
1136
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

PAPER

Identification Schemes from Key Encapsulation Mechanisms∗

Hiroaki ANADA†a) and Seiko ARITA†b), Members

SUMMARY We propose a generic conversion from a key encapsula-
tion mechanism (KEM) to an identification (ID) scheme. The conversion
derives the security for ID schemes against concurrent man-in-the-middle
(cMiM) attacks from the security for KEMs against adaptive chosen cipher-
text attacks on one-wayness (one-way-CCA2). Then, regarding the deriva-
tion as a design principle of ID schemes, we develop a series of concrete
one-way-CCA2 secure KEMs. We start with El Gamal KEM and prove
it secure against non-adaptive chosen ciphertext attacks on one-wayness
(one-way-CCA1) in the standard model. Then, we apply a tag framework
with the algebraic trick of Boneh and Boyen to make it one-way-CCA2
secure based on the Gap-CDH assumption. Next, we apply the CHK trans-
formation or a target collision resistant hash function to exit the tag frame-
work. And finally, as it is better to rely on the CDH assumption rather than
the Gap-CDH assumption, we apply the Twin DH technique of Cash, Kiltz
and Shoup. The application is not “black box” and we do it by making the
Twin DH technique compatible with the algebraic trick. The ID schemes
obtained from our KEMs show the highest performance in both compu-
tational amount and message length compared with previously known ID
schemes secure against concurrent man-in-the-middle attacks.
key words: identification scheme, key encapsulation mechanism, one-way-
CCA2 security, concurrent man-in-the-middle attack, the computational
Diffie-Hellman assumption

1. Introduction

Password-based identification protocols are broadly used to
verify identities of entities. But they are exposed to a criti-
cal threat that, when a password happens to be sent without
encryption through a communication channel, an adversary
can eavesdrop the password and impersonate the prover eas-
ily. Another threat is that, if an adversary acts a verifier and
the prover interacts with it without knowing that it is a fake
verifier, then the adversary can catch the password even if it
is sent under encryption.

Here the need of public key based ID schemes arises.
In the public key framework, a prover holds a secret key and

Manuscript received November 4, 2011.
Manuscript revised February 25, 2012.
†The authors are with Institute of Information Security,

Yokohama-shi, 221-0835 Japan.
∗Preliminary versions of this paper appeared in Proceedings of

the 4th International Conference on Provable Security — ProvSec
2010, Lecture Notes in Computer Science vol.6402, pp.18–34,
Springer-Verlag [1], under the title of “Identification Schemes of
Proofs of Ability Secure against Concurrent Man-in-the-Middle
Attacks”, and in Proceedings of the 4th International Conference
on Cryptology — AfricaCrypt 2011, Lecture Notes in Computer
Science vol.6737, pp.59–76, Springer-Verlag [2], under the same
title as this paper.

a) E-mail: hiroaki.anada@gmail.com
b) E-mail: arita@iisec.ac.jp

DOI: 10.1587/transfun.E95.A.1136

a verifier refers to a matching public key. They interact for
some rounds doing necessary computations until the verifier
feels certain that the prover has the secret key. The secret
key is never revealed directly but embedded and hidden in
messages by those computations.

However, even for such ID schemes, there is still a
strong threat by the following active attack. Pretending to
be a verifier, an adversary accesses a prover application (on
a client PC, for instance), and invokes many clones of the ap-
plication, which have independent states and random tapes,
but the same secret key. Interacting with those clones, the
adversary embeds some cheating trick in messages and col-
lects information of the secret key from the responses of
those clones. Afterwards, it tries to impersonate the prover
against a true verifier (on a server, for instance) using that
collected information. This situation is modeled as concur-
rent (two-phase) attack [7] in cryptography.

Another strong threat is man-in-the-middle attack,
where an adversary stands between a prover and a verifier
and interacts with both sides simultaneously. The advanta-
geous point is that the adversary can interact with the prover
adaptively according to the message from the verifier.

Now in the Internet environment where everyone is in-
volved, attacks on ID schemes have become fairly strong
and concurrent man-in-the-middle attack (cMiM attack, for
short) [7] has become a real threat. In cMiM setting, an
adversary stands between prover clones and a verifier. In-
teracting in some cheating way, the adversary collects infor-
mation of the secret key from the prover clones, while the
adversary interacts with the verifier simultaneously trying
to impersonate the prover.

Historically, there have been two types of ID schemes.
One is the Σ-protocol type [11] which is a kind of proofs of
knowledge [6], [21] consisting of 3-round interaction, and
the other is challenge-and-response type obtained in a nat-
ural way from encryption schemes or signature schemes.
Most of known traditional ID schemes, such as the Schnorr
scheme [37] and the Guillou-Quisquater (GQ) scheme
[22], are the Σ-protocol type because they are faster than
challenge-and-response type.

Unfortunately, the Schnorr scheme and the GQ scheme
are not secure under man-in-the-middle attacks, hence there
have been significant efforts to make ID schemes secure
against such cMiM attacks based on the Σ-protocol. For ex-
ample, Katz [25], [26] made an ID scheme of non-malleable
proof of knowledge. But the security model is with timing
constraint, not against full cMiM attacks. Gennaro [20] con-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1137

structed an ID scheme of (fully) concurrently non-malleable
proof of knowledge by employing a multi-trapdoor commit-
ment. But it is no longer so fast as a challenge-and-response
ID scheme obtained from, for instance, the Cramer-Shoup
encryption scheme [14]. Moreover, the security is based
on a strong type of assumption (the Strong Diffie-Hellman
(SDH) assumption or the Strong RSA assumption).

One of the reasons why it is so difficult to construct
an ID scheme secure against cMiM attacks seems that we
are rooted in the category of Σ-protocols. Let us remem-
ber that challenge-and-response ID schemes obtained from
IND-CCA2 secure encryption schemes (see [14] for exam-
ple) and EUF-CMA secure signature schemes (see [4] for
example) have already been secure against cMiM attacks.

1.1 Our Contribution

In the notion of encryption scheme, a key encapsulation
mechanism (KEM) is the foundational concept for a hybrid
construction with a data encryption mechanism (DEM). As
a first contribution in this paper, we propose to use a KEM
as an ID scheme analogous to the usage of an encryption
scheme. That is, given a KEM, we derive a challenge-and-
response ID scheme as follows. A verifier of a KEM-based
ID scheme makes a pair of a random string and its encap-
sulation (that is, a ciphertext of the string) using a public
key, and send the encapsulation as a challenge to the prover
having the matching secret key. The prover decapsulates
the encapsulation and returns the result as a response. The
verifier checks whether or not the response is equal to the
string. Although this is a straightforward conversion, it has
never been mentioned in the literature, to the best of our
knowledge.

As a generic property, KEM-based ID schemes have an
advantage over (non-hybrid) encryption-based ID schemes.
That is, a KEM only has to encapsulate a random string and
may generate it by itself, while an encryption scheme has to
encrypt any string given as an input. Consequently, KEM-
based ID schemes have a possibility to be simpler and more
efficient than encryption-based ID schemes.

In addition, as we will show in Sect. 3, a KEM only
need to be one-way-CCA2 secure for the obtained ID
scheme to be cMiM secure. In other words, the IND-CCA2
security, which is stronger than the one-way-CCA2 security,
is rather excessive for deriving a cMiM secure ID scheme.
Nonetheless by this time, most known encryption schemes
and KEMs have been designed to possess IND-CCA2 se-
curity (because the purpose is not to derive ID schemes, of
course).

Hence there arises a need to provide one-way-CCA2
secure KEMs. As a second contribution, we give concrete,
discrete logarithm-based one-way-CCA2 secure KEMs.
Starting with El Gamal KEM, we develop a series of five
one-way-CCA2 secure KEMs applying techniques such as
the selective tag with the algebraic trick [3], [27], the CHK
transformation [12], the target collision-resistant hash func-

tion [33], [36], the Twin Diffie-Hellman technique† [13] and
a modification to shorten message length.

