

2. S verifies V (πi, (gi, hi, ji, ki), σ) = 1 for i = 0, 1. If
it is, S computes:

r
$← Zq, a1, a2

$← Z∗q ;
g′1 = ga1

1 , h′1 = ha2
1 , j′1 = ja1

1 , k′1 = ka2
1 ;

M0 = gm
0 hr

0, M1 = g′1
m

h′1
r
, L0 = jm

0 kr
0, L1 = j′1

m
k′1

r

and sends g′1, h
′
1, j

′
1, k

′
1, M0,M1, L0, L1 to R.

3. R checks j′1 = g′1
b1 and k′1 = h′1

b1 . If it is not, R
aborts.

Decommitment: S opens the commitment to R
canonically:

1. S sends m, r to R.

2. R verifies all of the equations M0 = gm
0 hr

0, M1 =
g′1

m
h′1

r
, L0 = jm

0 kr
0 and L1 = j′1

m
k′1

r hold. If it
does, R outputs m. Otherwise it aborts.

It is easily seen that one can commit to a k-
bit message with O(k) bits in O(k3) computations
with the scheme, using, e.g., an efficient NIZK scheme
compile(Peqdlog) of [5] as Π.

Lemma 1. Under the DDH assumption, the proposed
scheme is computationally hiding.

Proof. (Sketch) Among all the messages from S to
R, those depending on m are M0 = gm

0 hr
0, M1 =

g′1
m

h′1
r
, L0 = jm

0 kr
0 and L1 = j′1

m
k′1

r. By the sound-
ness of ZK argument system Π, we see that there are
b0, b1 ∈ Zq such that L0 = M b0

0 , L1 = M b1
1 . So, it is

sufficient to show M0, M1 hides m computationally.
Let s

$← Zq and M ′
1 = ga1m

1 ha2s
1 . Obviously

(M0, M
′
1) hides m perfectly. So, the claim follows if

(M0, M1) and (M0,M
′
1) are computationally indistin-

guishable for any p.p.a. A. But, if some A distinguishes
(M0, M1) and (M0,M

′
1), there must be a following dis-

tinguisher D against the DDH assumption:

Distinguisher D on inputs (h0, h
r
0, h1, h(= hr

1 or hs
1)):

m ←M; a1, a2
$← Z∗q ; g0, g1

$← 〈g〉;
Sets g0, h0, g1, h1 as CRS;
g′1 = ga1

1 , h′1 = ha2
1 ;

return A(g′1, h
′
1, g

m
0 hr

0, g
′
1
m

ha2).

As in the case of Pedersen’s commitment scheme
[11], we see the scheme is computationally binding un-
der the DLA.

4. Equivocality and extractability of the
scheme

We show the equivocality and extractability of our
scheme. The former is used to simulate the left party
against the adversary in MIM-setting, while the latter
is used to extract the committed message from the ad-
versary’s commitment for the right party in the proof
of non-malleability of the scheme. We use the following
simple fact: If and only if we have logg0

h0 6= logg1
h1,

two equations M0 = gm
0 hr

0, M1 = gm
1 hr

1 among m, r
determines m, r.

4.1 Equivocality

First, we show equivocality of the scheme, that is, there
is a simulator Sim that can generate, using some trap-
door information on the CRS, commitments for adver-
sary A, which can be opened by any messages later.

Sim generates an equivocal commitment for ad-
versary A as follows. Suppose A, playing the role of
receiver, sends the first message j0, k0, j1, k1, π0, π1 to
Sim. After verifying the validity of proofs π0 and π1,
Sim computes:

m0 ← M, r0
$← Zq, a1

$← Z∗q , a2 = d0d
−1
1 a1;

g′1 = ga1
1 , h′1 = ha2

1 , j′1 = ja1
1 , k′1 = ka2

1 ;
M0 = gm

0 hr
0, M1 = g′1

m
h′1

r
, L0 = jm

0 kr
0, L1 = j′1

m
k′1

r
.

Then, Sim sends g′1, h
′
1, j

′
1, k

′
1,M0,M1, L0, L1 to A.

Note the only difference between the simulated
commitment and the honest one is in the generation of
a2: the simulated a2 satisfies a relation a2 = d0d

−1
1 a1

with a1, but the real a2 is independently random. We
show in the proof of Theorem 1 A cannot distinguish
between simulated commitments and real commitments
under the DDH assumption.

It is easily seen that the simulated commitment is
opened by any message m. In fact, since a2 = d0d

−1
1 a1,

we have d0 = logg0
(h0) = logg′1

(h′1). Moreover, by
the soundness of the proofs π0, π1, we have logj0(k0) =
logg0

(h0) = d0 and logj′1
(k′1) = logg′1

(h′1) = d0. So,
M0,M1, L0, L1 can be opened by any message m with
r = r0 + (m0 −m)/d0.

4.2 Extractability

Second, we show the extractability of the scheme, that
is, there is a simulator Sim which can extract a mes-
sage m from an adversary’s commitment using some
trapdoor information on the CRS.

Let g0, h0, g1, h1, σ denote the CRS of the scheme.
We assume a simulator Sim knows discrete logarithms
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e1, d0, d1 among them: g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 .

Suppose Sim, simulating a receiver, honestly sends the
first message to an adversary A who plays a sender’s
role, i.e., Sim randomly chooses b0, b1 ∈ Z∗q , and com-
putes

j0 = gb0
0 , k0 = hb0

0 , j1 = gb1
1 , k1 = hb1

1 ;
πi ← P (DH(gi, hi, ji, ki), bi, σ) for i = 0, 1;

and sends j0, k0, j1, k1, π0, π1 to A.
Then, A sends commitment g′1, h

′
1, j

′
1, k

′
1,M0,M1, L0, L1

to Sim. On the condition that the commitment should
be opened correctly, we have equalities

j′1 = g′1
b1 , k′1 = h′1

b1 (1)

and there must be m, r such that M0 = gm
0 hr

0, M1 =
g′1

m
h′1

r
, L0 = jm

0 kr
0, L1 = j′1

m
k′1

r
.

In the above, Sim sends a randomly selected j1 to
A and A returns to Sim (g′1, j

′
1) which constitute a DH-

tuple (g1, j1, g
′
1, j

′
1) by Equation (1). That is, A is seen

as playing the role of the KEA1-adversary against Sim.
So, using the corresponding KEA1-extractor, Sim can
extract a1 satisfying g′1 = ga1

1 . Similarly, Sim obtains
a2 satisfying h′1 = ha2

1 .
Then, Sim can compute α = e1a1, β = e1d

−1
0 d1a2

and get

gm
0 = (Mβ

0 M−1
1 )

1
β−α . (2)

Here, note that α = β happens with only a negligible
probability, because if α = β then g0, h0, g1, h

′
1
1/a1 con-

stitute a DH-tuple and A should violate CDH assump-
tion. (If the same CRS was used among the left and
right sessions in the MIM-setting, A could reuse the h′1,
which was generated by Sim in the left session, also in
the right session, and then the fact α = β (in the right
session) doesn’t imply the violation of CDH assump-
tion. This is why we need the strong CRS model.)

Since logj0j1 = logg0
g1 = e1, logj0k0 = logg0

h0 =
d0 and logj1k1 = logg1

h1 = d1, using the same α, β,
Sim gets also

jm
0 = (Lβ

0L−1
1 )

1
β−α . (3)

Thus, Sim can compute gm
0 , jm

0 from A’s com-
mitment g′1, h

′
1, j

′
1, k

′
1, M0,M1, L0, L1 and the trapdoor

e1, d0, d1 on the CRS. Here, A is seen as playing the
role of the KEA1-adversary again: A gets a random j0
and returns gm

0 , jm
0 . Using the corresponding KEA1-

extractor, Sim can extract the message m.

5. Non-malleability of the commitment scheme

Now we show the main theorem:

Theorem 1. Under the KEA1 and DDH assumptions,
the commitment scheme is non-malleable in the strong
CRS model. Moreover, the simulator works straight-
line in the strict-polynomial time.

Since our simulator works straight-line without
rewinding, the following corollary is immediate from
the theorem:

Corollary 1. Under the KEA1 and DDH assumptions,
the commitment scheme is non-malleable in the strong
CRS model in the multiple-instance setting.

Before proceeding to the formal proof of Theorem
1, we point out some key-points that make the proof
work. Suppose an adversary A in the MIM setting is
given. Simulator Sim generates independent CRS’s for
the left and right sessions with trapdoor information as
specified in the scheme. A is invoked given the CRS. In
order to prove non-malleability, Sim has to “simulate
from the left and extract from the right” against A.