It is true that there have already been a few one-way-
CCA2 secure KEMs in discrete logarithm setting. In con-
trast to those KEMs, the feature of our KEMs is that they
only need the smallest amount of computational cost and
message length, while its security is based on the (Gap-)
Computational Diffie-Hellman (CDH) assumption.

Finally, we point out another feature that provers of ID
schemes obtained by our generic conversion are determinis-
tic, which means our ID schemes are prover-resettable [5].
Moreover, they are also verifier-resettable because they con-
sist of 2-round interaction. This is a remarkable property
because, as is discussed by Yilek [41], resettable security
is crucially helpful for virtual machine service in the Cloud
Computing, for example.

1.2 Related Works

Recently, independently of us, Fujisaki [19] pointed out a
fact similar to our generic construction above (that is, the
conversion from a one-way-CCA2 secure KEM to a cMiM
secure ID scheme). We discuss the conversion more pre-
cisely than it.

As for concrete constructions, the IND-CCA2 secure
KEM of Cramer and Shoup (Cramer-Shoup KEM) [15],
which is naturally a one-way-CCA2 secure KEM, performs
comparably efficiently even now, while its security is based
on the DDH assumption.

Hanaoka-Kurosawa [24] gave a one-way-CCA2 secure
KEM based on the CDH assumption. It is directly compa-
rable with our KEM3 and our KEM3 reduces the computation
by at least 0.25 times a single exponentiation than Hanaoka-
Kurosawa KEM.

Our KEM2 and KEM3 may be directly obtained from the
KEM of Kiltz [28] and the KEM of Cash, Kiltz and Shoup
[13], respectively. Their KEMs are described in the hashed
DH setting and intended to be used in the KEM-DEM hy-
brid construction. Different from those, we show our KEM’s
security based on a weaker assumption, that is, the CDH as-
sumption, rather than the hashed DH assumption, and we
obtain a weaker security, that is, the one-way-CCA2 secu-
rity, rather than the IND-CCA2 security. In addition, an ap-
plication of the Twin DH technique to KEM2 to get KEM3 is
not a “black box” and we do it by making the Twin DH
technique compatible with the algebraic trick of Boneh and
Boyen [3].

1.3 Organization of the Paper

In Sect. 2, we fix some notations and briefly review the no-
tion of an ID scheme, a KEM and computational hardness
assumptions. In Sect. 3, we propose a generic conversion
from a KEM to an ID scheme. In Sect. 4, we discuss El

†Applying the Twin Diffie-Hellman technique was suggested
to us by Prof. Kiltz [29].

1138
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

Gamal KEM as a starting point. In Sect. 5, we employ
the tag technique with the algebraic trick [3], [27] to get
tKEM, which is one-way-CCA2 secure in the selective tag
model based on the Gap-CDH assumption. In Sect. 6, we
apply the CHK transformation [12] to leave the selective tag
model and get KEM1. In Sect. 7, we further develop the se-
ries by using a target collision resistant hash function to get
KEM2. In Sect. 8, we apply the Twin Diffie-Hellman tech-
nique [13] to KEM2 and get KEM3, which is secure based on
the CDH assumption. In Sect. 9, we compare efficiency of
the ID schemes from our KEMs with previously known ID
schemes and KEMs. In Sect. 10, we conclude our work.

2. Preliminaries

The security parameter is denoted k. The bit length of
a string s is denoted |s|. On an input 1k, a probabilistic
polynomial-time (PPT, for short) algorithm Grp runs and re-
turns (q, g), where q is a prime of length k and g is a gen-
erator of a multiplicative cyclic group Gq of order q. Grp
specifies elements and group operations of Gq. The ring of
exponent domain of Gq, which consists of integers from 0
to q − 1 with modulo q operation, is denoted Zq.

When an algorithm A on an input a returns z, we denote
it as z ← A(a). When A on an input a and B on an input b
interact and B returns z, we denote it as z ← 〈A(a), B(b)〉.
When A accesses an oracle O, we denote it as AO. When A
accesses n oracles O1, . . . ,On concurrently, we denote it as
AO1 |···|On . Here “concurrent” means that A accesses oracles
in an arbitrarily interleaved order of messages.

A probability of an event X is denoted Pr[X]. A prob-
ability of an event X on conditions Y1, . . . ,Ym is denoted
Pr[Y1; · · · ; Ym : X].

2.1 Identification Scheme

An identification scheme ID is a triple of PPT algorithms (K,
P, V). K is a key generator which returns a pair of a public key
and a matching secret key (pk, sk) on an input 1k. P and V
implement a prover and a verifier strategy, respectively. We
require ID to satisfy the completeness condition that boolean
decision by V(pk) after completing interaction with P(sk)
is 1 with probability one. We say that V(pk) accepts if its
boolean decision is 1.

2.1.1 Attacks on Identification Scheme

The aim of an adversary A that attacks an ID scheme ID is
impersonation. We say that A wins when A(pk) succeeds
in making V(pk) accept.

An adversary A performs a concurrent man-in-the-
middle attack as in the following experiment [5], [7].

Exprmtimp-cmim
A,ID (1k)

(pk, sk)← K(1k)

decision← 〈AP1(sk)|···|Pn(sk)(pk), V(pk)〉

If decision = 1 ∧ π∗ � {πi}ni=1 then return Win

else return Lose.

In the above experiment, we denoted a transcript of inter-
action between Pi(sk) and A(pk) as πi and a transcript be-
tweenA(pk) and V(pk) as π∗. Here i runs from 1 to n and n
is polynomial in k.

As a rule, man-in-the-middle adversaryA is prohibited
from relaying a transcript of a whole interaction with some
prover clone to the verifier V(pk), as is described π∗ � {πi}ni=1
in the experiment. This is a natural and standard constraint
to keep man-in-the-middle attack meaningful.

We define the imp-cmim advantage ofA over ID as:

Advimp-cmim
A,ID (k)

def
=Pr[Exprmtimp-cmim

A,ID (1k) returns Win].

We say that an ID is secure against concurrent man-in-the-
middle attacks (cMiM secure, for short) if, for any PPT al-
gorithmA, Advimp-cmim

A,ID (k) is negligible in k.
Suppose that an adversaryA consists of two algorithms

A1 andA2. The following experiment is called a concurrent
(two-phase) attack.

Exprmtimp-ca
A,ID (1k)

(pk, sk)← K(1k), st← AP1(sk)|···|Pn(sk)
1 (pk)

decision← 〈A2(st), V(pk)〉
If decision = 1 then return Win else return Lose.

Advimp-ca
A,ID (k) is defined in the same way as Advimp-cmim

A,ID (k).
The concurrent attack is a weaker model than the cMiM

attack because of the constraint that the learning phase ofA1

is limited to before the impersonation phase ofA2.
The concurrent attack and the cMiM attack are classi-

fied to active attacks. In contrast, there is a passive attack
described below.

Exprmtimp-pa
A,ID (1k)

(pk, sk)← K(1k)

IfA1(pk) makes a query, reply πi ← |〈P(sk), V(pk)〉|
st ← A1({πi}ni=1)

decision← 〈A2(st), V(pk)〉
If decision = 1 then return Win else return Lose.

In the above experiment, we denoted a transcript of a whole
interaction between P(sk) and V(pk) as π = |〈P(sk), V(pk)〉|.
Advimp-pa

A,ID (k) is defined in the same way as Advimp-cmim
A,ID (k).

The passive attack is a weaker model than the concur-
rent attack because of the constraint that A cannot choose
messages in the learning phase.

2.1.2 Tag-Based Identification Scheme

A tag-based ID scheme tagID (see, for example, [1]) is a
triple of PPT algorithms (K, P, V) and works in the same way
as an ordinary ID scheme, except that a string t, called a tag,

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1139

is a priori given to P and V by the first round. An interaction
between P and V depends on a given tag t.

As for attacks on tagID, we only consider here the
cMiM attack in the selective tag model which is described
by the following experiment.

Exprmtstag-imp-cmim
A,tagID (1k)

(pk, sk)← K(1k), t∗ ← A(1k)

decision← 〈AP1(t1,sk)|···|Pn(tn,sk)(pk), V(t∗, pk)〉
If decision = 1 ∧ t∗ � {ti}ni=1

then return Win else return Lose.