Simulate from the left: To simulate the left
view of A without the knowledge of the real message
m, Sim as a left party commits to a dummy message
m0 for A through an equivocal commitment c using
the trapdoor information as shown in Section 4.1. By
equivocality, the commitment c cannot be distinguished
from real commitments and it can be opened by the real
message m instead of m0, later. This indicates that
Sim can correctly commit to m without the knowledge
of m.

When doing an equivocal commitment, Sim fakes
a1, a2 as shown in Section 4.1. We will show an equiv-
ocal commitment with the faked a1, a2 is indistinguish-
able from a real one under the DDH assumption.

Extract from the right: From the commit-
ment c∗ generated by A, Sim, as the simulated right
party, can extract the committed message m∗ by us-
ing the trapdoor information and the suitable KEA1-
extractors as descried in Section 4.2. Here, note that
when A generated c∗, A only knew an equivocal com-
mitment c. So, m∗ must be independent of m. This
means that Sim can find m∗ without using m at all
with the same probability that A outputs such m∗ in
the real MIM setting. This means non-malleability of
the commitment scheme.

Proof of Theorem 1

Suppose an adversary A against the scheme in the
MIM setting and a nontrivial computable relation R
on message space M is given (here, non-triviality of
R means that R doesn’t contain any reflexive pair
(x, x)). In the following, we define six experiments
Exp0,Exp1, · · · ,Exp5 below (for the full description
of those experiments, see Appendix A). Exp0 is identi-
cal to the real experiment Expreal

Com specified with our
commitment scheme and Exp5 is seen as the ideal
experiment Expsim

Com specified with our commitment
scheme and a suitable simulator derived from the ad-
versary in Exp0 (see Definition 1). In order to prove
the non-malleability of the scheme, we need to show
outputs of Exp0 and Exp5 are indistinguishable. We
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do that by showing (outputs of) Expi and Expi+1 are
indistinguishable for i = 0 to 4 step by step.

As stated, Exp0 is Expreal
Com specified with our

commitment scheme. The only difference between
Exp1 and Exp0 is in the generation of a2: a2 in
Exp1 is equal to d0d

−1
1 a1 (instead of a random ele-

ment). To prove Exp1 is indistinguishable from Exp0,
we first define a game GameLR(DLR) for a probabilis-
tic polynomial-time algorithm DLR as follows.

GameLR(DLR) :

g0
$← 〈g〉; e1, d0, d1

$← Zq, g1 = ge1
0 , h0 =

gd0
0 , h1 = gd1

1 ; cLR
$← {0, 1};

Invoke DLR((g0, h0), (g1, h1));
If DLR makes a query j1, k1, then

If k1 6= jd1
1 , then abort;

a1
$← Z∗q ;

If cLR = 0, then a2
$← Z∗q else a2 =

d0d
−1
1 a1;

g′1 = ga1
1 , h′1 = ha2

1 , j′1 = j1
a1 , k′1 = k1

a2 ;
Return g′1, h

′
1, j

′
1, k

′
1 to DLR;

DLR outputs ĉ and halt;
Output ĉ;

In the above, DLR is supposed to make a query
once at most. The advantage of DLR is defined by
AdvDLR = 2Pr[ĉ = cLR] − 1. We call G = 〈g〉 LR-
secure if the advantage AdvDLR is negligible for any
probabilistic polynomial-time algorithm DLR. As to
LR-secureness, we show two lemmas:

Lemma 2. If G is LR-secure, then Exp1 is indistin-
guishable from Exp0.

Proof. Suppose, on the contrary, there is a distin-
guisher D0,1 between Exp0 and Exp1 with a non-
negligible advantage. We construct an adversary DLR

with a non-negligible advantage against G in GameLR

by using D0,1.
According to the definition of GameLR, we pre-

pare with g0, h0, g1, h1 and c
$← {0, 1}. Given g0, h0

and g1, h1, the DLR proceeds as follows. First, DLR

chooses a message m and uniformly selects σ from
{0, 1}l. Moreover, DLR uniformly select u0 from G,
t1, s0, s1 from Zq, and η from {0, 1}l, and computes
u1 = ut1

0 , v0 = us0
0 , v1 = us1

1 . Then, DLR sets
{g0, h0, g1, h1, σ} as the left CRS and {u0, v0, u1, v1, η}
as the right CRS, and invokes the adversary A. DLR,
simulating the right party, generates the first message
j0, k0, j1, k1, π0, π1 honestly and sends it to A. A is
supposed to send j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 to the left party
simulated by DLR. DLR, after verifying proofs π0

and π1 just like the honest left party, makes a query
j∗1 , k∗1 to the oracle in GameLR, which replies with
g′1, h

′
1, j

′
1, k

′
1 (note by the soundness of the proof π1, we

have k∗1 = j∗1
d1). From now on, using this g′1, h

′
1, j

′
1, k

′
1

as a real g′1, h
′
1, j

′
1, k

′
1, DLR proceeds just as in Exp0 (or

Exp1) until A outputs some decommit message m∗, r∗.
Finally, DLR outputs D0,1(R(m, m∗)).

It is obvious that the distribution of R(m,m∗) in
the above is identical to the one of Exp0 if c = 0 and to
Exp1 if c = 1. So, the advantage of D0,1 is transferred
to the one of DLR, which makes a contradiction to the
assumption of LR-secureness of G.

Lemma 3. G is LR-secure under the DDH and KEA1
assumptions on G.

Proof. Suppose, on the contrary, there is an adversary
DLR with a non-negligible advantage against GameLR

in G. We construct a DDH distinguisher Dddh with
a non-negligible advantage on G by using DLR and a
suitable KEA1-extractor.

We prepare with an input g0, h0, g
′
1, h

′
1 for Dddh as

usual:

g0
$← 〈g〉;

d0, e
′
1

$← Zq, h0 = gd0
0 , g′1 = g

e′1
0 ;

cDDH
$← {0, 1};

If cDDH = 0 then d′1
$← Zq else d′1 = d0;

h′1 = g′1
d′1 ;

Given g0, h0, g
′
1, h

′
1, the Dddh proceeds as follows.

First, Dddh generates two random elements g1, h1 on G

by e1, d1
$← Zq, g1 = ge1

0 , h1 = gd1
1 . Next, Dddh invokes

DLR with inputs of g0, h0, g1, h1 and with a random
tape R. When, DLR makes a query j1, k1 (remember
such query is once at most), Dddh verifies k1 = jd1

1 (if
not it aborts), and calls the KEA1-extractor H∗ (de-
scribed below) with inputs of g1, h1 and an auxiliary
input g0, h0, R to get an output b. Then, Dddh com-
putes j′1 = g′1

b and k′1 = h′1
b, and replies DLR with

g′1, h
′
1, j

′
1, k

′
1. Finally, Dddh outputs an output ĉ of DLR.

In the above, H∗ is the KEA1-extractor corre-
sponding to

H(g1, h1; g0, h0; R):

Invoke DLR with the input of g1, h1, g0, h0

and the random tape of R;
When DLR makes a query j1, k1, output j1, k1;

We can suppose outputs of H satisfy k1 = jd
1 con-

ditioned on the success of DLR. So, by the KEA1 as-
sumption, we have

j1 = gb
1, k1 = hb

1 (4)

for b = H∗(g1, h1; g0, h0, R) with negligible exceptions.
Let

a1 = e′1/e1, a2 = a1d
′
1/d1.

It is directly verified that

g′1 = ga1
1 , h′1 = ha2

1 .
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Then, under Equation (4), we have

j′1 = g′1
b = ga1b

1 = ja1
1

k′1 = h′1
b = ha2b

1 = ka2
1 .

Moreover,

cDDH = 1 ⇔ d′1 = d0 ⇔ a2 = a1d0/d1.

Thus, we see that in the case of Equation (4) holds,
the view of DLR simulated by Dddh on a DDH-tuple is
identical to the view of DLR in GameLR with cLR = 0
and the view simulated on a random tuple is identical
to the view with cLR = 1. So, the advantage of DLR

is transferred to the one of Dddh with a negligible loss,
and a contradiction to the DDH assumption.

Lemmas 2 and 3 show that Exp1 is indistinguish-
able from Exp0 under the DDH and KEA1 assump-
tions on G.

We proceed to Exp2. The only difference be-
tween Exp2 and Exp1 is that the simulated left party
in Exp2 commits to a dummy message m0 instead of
m. However, since a1 and a2 are faked both in Exp1

and Exp2, the commitment M0,M1, L0, L1 is equivocal
in both experiments. Hence Exp2 is indistinguishable
from Exp1.

We proceed to Exp3. The only difference between
Exp3 and Exp2 is that we use, in the right session
of Exp3, the simulator (S1, S2) of the non-interactive
zero-knowledge argument system Π = (l, P, V, S =
(S1, S2)) instead of the real prover P (and don’t use
the witness bi). By the zero-knowledge property of Π,
Exp3 is indistinguishable from Exp2.