In the above experiment, the adversary A firstly designates
a tag t∗ called a target tag and, after that,A is given a pub-
lic key pk. In addition, before starting each interaction as
a verifier, A provides a tag ti(� t∗) to each prover clone
Pi(sk).
Advstag-imp-cmim

A,tagID (k) is defined in the same way as Advimp-cmim
A,ID

(k).

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) KEM is a triple of
PPT algorithms (K, Enc, Dec). K is a key generator which
returns a pair of a public key and a matching secret key
(pk, sk) on an input 1k. Enc is an encapsulation algorithm
which, on an input pk, returns a pair (K, ψ), where K is a ran-
dom string and ψ is a ciphertext of K. Dec is a decapsulation
algorithm which, on an input (sk, ψ), returns the decapsula-
tion K̂ of ψ. We require KEM to satisfy the completeness
condition that the decapsulation K̂ of a consistently gener-
ated ciphertext ψ by Enc is equal to the original string K
with probability one. For this requirement, we simply force
Dec deterministic.

2.2.1 Attacks on One-Wayness of KEM

An adversaryA performs an adaptive chosen ciphertext at-
tack on one-wayness of a KEM (called one-way-CCA2, for
short) as in the following experiment [24], [35].

Exprmtow-cca2
A,KEM (1k)

(pk, sk)← K(1k), (K∗, ψ∗)← Enc(pk)
K̂∗ ← ADEC(sk,·)(pk, ψ∗)

If K̂∗ = K∗ ∧ ψ∗ � {ψi}qdec

i=1 then return Win

else return Lose.

In the above experiment, ψi, i = 1, . . . , qdec mean ciphertexts
for whichA queries its decapsulation oracleDEC(sk, ·) for
the answers. Here the number qdec of queries is polynomial
in k. Note that the challenge ciphertext ψ∗ itself must not
be queried to DEC(sk, ·), as is described ψ∗ � {ψi}qdec

i=1 in the
experiment.

We define the one-way-CCA2 advantage ofA over KEM
as:

Advow-cca2
A,KEM (k)

def
=Pr[Exprmtow-cca2

A,KEM (1k) returns Win].

We say that a KEM is secure against adaptive chosen cipher-
text attacks on one-wayness (one-way-CCA2 secure, for
short) if, for any PPT algorithm A, Advow-cca2

A,KEM (k) is negli-
gible in k. Note that if a KEM is IND-CCA2 secure [14],
then it is one-way-CCA2 secure. So IND-CCA2 security is
a stronger notion than one-way-CCA2 security.

Suppose that an adversaryA consists of two algorithms
A1 and A2. The following experiment is called a non-
adaptive chosen ciphertext attack on one-wayness of a KEM
(called one-way-CCA1, for short).

Exprmtow-cca1
A,KEM (1k)

(pk, sk)← K(1k), st← ADEC(sk,·)
1 (pk)

(K∗, ψ∗)← Enc(pk), K̂∗ ← A2(st, ψ∗)

If K̂∗ = K∗ then return Win else return Lose.

Advow-cca1
A,KEM (k) is defined in the same way as Advow-cca2

A,KEM (k).
The non-adaptive chosen ciphertext attack is a weaker

model than the adaptive one because of the constraint that
the learning phase of A1 is limited to before the solving
phase ofA2.

The adaptive and non-adaptive chosen ciphertext at-
tacks are classified to active attacks. In contrast, there is
a passive attack on one-wayness of a KEM described be-
low†(which we call one-way-PA, for short).

Exprmtow-pa
A,KEM(1

k)

(pk, sk)← K(1k)

IfA1(pk) makes a query, reply (Ki, ψi)← Enc(pk)
st ← A1({(Ki, ψi)}qpa

i=1), (K∗, ψ∗)← Enc(pk)
K̂∗ ← A2(st, ψ∗)

If K̂∗ = K∗ then return Win else return Lose.

In the above experiment, the number qpa of queries is poly-
nomial in k.
Advow-pa

A,KEM(k) is defined in the same way as Advow-cca2
A,KEM (k).

The passive attack is a weaker model than the non-
adaptive chosen ciphertext attack because of the constraint
thatA cannot choose ciphertexts in the learning phase.

2.2.2 Tag-Based Key Encapsulation Mechanism

A tag-based key encapsulation mechanism (KEM) tagKEM
(see, for example, [27]) is a triple of PPT algorithms (K,
Enc, Dec) and works in the same way as an ordinary KEM,
except that a string t, called a tag, is a priori given to Enc
and Dec as an input. A ciphertext ψ depends on a given tag
t.

As for attacks on tagKEM, we only consider here the
adaptive chosen ciphertext attack on one-wayness of a tag-
based KEM in the selective tag model which is described by

†In the experiment, A1 may run Enc(pk) by itself to get
(Ki, ψi).

1140
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

the following experiment.

Exprmtstag-ow-cca2
A,tagKEM (1k)

(pk, sk)← K(1k), t∗ ← A(1k)

(K∗, ψ∗)← Enc(pk, t∗), K̂∗ ← ADEC(sk,·,·)(pk, ψ∗)

If K̂∗ = K∗ ∧ t∗ � {ti}qdec

i=1

then return Win else return Lose.

In the above experiment, the adversary A firstly designates
a tag t∗ called a target tag and, after that, A is given a
public key pk. In addition, A queries its decapsulation or-
acle DEC(sk, ·, ·) for the answer for a pair (ti, ψi), where
ti(� t∗) is a tag thatA generates.
Advstag-ow-cca2

A,tagKEM (k) is defined in the same way as Advow-cca2
A,KEM (k).

2.3 Computational Hardness Assumptions

We say a solver S, a PPT algorithm, wins when S succeeds
in solving a computational problem instance.

2.3.1 The CDH and the Gap-CDH Assumptions

A quadruple (g, X, Y, Z) of elements in Gq is called a Diffie-
Hellman (DH) tuple if (g, X, Y, Z) is written as (g, gx, gy, gxy)
for some elements x and y in Zq. A CDH problem instance
is a triple (g, X = gx, Y = gy), where the exponents x and
y are random and unknown to a solver. The CDH oracle
CDH is an oracle which, queried about a CDH problem in-
stance (g, X, Y), replies the correct answer Z = gxy. A DDH
problem instance is a quadruple (g, X, Y, Z). The DDH ora-
cle DDH is an oracle which, queried about a DDH prob-
lem instance (g, X, Y, Z), replies the correct boolean decision
whether (g, X, Y, Z) is a DH-tuple or not. A CDH problem
solver is a PPT algorithm which, given a random CDH prob-
lem instance (g, X, Y) as an input, tries to return Z = gxy. We
define the following experiment.

Exprmtcdh
S,Grp(1

k)

(q, g)← Grp(1k), x, y← Zq, X := gx, Y := gy

Z ← S(g, X, Y)

If Z = gxy then return Win else return Lose.

We define the CDH advantage of S over Grp as:

Advcdh
S,Grp(k)

def
= Pr[Exprmtcdh

S,Grp(1
k) returns Win].

We say that the CDH Assumption [34] holds for Grp if, for
any PPT algorithm S, Advcdh

S,Grp(k) is negligible in k.
A CDH problem solver S that is allowed to access

DDH polynomially many times is called a Gap-CDH prob-
lem solver. We define the following experiment.

Exprmtgap-cdh
S,Grp (1k)

(q, g)← Grp(1k), x, y← Zq, X := gx, Y := gy

Z ← SDDH (g, X, Y)

If Z = gxy then return Win else return Lose.

We define the Gap-CDH advantage of S over Grp as:

Advgap-cdh
S,Grp (k)

def
= Pr[Exprmtgap-cdh

S,Grp (1k) returns Win].

We say that the Gap-CDH Assumption [34] holds for Grp
if, for any PPT algorithm S, Advgap-cdh

S,Grp (k) is negligible in k.

2.3.2 The Twin Diffie-Hellman Technique

A 6-tuple (g, X1, X2, Y, Z1, Z2) of elements in Gq is called
a twin Diffie-Hellman tuple if the tuple is written as
(g, gx1 , gx2 , gy, gx1y, gx2y) for some elements x1, x2, y in Zq.

The following lemma of Cash, Kiltz and Shoup is used
in Sect. 8 to decide whether a tuple is a twin DH tuple or not
in the security proof.

Lemma 1 (Cash, Kiltz and Shoup [13] Theorem 2,
“Trapdoor Test”). Let X1, r, s be mutually independent
random variables, where X1 takes values in Gq, and each
of r, s is uniformly distributed over Zq. Define the ran-
dom variable X2 := X−r

1 gs. Suppose that Ŷ , Ẑ1, Ẑ2 are ran-
dom variables taking values in Gq, each of which is de-
fined independently of r. Then the probability that the truth
value of Ẑ1

r
Ẑ2 = Ŷ s does not agree with the truth value

of (g, X1, X2, Ŷ, Ẑ1, Ẑ2) being a twin DH tuple is at most 1/q.
Moreover, if (g, X1, X2, Ŷ, Ẑ1, Ẑ2) is a twin DH tuple, then
Ẑ1

r
Ẑ2 = Ŷ s certainly holds.

2.3.3 The Gap-DL Assumption

A discrete log (DL) problem instance consists of (g, X = gx),
where the exponent x is random and unknown to a solver. A
DL problem solver is a PPT algorithm which, given a ran-
dom DL problem instance (g, X) as an input, tries to return x.
A DL problem solverS that is allowed to accessCDH poly-
nomially many times is called a Gap-DL problem solver. We
define the following experiment.

Exprmtgap-dl
S,Grp(1

k)

(q, g)← Grp(1k), x← Zq, X := gx

x∗ ← SCDH (g, X)

If gx∗ = X then return Win else return Lose.

We define the Gap-DL advantage of S over Grp as:

Advgap-dl
S,Grp(k)

def
= Pr[Exprmtgap-dl

S,Grp(1
k) returns Win].

We say that the Gap-DL Assumption holds for Grp if, for
any PPT algorithm S, Advgap-dl

S,Grp(k) is negligible in k.
Although the Gap-DL Assumption is considered fairly

strong, it is believed to hold for a certain class of cyclic
groups [32].

2.3.4 The Knowledge-of-Exponent Assumption

Informally, the Knowledge-of-Exponent Assumption (KEA)

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1141

[8], [17] says that, given a randomly chosen h ∈ Gq as an
input, a PPT algorithm H can extend (g, h) to a DH-tuple
(g, h, X, Z) only when H knows the exponent x of X = gx.
The formal definition is described as follows.

Let Λ(1k) be any distribution. Let H and H′ be any
PPT algorithms which take input of the form (g, h, λ). Here
g is any fixed generator, h is a randomly chosen element in
Gq, and λ is a string in {0, 1}∗ output by Λ(1k) called auxil-
iary input [10], [16]. We define the following experiment.

Exprmtkea
H ,H′,Grp(1

k)

(q, g)← Grp(1k), λ← Λ(1k), a← Zq, h := ga

(g, h, X, Z)← H(g, h, λ), x′ ← H′(g, h, λ)

If Xa = Z ∧ gx′ � X then return Win

else return Lose.

Note that λ is independent of h in the experiment. This in-
dependence is crucial ([10], [16]).

We define the KEA advantage of H over H′ and Grp
as:

Advkea
H ,H′,Grp(k)

def
= Pr[Exprmtkea

H ,H′,Grp(1
k) returns Win].

An algorithm H′ is called the KEA extractor. Advkea
H ,H′,Grp

(k) can be considered the probability that the KEA extractor
H′ fails to extract the exponent x of X = gx. We say that the
KEA holds for Grp if, for any PPT algorithm H , there ex-
ists a PPT algorithmH′ such that for any distribution Λ(1k)
Advkea

H ,H′,Grp(k) is negligible in k.

3. Identification Scheme from Key Encapsulation
Mechanism

In this section, we propose a generic conversion from a
KEM to an ID scheme. Then we observe a security deriva-
tion from a KEM to the obtained ID scheme. The derivation
gives a design principle for getting an ID scheme with de-
sired security. Especially, we confirm that a one-way-CCA2
secure KEM gives rise an ID scheme secure against concur-
rent man-in-the-middle attacks.

3.1 The Conversion

Let KEM = (K, Enc, Dec) be a KEM. Then an ID scheme ID
is obtained in a natural way as shown in Fig. 1. The key gen-
eration algorithm is the same as that of KEM. The verifier V,
given a public key pk as an input, invokes the encapsulation
algorithm Enc on pk and gets its return (K, ψ). V sends ψ
to P. The prover P, given a secret key sk as an input and
receiving ψ as an input message, invokes the decapsulation
algorithm Dec on (sk, ψ) and gets its return K̂. P sends K̂
to V. Finally the verifier V, receiving K̂ as an input message,
verifies whether or not K̂ is equal to K. If so, then V returns
1 and otherwise, 0.

It is noteworthy that, a KEM only has to encapsulate a
random string and may generate it by itself, while a (non-
hybrid) encryption scheme has to encrypt any string given

Key Generation
– K: the same as that of KEM
Interaction
– V: given pk as an input;

• Invoke Enc on pk: (K, ψ)← Enc(pk)
• Send ψ to P

– P: given sk as an input and receiving ψ as an input message;
• Invoke Dec on (sk, ψ): K̂ ← Dec(sk, ψ)
• Send K̂ to V

– V: receiving K̂ as an input message;
• If K̂ = K then return 1 else return 0

Fig. 1 An ID Scheme ID=(K,P,V) Obtained from a KEM KEM= (K, Enc,
Dec).

Given (pk, ψ∗) as an input;
Initial Setting
– Initialize its inner state
– Invoke A on pk
AnsweringA’s Queries
– In the case thatA queries V(pk) for the challenge message

• Send ψ∗ toA
– In the case thatA sends ψ to a prover clone P(sk)

• If ψ = ψ∗, then K :=⊥
• else query DEC(sk, ·) for the answer for ψ: K ← DEC(sk, ψ)
• Send K toA

– In the case thatA sends K̂∗ to V(pk) as the response message
• Return K̂∗ as the answer for ψ∗

Fig. 2 A One-Way-CCA2 Adversary B Employing a cMiM Adversary
A for the Proof of Theorem 1.

as an input. Consequently, KEM-based ID schemes has a
possibility to be simpler and more efficient than encryption-
based ID schemes.

The following theorem is a security derivation from a
KEM to the obtained ID scheme.

Theorem 1. If a key encapsulation mechanism KEM is one-
way-CCA2 secure, then the obtained identification scheme
ID is cMiM secure. More precisely, for any PPT adversary
A that attacks ID in the cMiM setting, there exists an PPT
adversary B that attacks KEM in the one-way-CCA2 setting
satisfying the following inequality.

Advimp-cmim
A,ID (k) � Advow-cca2

B,KEM (k).

3.2 Proof of Theorem 1

Let KEM be a one-way-CCA2 secure KEM and ID be the ob-
tained ID scheme by the conversion above. Let A be any
given PPT adversary that attacks ID. Using A as a subrou-
tine, we construct a PPT one-way-CCA2 adversary B that
attacks KEM as shown in Fig. 2.

On an input pk and the challenge ciphertext ψ∗, B ini-
tializes its inner state and invokesA on an input pk.

In the case thatA queries V(pk) for the challenge mes-
sage, B sends ψ∗ toA.

In the case thatA sends a message ψ to a prover clone
P(sk), B checks whether or not ψ is equal to ψ∗. If so, then
B puts K =⊥. Otherwise, B queries its decapsulation oracle

1142
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

Table 1 Security Derivation from a KEM to the Obtained ID Scheme.

Security of a Security of the Obtained
KEM against =⇒ ID Scheme against
one-way-PA =⇒ passive attack

one-way-CCA1 =⇒ concurrent (two-phase) attack
one-way-CCA2 =⇒ concurrent man-in-the-middle attack

DEC(sk, ·) for the answer for the ciphertext ψ and gets its
decapsulation K as a reply. B sends K to A as a response
message.