We proceed to Exp4. The only difference between
Exp4 and Exp3 is that we use the KEA1-extractor
H∗ to extract the message n∗ under the adversary’s
commitment and output R(m,n∗) instead of R(m,m∗)
in Exp4. The KEA1-extractor H∗ corresponds to
the following KEA1-adversary H. Given u0, j0(= ub0

0 )
and auxiliary input w (independent of b0), H outputs
un∗

0 , jn∗
0 by simulating the MIM-setting against A:

H(u0, j0; w = (RA, m, g0, e1, d0, d1, σ,
t1, s0, s1, z, b1, z0, z1, m0, r0, a1)):

Set (g0, h0 = gd0
0 , g1 = ge1

0 , h1 = gd1
1 , σ) as the left

CRS and (u0, v0 = us0
0 , u1 = ut1

0 , v1 = us1
1 , η) as the

right CRS with (η, ξ) = S1(1
k; z);

Invoke A with random tape RA;
Compute simulated proofs π0, π1 as in Exp4 and

send j0, k0 = js0
0 , j1 = ub1

1 , k1 = vb1
1 , π0, π1 to A,

which in turn sends j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 to L;
Generate g′1, h

′
1, j

′
1, k

′
1, M0, M1, L0, L1 as in Exp4

and send it to A, which in turn sends
u∗1, v

∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 to R;

a∗1 := H∗
1 (u1, j1; w1); a∗2 := H∗

2 (v1, k1; w2);
(Here, w1 = w2 = (RA, m, g0, e1, d0, d1, σ, u0, v0, s1, z,
j0, k0, z0, z1, m0, r0, a1)) is independent of b1.)
α := t1a

∗
1; β := t1s

−1
0 s1a

∗
2; If α = β then abort;

Output ((M∗
0

βM∗
1
−1)1/(β−α), (L∗0

βL∗1
−1)1/(β−α));

In the above, the KEA1-extractor H∗
1 in H corresponds

to KEA1-adversary H1, which given u1, j1(= ub1
1 ) and

w1 (independent of b1), outputs u∗1, j
∗
1 as follows:

H1(u1, j1; w1 = (RA, m, g0, e1, d0, d1, σ,
u0, v0, s1, z, j0, k0, z0, z1, m0, r0, a1)):

Set (g0, h0 = gd0
0 , g1 = ge1

0 , h1 = gd1
1 , σ) as the left

CRS and (u0, v0, u1, v1 = us1
1 , η) as the right CRS

with (η, ξ) = S1(1
k; z);

Invoke A with random tape RA;
Compute simulated proofs π0, π1 as in Exp4 and
send j0, k0, j1, k1 = js1

1 , π0, π1 to A, which in turn
sends j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 to L;
Generate g′1, h

′
1, j

′
1, k

′
1, M0, M1, L0, L1 as in Exp4

and send it to A, which in turn sends
u∗1, v

∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 to R;

Output (u∗1, j
∗
1 );

The KEA1-extractor H∗
2 in H corresponds to KEA1-

adversary H2, which given v1, k1(= vb1
1 ) and w2(= w1),

outputs v∗1 , k∗1 in the similar way as H1. We omit the
details of H2. The description of Exp4 is completed.

Now we show Exp4 is indistinguishable from
Exp3. First, note that the view of A in H, H1,H2

is identical to the view of A in Exp3 (or Exp4), be-
cause we distribute the randomness used in Exp3 (or
Exp4) to H, H1,H2 through auxiliary inputs. So, it
is sufficient to show n∗ derived by H∗ is equal to m∗

decommitted by A with an overwhelming probability
conditioned on A’s success. This is nothing but the
extractability.

More precisely, by the KEA1 assumption on
(H1,H

∗
1 ), we see that the output a∗1 of H∗

1 satisfies

u∗1 = u
a∗1
1 , j∗1 = j

a∗1
1 (5)

with only negligible exceptions. Similarly, a∗2 satisfies
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v∗1 = v
a∗2
1 , k∗1 = k

a∗2
1 (6)

with only negligible exceptions. Since m∗, r∗ in Exp3

is a valid decommitment for M∗
0 ,M∗

1 , L∗0, L
∗
1 (condi-

tioned on A’s success), we have M∗
0 = um∗

0 vr∗
0 , M∗

1 =
u∗1

m∗
v∗1

r∗ , L∗0 = jm∗
0 kr∗

0 , L∗1 = j∗1
m∗

k∗1
r∗ . By

Equation (2) and (3) in Section 4.2 together with
Equation (5) and (6), we see that, if α, β (defined
in the description of H) are not equal, um∗

0 =
(M∗

0
βM∗

1
−1)1/(β−α), jm∗

0 = (L∗0
βL∗1

−1)1/(β−α) and the
KEA1 assumption on (H, H∗) means that n∗ = m∗

with only negligible exceptions. The remaining case
α = β happens with only a negligible probability by
the following Lemma 4:

Lemma 4. The case of α = β happens with only a neg-
ligible probability under Discrete Logarithmic Assump-
tion.