In the case that A sends K̂∗ to V(pk) as the response
message for the challenge message ψ∗, B returns K̂∗ as the
answer for the challenge ciphertext ψ∗.

The view of A in B is the same as the real view of
A. This is obvious except for the case that ψ is equal to ψ∗.
WhenA sent ψ = ψ∗, a transcript of the interaction between
P(sk) andA(pk) would be wholly equal to a transcript of the
interaction between A(pk) and V(pk), because the prover P
is deterministic. This is ruled out, so B’s response, K =⊥, is
appropriate.

IfA wins, then B wins. Hence the inequality in Theo-
rem 1 follows. (Q.E.D.)

In an analogous ways, we can show the following facts.
If a KEM is secure against non-adaptive chosen ciphertext at-
tacks on one-wayness (one-way-CCA1), then the obtained
ID scheme ID is secure against concurrent (two-phase) at-
tacks. If a KEM is secure against passive attacks on one-
wayness (one-way-PA), then the obtained ID scheme ID is
secure against passive attacks.

Table 1 shows this security derivation. We can view the
Table 1 as a design principle to construct an ID scheme with
desired security.

We remark that the selective tag model for security
proofs is compatible with the conversion. That is, if a KEM
is secure in the selective tag model, then the obtained ID
scheme is secure in the selective tag model.

3.3 Discussion

The prover P in Fig. 1 is deterministic. Therefore, the ob-
tained ID scheme ID is prover-resettable [5]. Moreover, ID
is also verifier-resettable because ID consists of 2-round in-
teraction.

4. El Gamal KEM Revisited

In this section, we discuss El Gamal KEM EGKEM [18] as a
starting point. The objective here is to see that EGKEM can
be proven one-way-CCA1 secure. The obtained ID scheme
from EGKEM is similar to the scheme of Stinson and Wu [38],
[39]. Unlike their security proof being done in the random
oracle model, we provide a security proof in the standard
model (in Appendix A).

Key Generation
– K: given 1k as an input;

• (q, g)← Grp(1k), x← Zq, X := gx

• pk := (q, g, X), sk := (q, g, x), return (pk, sk)
Encapsulation
– Enc: given pk as an input;

• a← Zq,K := Xa, h := ga, ψ := h, return (K, ψ)
Decapsulation
– Dec: given sk and ψ = h as an input;

• K̂ := hx, return K̂

Fig. 3 El Gamal KEM: EGKEM.

4.1 El Gamal KEM and Its Security

El Gamal KEM EGKEM consists of a triple (K, Enc, Dec). The
construction is shown in Fig. 3.

On an input 1k, the key generator K runs as follows. The
group generator Grp returns (q, g) on an input 1k. Then K
chooses x from Zq, computes X = gx and sets pk = (q, g, X)
and sk = (q, g, x). Then K returns (pk, sk).

On an input 1k, the encapsulation algorithm Enc runs
as follows. Enc chooses a ∈ Zq at random, and computes
K = Xa and h = ga, and puts ψ = h. The random string is K
and its encapsulation is ψ. Enc returns the pair (K, ψ).

On an input sk and ψ = h, the decapsulation algorithm
Dec runs as follows. Dec computes the decapsulation K̂ =
hx. Then Dec returns K̂.

The security of EGKEM is stated as follows.

Theorem 2. The key encapsulation mechanism EGKEM is
one-way-CCA1 secure based on the Gap-DL assumption
and the KEA for Grp. More precisely, for any PPT one-
way-CCA1 adversaryA = (A1,A2) on EGKEM, there exists
a PPT Gap-DL problem solver S on Grp and a PPT algo-
rithmH for the KEA which satisfy the following tight reduc-
tion.

Advow-cca1
A,EGKEM(k) � Advgap-dl

S,Grp(k) + Advkea
H ,H′,Grp(k).

Proof. A detailed proof is described in Appendix A as
EGKEM and Theorem 2 are just our starting point. An out-
line is stated as follows. The CDH oracle enables the solver
S to simulate the adversary A1’s decapsulation oracle per-
fectly. After that the KEA extractor works to extract the
answer of a DL problem instance from A2’s return. (Note
that the Gap-DL assumption and the KEA are compatible.)

4.2 Discussion

It is well-known that El Gamal KEM EGKEM is one-way-PA
secure based on the CDH assumption. In contrast, Theorem
2 says a stronger fact though the assumptions are stronger
ones.

5. A Tag-Based One-Way-CCA2 Secure KEM

In this section, owing the idea to the tag-based encryption

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1143

Key Generation
– K: given 1k as an input;

• (q, g)← Grp(1k), x, y← Zq, X := gx,Y := gy

• pk := (q, g, X,Y), sk := (q, g, x, y), return (pk, sk)
Tag-Receiving
– Enc and Dec are given a tag t ∈ Zq

Encapsulation
– Enc: given pk as an input;

• a← Zq,K := Xa, h := ga, d := (XtY)a, ψ := (h, d), return (K, ψ)
Decapsulation
– Dec: given sk and ψ = (h, d) as an input;

• If htx+y � d then K̂ := hx else K̂ :=⊥, return K̂

Fig. 4 A Tag-Based One-Way-CCA2 KEM: tKEM.

scheme of Kiltz [27], we apply a tag framework with the
algebraic trick of Boneh and Boyen [3] to El Gamal KEM
EGKEM to make it one-way-CCA2 secure.

5.1 A Tag-Based KEM and Its Security

A tag-based KEM tKEM consists of a triple (K, Enc, Dec).
The construction is shown in Fig. 4.

On an input 1k, the key generator K runs as follows. The
group generator Grp returns (q, g) on an input 1k. Then K
chooses x and y from Zq, computes X = gx and Y = gy, and
sets pk = (q, g, X, Y) and sk = (q, g, x, y). Then K returns
(pk, sk).

A string tag t is a priori given to Enc and Dec. In our
construction, we set the tag t in Zq.

On an input 1k, the encapsulation algorithm Enc runs
as follows. Enc chooses a from Zq at random, and computes
K = Xa and h = ga. Additionally, Enc computes d = (XtY)a

and puts ψ = (h, d). The random string is K and its encap-
sulation is ψ. Enc returns the pair (K, ψ).

On an input sk and ψ = (h, d), the decapsula-
tion algorithm Dec runs as follows. Dec verifies whether
(g, XtY, h, d) is a DH-tuple. For this sake, Dec checks
whether htx+y = d holds. If it does not hold, then Dec puts
K̂ =⊥. Otherwise, Dec computes the decapsulation K̂ = hx.
Then Dec returns K̂.

The security of tKEM is stated as follows.

Theorem 3. The key encapsulation mechanism tKEM is
one-way-CCA2 secure in the selective tag model based on
the Gap-CDH assumption. More precisely, for any PPT ad-
versary A there exists a PPT Gap-CDH problem solver S
which satisfies the following tight reduction.

Advstag-ow-cca2
A,tKEM (k) � Advgap-cdh

S,Grp (k).

5.2 Proof of Theorem 3

An outline is stated as follows. The algebraic trick of the
tag framework [3], [27] enables the solver S to simulate an
adversaryA’s decapsulation oracle perfectly. The algebraic
trick also enables S to embed a portion of a given CDH
problem instance in the challenge ciphertext. It is easy to

Given (q, g,V,W) as an input;
Initial Setting
– Initialize its inner state
– Invoke A on 1k and get a target tag: t∗ ← A(1k)
– u← Zq, X := V, Y := X−t∗gu, pk := (q, g, X,Y)
– a∗ ∈ Zq, h∗ = Wga∗ , d∗ = (h∗)u, ψ∗ = (h∗, d∗)
– Inputs (pk, ψ∗) intoA
AnsweringA’s Queries and Extracting the Answer from Return
– Receive a tag: t← A
– In the case that A queries DEC(sk, ·, ·) for the answer for (t, ψ =
(h, d));

• IfDDH(g, h, XtY, d) � 1 then K̂ :=⊥
• else K̂ := (d/hu)1/(t−t∗) (: the case Simdec)
• Reply K̂ toA

– In the case thatA returns K̂∗;
• Return Z := K̂∗/Xa∗

Fig. 5 A Gap-CDH Problem Solver S for the Proof of Theorem 3.

extract the answer for the CDH problem instance from A’s
return.