Proof. Assume, on the contrary, the case α = β hap-
pens with a non-negligible probability. We construct
discrete-logarithm extractor E as follows:

E(u0, v0(= us0
0 )):

Generate randomness (RA, m, g0, e1, d0, d1, σ,
t1, s1, z, b0, b1, z0, z1, m0, r0, a1)) as in Exp4 (or
Exp3);

Set (g0, h0 = gd0
0 , g1 = ge1

0 , h1 = gd1
1 , σ) as the

left CRS and (u0, v0, u1 = ut1
0 , v1 = us1

1 , η) as

the right CRS with (η, ξ) = S1(1
k; z);

Invoke A with random tape RA;
Compute j0, k0, j1, k1, π0, π1 as in Exp4 and send
it to A, which in turn sends j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1
to L;
Generate g′1, h

′
1, j

′
1, k

′
1, M0, M1, L0, L1 as in Exp4

and send it to A, which in turn sends
u∗1, v

∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 to R;

a∗1 := H∗
1 (u1, j1; w1); a∗2 := H∗

2 (v1, k1; w2);
(Here, w1 = w2 = (RA, m, g0, e1, d0, d1, σ, u0, v0, s1,
z, j0, k0, z0, z1, m0, r0, a1)) is independent of b1.)
Output s1a

∗
2/a∗1;

Recall α = t1a
∗
1 and β = t1s

−1
0 s1a

∗
2 by definition. So,

α = β means a∗1 = s−1
0 s1a

∗
2, and this means that s0 =

s1a
∗
2/a∗1.

Thus, we have shown that Exp4 is indistinguish-
able from Exp3.

We arrive at the final experiment Exp5. The only
difference between Exp5 and Exp4 is that the simu-
lated left party sends (m0, r0) as decommit information
instead of (m, r) in Exp5. Since n∗ is determined before
decommitment by the left party, it is obvious that Exp5

is identically distributed to Exp4. Moreover, note that
the simulated left party L in Exp5 doesn’t use the mes-
sage m. So, L and A in Exp5 constitute the desired
simulator Sim in the ideal experiment Expsim

Com. The
proof is completed.

6. Conclusion

We showed another efficient DL-based commitment
scheme, which is proven to be non-malleable even in
the multiple-instances setting, based on the KEA1 and
DDH assumptions. Our scheme has a simulator that
works in a straight-line manner by using the KEA1-
extractor instead of the rewinding strategy. The KEA1
assumption enables our scheme’s extractability not only
without rewinding but also without having any system-
wide master trapdoor. So, our scheme can avoid the
catastrophic collapse of security possible by corrupting
the third party providing the CRS.
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Appendix A: Experiments in the proof of The-
orem 1

Exp0 :

m ←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 , σ

$← {0, 1}l;

u0
$← G, t1, s0, s1

$← Zq, u1 = ut1
0 , v0 = us0

0 , v1 = us1
1 ;

η
$← {0, 1}l;

Invoke A with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q ;
j0 = ub0

0 , k0 =

vb0
0 ;

j1 = ub1
1 , k1 =

vb1
1 ;

π0 ←
P ((u0, v0, j0, k0),
b0, η);
π1 ←
P ((u1, v1, j1, k1),
b1, η);
⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 ;
Verify π∗0 and
π∗1 ;
If not valid, abort;

r
$← Zq, a1, a2

$←
Z∗q ;
g′1 = ga1

1 , h′1 =
ha2

1 ;
j′1 = j∗1

a1 , k′1 =
k∗1

a2 ;
M0 = gm

0 hr
0;

M1 = g′1
m

h′1
r
;

L0 = j∗0
mk∗0

r;
L1 = j′1

m
k′1

r
;

g′1, h
′
1, j

′
1, k

′
1, M0, M1, L0, L1 ⇒;

u∗1, v
∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 ⇒;

Verify j∗1 =
u∗1

b1 and k∗1 =
v∗1

b1 ;
If not valid, abort;

m, r ⇒;
m∗, r∗ ⇒;

Verify all of the
following:

M∗
0 = um∗

0 vr∗
0 ,

M∗
1 = u∗1

m∗v∗1
r∗ ,

L∗0 = jm∗
0 kr∗

0 ,

L∗1 = j∗1
m∗k∗1

r∗ ;
If not valid, abort;

Output R(m, m∗);
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Exp1 :

m ←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 , σ

$← {0, 1}l;

u0
$← G, t1, s0, s1

$← Zq, u1 = ut1
0 , v0 = us0

0 , v1 = us1
1 ;

η
$← {0, 1}l;

Invoke A with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q ;
j0 = ub0

0 , k0 =

vb0
0 ;

j1 = ub1
1 , k1 =

vb1
1 ;

π0 ←
P ((u0, v0, j0, k0),
b0, η);
π1 ←
P ((u1, v1, j1, k1),
b1, η);
⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 ;
Verify π∗0 and
π∗1 ;
If not valid, abort;

r
$← Zq, a1

$←
Z∗q ;
a2 = d0d

−1
1 a1;

g′1 = ga1
1 , h′1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = gm
0 hr

0;
M1 = g′1

m
h′1

r
;

L0 = j∗0
mk∗0

r;
L1 = j′1

m
k′1

r
;

g′1, h
′
1, j

′
1, k

′
1, M0, M1, L0, L1 ⇒;

u∗1, v
∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 ⇒;

Verify j∗1 =
u∗1

b1 and k∗1 =
v∗1

b1 ;
If not valid, abort;

m, r ⇒;
m∗, r∗ ⇒;

Verify all of the
following:

M∗
0 = um∗

0 vr∗
0 ,

M∗
1 = u∗1

m∗v∗1
r∗ ,

L∗0 = jm∗
0 kr∗

0 ,

L∗1 = j∗1
m∗k∗1

r∗ ;
If not valid, abort;

Output R(m, m∗);

Exp2 :

m ←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 , σ

$← {0, 1}l;

u0
$← G, t1, s0, s1

$← Zq, u1 = ut1
0 , v0 = us0

0 , v1 = us1
1 ;

η
$← {0, 1}l;

Invoke A with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q ;
j0 = ub0

0 , k0 =

vb0
0 ;

j1 = ub1
1 , k1 =

vb1
1 ;

π0 ←
P ((u0, v0, j0, k0),
b0, η);
π1 ←
P ((u1, v1, j1, k1),
b1, η);
⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 ;
Verify π∗0 and
π∗1 ;
If not valid, abort;

m0 ←M, r0
$← Zq;

a1
$← Z∗q , a2 =

d0d
−1
1 a1;

g′1 = ga1
1 , h′1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = gm0
0 hr0

0 ;
M1 = g′1

m0h′1
r0 ;

L0 = j∗0
m0k∗0

r0 ;
L1 = j′1

m0k′1
r0 ;

g′1, h
′
1, j

′
1, k

′
1, M0, M1, L0, L1 ⇒;

u∗1, v
∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 ⇒;

Verify j∗1 =
u∗1

b1 and k∗1 =
v∗1

b1 ;
If not valid, abort;

r = r0 + (m−m0)/d0;

m, r ⇒;
m∗, r∗ ⇒;

Verify validity
of (m∗, r∗);
If not valid, abort;

Output R(m, m∗);
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Exp3 :

m ←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 , σ

$← {0, 1}l;

u0
$← G, t1, s0, s1

$← Zq, u1 = ut1
0 , v0 = us0

0 , v1 = us1
1 ;

(η, ξ) = S1(1
k; z) ;

Invoke A with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η);

L A R
b0, b1

$← Z∗q ;
j0 = ub0

0 , k0 =

vb0
0 ;

j1 = ub1
1 , k1 =

vb1
1 ;

z0, z1
$← {0, 1}∗;

π0 ←
S2((u0, v0, j0, k0),

ξ, η; z0) ;

π1 ←
S2((u1, v1, j1, k1),

ξ, η; z1) ;

⇐ j0, k0, j1, k1,
π0, π1;

⇐ j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 ;
Verify π∗0 and
π∗1 ;
If not valid, abort;

m0 ←M, r0
$←

Zq;

a1
$← Z∗q , a2 =

d0d
−1
1 a1;

g′1 = ga1
1 , h′1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = gm0
0 hr0