Let us proceed in detail. Let A be as in Theorem 3.
UsingA as a subroutine, we construct a Gap-CDH problem
solver S. The construction is illustrated in Fig. 5.

S is given q, g,V = gv,W = gw as a CDH problem
instance, where v and w are random and unknown to S. S
initializes its inner state. S invokes A on an input 1k and
gets a target tag t∗ fromA. S chooses u from Zq at random
and puts X = V and Y = X−t∗gu, sets pk = (q, g, X, Y). S
chooses a∗ from Zq at random and puts h∗ = Wga∗ , d∗ =
(h∗)u and ψ∗ = (h∗, d∗). S inputs pk and ψ∗ intoA.

Note that pk is correctly distributed. Note also that S
knows neither x nor y, where x and y denote the discrete log
of X and Y on a base g, respectively. Here the following
holds;

y = −t∗x + u.

S repliesA in answer toA’s queries as follows.
In the case that A queries DEC(sk, ·, ·) for the answer

for (t, ψ = (h, d)), S verifies whether (g, h, XtY, d) is a DH-
tuple. For this sake, S queries its DDH oracleDDH for the
answer. If it is not satisfied then S puts K =⊥. Otherwise S
puts K̂ = (d/hu)1/(t−t∗) (call this case Simdec). S replies K̂
to A. Note that, in the selective tag model, A is prohibited
from setting t = t∗ (that is,A must keep that t � t∗).

In the case thatA returns K̂∗, S returns Z = K̂∗/Xa∗ .

S is able to simulate the real view ofA perfectly, as we
see below.

Firstly, the challenge ciphertext ψ∗ = (h∗, d∗) is con-
sistent and correctly distributed. This is because the distri-
bution of ψ∗ = (h∗, d∗) is equal to that of the real consistent
ciphertext ψ = (h, d). To see it, note that w+a∗ is substituted
for a;

h∗ = Wga∗ = gw+a∗ ,

d∗ = (gw+a∗)u = (gu)w+a∗ = (Xt
∗
Y)w+a∗ .

Secondly, in the case Simdec, S can simulate the decap-

1144
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

sulation oracle DEC(sk, ·, ·) perfectly. This is because K̂ is
equal to hx by the following equalities;

d/hu = htx+y−u = h(t−t∗)x+(t∗x+y−u) = h(t−t∗)x.

As a whole, S simulates the real view ofA perfectly.
Now we evaluate the Gap-CDH advantage of S. If

A wins, then (g, h∗, X, K̂∗) is a DH-tuple and the following
holds (note that we have set X = V , so x = v);

K̂∗ = (gx)w+a∗ = gvwXa∗ .

Hence the return Z is equal to K̂∗/Xa∗ = gvw, which is
the correct answer for the input (g,V,W). That is, S wins.
Therefore, the probability that S wins is lower bounded by
the probability thatA wins;

Pr[S wins] � Pr[A wins].

That is; Advgap-cdh
S,Grp (k) � Advstag-ow-cca2

A,tKEM (k). (Q.E.D.)

5.3 Discussion

We note that the selective tag model for security proofs is
compatible with our generic conversion. That is, the ob-
tained ID scheme from tKEM is cMiM secure in the selective
tag model.

6. A One-Way-CCA2 Secure KEM by the CHK Trans-
formation

In this section, we apply a generic method, that is, the CHK
transformation [12], to the tag-based KEM tKEM to exit the
tag framework. Along the technique, we replace the tag t
by a one-time verification key vk of a strong one-time sig-
nature OTS. (The definition of strong one-time signatures is
summarized in Appendix B.)

6.1 A KEM by the CHK Transformation and Its Security

A KEM KEM1 by the CHK transformation of the tag-based
KEM tKEMconsists of a triple (K, Enc, Dec). The construc-
tion is shown in Fig. 6.

On an input 1k, the key generator K runs as follows.
The group generator Grp returns (q, g) on an input 1k. Then
K chooses x and y from Zq, puts X = gx and Y = gy, and sets
pk = (q, g, X, Y) and sk = (q, g, x, y). Then K returns (pk,
sk).

On an input 1k, the encapsulation algorithm Enc runs
as follows. Enc runs signing key generator SGK on an input
1k to get (vk, sgk), where vk is a verification key and sgk is
the matching signing key. Enc chooses a from Zq at random,
and computes K = Xa and h = ga. Enc computes d :=
(XvkY)a (here, if it is needed for OTS, we take a hash value
H(vk) of vk before the exponentiation so that H(vk) ∈ Zq).
Enc runs Signsgk on message (h, d) to get a signature σ.
Enc puts ψ = (vk, (h, d), σ). The random string is K and its
encapsulation is ψ. Enc returns the pair (K, ψ).

Key Generation
– K: given 1k as an input;

• (q, g)← Grp(1k), x, y← Zq, X := gx,Y := gy

• pk := (q, g, X,Y), sk := (q, g, x, y), return (pk, sk)
Encapsulation
– Enc: given pk as an input;

• (vk, sgk)← SGK(1k)
• a← Zq,K := Xa, h := ga, d := (XvkY)a, σ← Signsgk((h, d))
• ψ := (vk, (h, d), σ)
• Return (K, ψ)

– Dec: given sk and ψ = (vk, (h, d), σ) as an input;
• If Vrfyvk((h, d), σ) � 1 or h(vk)x+y � d then K̂ :=⊥ else K̂ := hx

• Return K̂

Fig. 6 A One-Way-CCA2 KEM by the CHK Transformation: KEM1.

On an input sk and ψ = (vk, (h, d), σ), the decapsu-
lation algorithm Dec runs as follows. Dec verifies whether
the signature σ for the message (h, d) is valid under vk and
whether (g, XvkY, h, d) is a DH-tuple. For the latter, Dec
checks whether h(vk)x+y = d holds. If at least one of them
does not hold then Dec puts K̂ =⊥. Otherwise, Dec com-
putes the decapsulation K̂ = hx. Then Dec returns K̂.

The security of KEM1 is stated as follows.

Theorem 4. The key encapsulation mechanism KEM1 is one-
way-CCA2 secure based on the Gap-CDH assumption and
one-time security of a strong one-time signature employed.
More precisely, for any PPT adversaryA there exist a PPT
Gap-CDH problem solver S and a PPT forger F which sat-
isfy the following tight reduction.

Advow-cca2
A,KEM1 (k) � Advgap-cdh

S,Grp (k) + Adveuf-cma
F ,OTS (k).

Proof. A detailed proof is described in Appendix C as it is an
adaptation of the routine established by [12] to our situation.
An outline is stated as follows. The proof goes almost the
same way as the proof of Theorem 3 except that we have
to treat a case that the verification key vk∗ in the challenge
ciphertext is equal to a verification key vk in a decapsulation
query. The EUF-CMA property in the strong sense of a one-
time signature employed assures that the case happens only
with negligible probability.

6.2 Discussion

When we use a one-time signature such that |vk| � |q| = k,
we have to take a hash value H(vk) by a hash function H :
{0, 1}∗ → Zq just before doing a computation in Zq. In this
setting, the security statement in Theorem 4 needs a target
collision resistance for {H} to make a collision case (that is,
the case that vk � vk∗ and H(vk) = H(vk∗)) negligible.