0 ;
M1 = g′1

m0h′1
r0 ;

L0 = j∗0
m0k∗0

r0 ;
L1 = j′1

m0k′1
r0 ;

g′1, h
′
1, j

′
1, k

′
1, M0, M1, L0, L1 ⇒;

u∗1, v
∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 ⇒;

Verify j∗1 =
u∗1

b1 and k∗1 =
v∗1

b1 ;
If not valid, abort;

r = r0 + (m −
m0)/d0;
m, r ⇒;

m∗, r∗ ⇒;
Verify validity
of (m∗, r∗);
If not valid, abort;

Output R(m, m∗);

Exp4 :

m ←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 , σ

$← {0, 1}l;

u0
$← G, t1, s0, s1

$← Zq, u1 = ut1
0 , v0 = us0

0 , v1 = us1
1 ;

(η, ξ) = S1(1
k; z);

Invoke A with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η) and random tape RA;

L A R
b0, b1

$← Z∗q ;
j0 = ub0

0 , k0 =

vb0
0 ;

j1 = ub1
1 , k1 =

vb1
1 ;

z0, z1
$← {0, 1}∗;

π0 ←
S2((u0, v0, j0, k0),
ξ, η; z0);
π1 ←
S2((u1, v1, j1, k1),
ξ, η; z1);
⇐ j0, k0, j1, k1,

π0, π1;
⇐ j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 ;

Verify π∗0 and
π∗1 ;

m0 ←M, r0
$←

Zq;

a1
$← Z∗q , a2 =

d0d
−1
1 a1;

g′1 = ga1
1 , h′1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = gm0
0 hr0

0 ;
M1 = g′1

m0h′1
r0 ;

L0 = j∗0
m0k∗0

r0 ;
L1 = j′1

m0k′1
r0 ;

g′1, h
′
1, j

′
1, k

′
1, M0, M1, L0, L1 ⇒;

u∗1, v
∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 ⇒;

Verify j∗1 =
u∗1

b1 and k∗1 =
v∗1

b1 ;
If not valid, abort;

n∗ = H∗(u0, j0, w);

r = r0 + (m −
m0)/d0;
m, r ⇒;

m∗, r∗ ⇒;
Verify validity
of (m∗, r∗);
If not valid, abort;

Output R(m, n∗);
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Exp5 :

m ←M, g0
$← G, e1, d0, d1

$← Zq;

g1 = ge1
0 , h0 = gd0

0 , h1 = gd1
1 , σ

$← {0, 1}l;

u0
$← G, t1, s0, s1

$← Zq, u1 = ut1
0 , v0 = us0

0 , v1 = us1
1 ;

(η, ξ) = S1(1
k; z);

Invoke A with the left CRS (g0, h0, g1, h1, σ) and
the right CRS (u0, v0, u1, v1, η) and random tape RA;

L A R
b0, b1

$← Z∗q ;
j0 = ub0

0 , k0 =

vb0
0 ;

j1 = ub1
1 , k1 =

vb1
1 ;

z0, z1
$← {0, 1}∗;

π0 ←
S2((u0, v0, j0, k0),
ξ, η; z0);
π1 ←
S2((u1, v1, j1, k1),
ξ, η; z1);
⇐ j0, k0, j1, k1,

π0, π1;
⇐ j∗0 , k∗0 , j∗1 , k∗1 , π∗0 , π∗1 ;

Verify π∗0 and
π∗1 ;

m0 ←M, r0
$←

Zq;

a1
$← Z∗q , a2 =

d0d
−1
1 a1;

g′1 = ga1
1 , h′1 =

ha2
1 ;

j′1 = j∗1
a1 , k′1 =

k∗1
a2 ;

M0 = gm0
0 hr0

0 ;
M1 = g′1

m0h′1
r0 ;

L0 = j∗0
m0k∗0

r0 ;
L1 = j′1

m0k′1
r0 ;

g′1, h
′
1, j

′
1, k

′
1, M0, M1, L0, L1 ⇒;

u∗1, v
∗
1 , j∗1 , k∗1 , M∗

0 , M∗
1 , L∗0, L

∗
1 ⇒;

Verify j∗1 =
u∗1

b1 and k∗1 =
v∗1

b1 ;
If not valid, abort;
n∗ = H∗(u0, j0, w);

m0, r0 ⇒;

m∗, r∗ ⇒;
Verify validity
of (m∗, r∗);
If not valid, abort;

Output R(m, n∗);