7. A One-Way-CCA2 Secure KEM with a Target Col-
lision Resistant Hash Function

In this section, depending on the specific structure, we use a
specific tool, that is, a target collision resistant hash function
(a TCR hash function, for short) to exit the tag framework of
tKEM. Along the technique, we replace the tag t by a TCR

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1145

Key Generation
– K: given 1k as an input;

• (q, g)← Grp(1k), x, y← Zq

• X := gx,Y := gy, κ ← Hkey(1k)
• pk := (q, g, X,Y, κ), sk := (q, g, x, y, κ), return (pk, sk)

Encapsulation
– Enc: given pk as an input;

• a← Zq,K := Xa, h := ga, τ← Hκ(h), d := (XτY)a

• ψ := (h, d)
• Return (K, ψ)

Decapsulation
– Dec: given sk and ψ = (h, d) as an input;

• τ← Hκ(h)
• If hτx+y � d then K̂ :=⊥ else K̂ := hx

• Return K̂

Fig. 7 A One-Way-CCA2 KEM with a TCR Hash Function: KEM2.

hash function value. (The definition of a TCR hash function
family Hfam(1k) = {Hκ}κ∈Hkey(1k) is summarized in Appendix
D.)

7.1 A KEM with a TCR Hash Function and Its Security

A KEM KEM2 with TCR hash function consists of a triple
(K, Enc, Dec). The construction is shown in Fig. 7.

On an input 1k, the key generator K runs as follows.
The group generator Grp returns (q, g) on an input 1k. Then
K chooses x and y from Zq and computes X = gx and
Y = gy. In addition, K chooses a hash key κ from a hash
key space Hkey(1k). The hash key κ indicates a specific
hash function Hκ with values in Zq in a hash function fam-
ily Hfam(1k) = {Hκ}κ∈Hkey(1k). K sets pk = (q, g, X, Y, κ) and
sk = (q, g, x, y, κ). Then K returns (pk, sk).

On an input 1k, the encapsulation algorithm Enc runs
as follows. Enc chooses a from Zq at random and computes
h = ga. Enc computes the hash value τ ← Hκ(h) and com-
putes d = (XτY)a. Enc puts ψ = (h, d). The random string
is K and its encapsulation is ψ. Then Enc returns the pair
(K, ψ).

On an input sk and ψ = (h, d), the decapsulation al-
gorithm Dec runs as follows. Dec computes the hash value
τ← Hκ(h). Dec verifies whether the quadruple (g, XτY, h, d)
is a DH-tuple. For this sake, P checks whether hτx+y = d
holds. If it does not hold, then Dec puts K̂ =⊥. Otherwise,
Dec computes the decapsulation K̂ = hx. Then Dec returns
K̂.

The security of KEM2 is stated as follows.

Theorem 5. The key encapsulation mechanism KEM2 is
one-way-CCA2 secure based on the Gap-CDH assumption
and the target collision resistance of a hash function fam-
ily Hfam(1k) = {Hκ}κ∈Hkey(1k). More precisely, for any PPT
adversaryA there exist a PPT Gap-CDH problem solver S
and a PPT collision-finder CF on Hfam which satisfy the
following tight reduction.

Advow-cca2
A,KEM2 (k) � Advgap-cdh

S,Grp (k) + Advtcr
CF ,Hfam(k).

Given (q, g,V,W) as an input;
Initial Setting
– Initialize its inner state
– a∗ ← Zq, h∗ := Wga∗

– κ← Hkey(1k), τ∗ ← Hκ(h∗)
– u← Zq, X := V, Y := X−τ∗gu, d∗ = (h∗)u

– pk := (q, g, X,Y, κ), ψ∗ := (h∗, d∗)
– Invoke A on pk and ψ∗
AnsweringA’s Queries and Extracting the Answer from Return
– In the case thatA queriesDEC(sk, ·) for the answer for ψ = (h, d);

• τ← Hκ(h)
• IfDDH(g, XτY, h, d) � 1 then K̂ :=⊥
• else

If τ � τ∗ then K̂ := (d/hu)1/(τ−τ∗) (: the case Simdec)
else abort (: the case Abort)

• Reply K̂ toA
– In the case thatA returns K̂∗;

• Return Z := K̂∗/Xa∗

Fig. 8 A Gap-CDH Problem Solver S for the Proof of Theorem 5.

7.2 Proof of Theorem 5

An outline is stated as follows. The proof goes almost the
same way as the proof of Theorem 3 except that we have
to treat a case that the hash value τ∗ of h∗ in the challenge
ciphertext is equal to a hash value τ of h in a decapsulation
query. The TCR property of a TCR hash function family
employed assures that the case happens only with negligible
probability.

Let us proceed in detail. Let A be as in Theorem 5.
UsingA as a subroutine, we construct a Gap-CDH problem
solver S. The construction is illustrated in Fig. 8.

S is given q, g,V = gv,W = gw as an input, where
v and w are random and unknown to S. S initializes its
inner state. S chooses a∗ from Zq at random and computes
h∗ = Wga∗ . Then S chooses κ from Hkey(1k) and computes
τ∗ ← Hκ(h∗). S chooses u from Zq at random, puts X = V
and computes Y = X−τ∗gu and d∗ = (h∗)u. S sets pk =
(q, g, X, Y) and puts ψ∗ = (h∗, d∗).

Note that pk is correctly distributed. Note also that S
knows neither x nor y, where x and y denote the discrete log
of X and Y on a base g, respectively. Here the following
holds;

y = −τ∗x + u.

S invokes A on an input (pk, ψ∗). S replies to A’s
queries as follows.

In the case that A queries its decapsulation oracle
DEC(sk, ·) for the answer for φ = (h, d), S computes
τ ← Hκ(h). S verifies whether (g, XτY, h, d) is a DH-tuple.
For this sake, S queries its decision oracle DDH . If the
answer is “False”, then S puts K̂ =⊥. Otherwise, if τ � τ∗,
then S computes K̂ = (d/hu)1/(τ−τ∗) (call this case Simdec).
If τ = τ∗, then S aborts (call this case Abort). Then S
replies K̂ toA except for the case Abort.

In the case that A returns K̂∗ as the answer for ψ∗, S
returns Z = K̂∗/Xa∗ .

1146
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

S is able to simulate the real view of A perfectly until
the case Abort happens, as we see below.

Firstly, the challenge ciphertext ψ∗ = (h∗, d∗) is con-
sistent and correctly distributed. This is because the distri-
bution of ψ∗ = (h∗, d∗) is equal to that of the real consistent
ciphertext ψ = (h, d). To see it, note that w+a∗ is substituted
for a;

h∗ = Wga∗ = gw+a∗ ,

d∗ = (gw+a∗)u = (gu)w+a∗ = (Xτ∗Y)w+a∗ .

Secondly, in the case Simdec, S can simulate the de-
capsulation oracle DEC(sk, ·) perfectly. This is because K̂
is equal to hx by the following equalities;

d/hu = hτx+y−u = h(τ−τ∗)x+(τ∗x+y−u) = h(τ−τ∗)x.

As a whole, S simulates the real view of A perfectly
until the case Abort happens.

Now we evaluate the CDH advantage of S. When
A wins, (g, X, h∗, K̂∗) is a DH-tuple, so the following hold
(note that we have set X = V , so x = v);

K̂∗ = (gx)w+a∗ = gvwXa∗ .

Hence the return Z is equal to K̂∗/Xa∗ = gvw, which is
the correct answer for the input (g,V,W). That is, S wins.
Therefore the probability that S wins is lower bounded by
the probability thatA wins and Abort does not happen.

Pr[S wins] � Pr[A wins ∧ ¬Abort]

� Pr[A wins] − Pr[Abort].

Hence we get the following inequality.

Advgap-cdh
S,Grp (k) � Advow-cca2

A,KEM2 (k) − Pr[Abort].

So our task being left is to show that Pr[Abort] is negligible
in k.

Claim 7.1. The probability that Abort occurs is negligible
in k.

Proof of Claim 7.1. Using A as a subroutine, we construct
a target collision finder CF on Hfam as follows. Given 1k

as an input, CF initializes its inner state. CF gets (q, g)
from Grp(1k). CF chooses a∗ from Zq at random, computes
h∗ = ga∗ and returns h∗. CF receives a random hash key κ
and computes τ∗ ← Hκ(h∗). Then CF chooses x, y ∈ Zq

at random and computes X = gx, Y = gy. CF computes
d∗ = (Xτ∗Y)a∗ and puts ψ∗ = (h∗, d∗). Finally CF sets
pk = (q, g, X, Y, κ), sk = (q, g, x, y, κ) and invokes A on pk
and ψ∗.

In the case that A queries its decapsulation oracle
DEC(sk, ·) for the answer for ψ = (h, d), CF computes
τ ← Hκ(h) and verifies whether (g, XτY, h, d) is a DH-tuple.
CF does the same as an honest decapsulation algorithm does
because CF has the secret key sk. If it is not a DH-tuple,

CF sets K̂ =⊥. Otherwise, if τ � τ∗, then CF replies K̂ = hx

to A. If τ = τ∗, then CF returns h and stops (call this case
Collision).

Note that the view of A in CF is the same as the real
view until the case Collision happens. Especially, the view
of A in CF is the same as the view of A in S until the case
Abort or the case Collision happens. So we have:

Pr[Abort] = Pr[Collision].

Notice that the case Collision implies that the following
conditions hold;
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(g, XτY, h, d) is a DH-tuple

and (g, Xτ∗Y, h∗, d∗) is a DH-tuple

and τ = τ∗.

If in addition to the above conditions h were equal to h∗, then
d would be equal to d∗, which would mean that A queried
the challenge ciphertext ψ∗ to its decapsulation oracle. This
is ruled out. Hence it must hold that

h � h∗.

Namely, in the case Collision, CF succeeds in obtaining a
target collision. So we have:

Pr[Collision] = Advtcr
CF ,Hfam(k).

Combining the two equalities, we get

Pr[Abort] = Advtcr
CF ,Hfam(k).

The right hand side is negligible in k by the assumption in
Theorem 5. (Q.E.D.)

7.3 Discussion

As we will see in Sect. 9, the obtained ID scheme from
KEM2 shows the highest performance in both computational
amount and message length compared with previous ID
schemes secure against cMiM attacks.

8. A One-Way-CCA2 Secure KEM by the Twin Diffie-
Hellman Technique

In this section, as it is better to rely on the CDH assumption
rather than the Gap-CDH assumption, we apply the Twin
DH technique of Cash, Kiltz and Shoup [13], [29] to KEM2.
An application of the Twin DH technique to KEM2 to get
KEM3 is not a “black box” and we do it by making the Twin
DH technique compatible with the algebraic trick of Boneh
and Boyen [3] introducing necessary random variables.

8.1 A KEM by the Twin Diffie-Hellman Technique and Its
Security

A KEM KEM3 by the Twin Diffie-Hellman technique con-
sists of a triple (K, Enc, Dec). The construction is shown in

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1147

Key Generation
– K: given 1k as an input;

• (q, g)← Grp(1k), κ ← Hkey(1k)
• x1, x2, y1, y2 ← Zq, X1 := gx1 , X2 := gx2 , Y1 := gy1 ,Y2 := gy2

• pk := (q, g, X1, X2, Y1,Y2, κ), sk := (q, g, x1, x2, y1, y2, κ)
• Return (pk, sk)

Encapsulation
– Enc: given pk as an input;

• a← Zq, h := ga, τ← Hκ(h)
• d1 := (Xτ

1Y1)a, d2 := (Xτ
2Y2)a,K := Xa

1 , ψ = (h, d1, d2)
• Return (K, ψ)

Decapsulation
– Dec: given sk, ψ = (h, d1, d2) as an input;

• τ← Hκ(h)
• If hτx1+y1 � d1 or hτx2+y2 � d2 then K̂ :=⊥ else K̂ := hx1

• Return K̂

Fig. 9 A One-Way-CCA2 KEM by the Twin DH Technique: KEM3.

Fig. 9.
On an input 1k, the key generator K runs as follows. The

group generator Grp returns (q, g) on an input 1k. Then K
chooses x1, x2, y1, y2 from Zq and computes X1 = g

x1 , X2 =

gx2 , Y1 = g
y1 , Y2 = g

y2 . In addition, K chooses a hash key κ
from a hash key space Hkey(1k). The hash key κ indicates a
specific hash function Hκ with values in Zq in a hash func-
tion family Hfam(1k). K sets pk = (q, g, X1, X2, Y1, Y2, κ) and
sk = (q, g, x1, x2, y1, y2, κ). Then K returns (pk, sk).

On an input pk, the encapsulation algorithm Enc runs
as follows. Enc chooses a from Zq at random and computes
h = ga and the hash value τ ← Hκ(h). Then Enc computes
d1 = (Xτ

1Y1)a, d2 = (Xτ
2Y2)a and K = Xa

1 . The random string
is K and its encapsulation is ψ = (h, d1, d2). Note here that
(g, Xτ

1Y1, Xτ
2Y2, h, d1, d2) is a twin DH tuple. Enc returns the

pair (K, ψ).
On an input sk and ψ = (h, d1, d2), the decap-

sulation algorithm Dec runs as follows. Dec computes
the hash value τ ← Hκ(h). Then Dec verifies whether
ψ = (h, d1, d2) is a consistent ciphertext, that is, whether
(g, Xτ

1Y1, Xτ
2Y2, h, d1, d2) is a twin DH tuple or not. For this

sake, Dec checks whether hτx1+y1 = d1 and hτx2+y2 = d2 hold.
If at least one of them does not hold, then Dec puts K̂ =⊥.
Otherwise, Dec computes the decapsulation K̂ = hx1 . Then
Dec returns K̂.

The security of KEM3 is stated as follows.

Theorem 6. The key encapsulation mechanism KEM3 is
one-way-CCA2 secure based on the CDH assumption and
the target collision resistance of a hash function family em-
ployed. More precisely, for any PPT one-way-CCA2 adver-
sary A on KEM3 that queries decapsulation oracle at most
qdec times, there exist a PPT CDH problem solver S on Grp
and a PPT collision-finder CF on Hfam which satisfy the
following tight reduction.

Advow-cca2
A,KEM1 (k) �

qdec

q
+ Advcdh

S,Grp(k) + Advtcr
CF ,Hfam(k).

8.2 Proof of Theorem 6

An outline is stated as follows. The proof goes almost the

Given (q, g,V,W) as an input;
Initial Setting
– Initialize its inner state
– a∗ ← Zq, h∗ := Wga∗

– κ← Hkey(1k), τ∗ ← Hκ(h∗)
– r, s← Zq, X1 := V, X2 := X−r

1 gs

– u1, u2 ← Zq,Y1 := X−τ∗1 gu1 ,Y2 := X−τ∗2 gu2

– d∗1 := (h∗)u1 , d∗2 := (h∗)u2

– pk := (q, g, X1, X2,Y1, Y2, κ), ψ∗ := (h∗, d∗1, d
∗
2)

– Invoke A on pk and ψ∗
AnsweringA’s Queries and Extracting the Answer from Return
– In the case thatA queriesDEC(sk, ·) for the answer for ψ = (h, d1, d2)

• If ψ = ψ∗, then put K̂ :=⊥
• else (: the case Consistency-Check)

τ← Hκ(h), Ŷ := hτ−τ∗ , Ẑ1 := d1/hu1 , Ẑ2 := d2/hu2

If Ẑ1
r
Ẑ2 � Ŷ s, then K̂ :=⊥

else
If τ � τ∗, then K̂ := Ẑ1

1/(τ−τ∗)
(: the case Simdec)

else abort (: the case Abort)
• Reply K̂ toA

– In the case thatA returns K̂∗ as the answer for ψ∗
• Return Z := K̂∗/Xa∗

1

Fig. 10 A CDH Problem Solver S for the Proof of Theorem 6.

same way as the proof of Theorem 5 except that we have to
treat an argument for the Trapdoor Test (Lemma 1) which
decides whether a given tuple is a twin DH tuple or not.

Let us proceed in detail. LetA be any given adversary
that attacks KEM3 in one-way-CCA2 setting. Using A as a
subroutine, we construct a PPT CDH problem solver S as
shown in Fig. 10, where the algebraic trick [3] and the Twin
Diffie-Hellman technique [13] are essentially used.

S is given q, g,V = gv,W = gw as an input, where v
and w are random and unknown to S. S initializes its inner
state. S chooses a∗ from Zq at random and computes h∗ =
Wga∗ . Then S chooses κ from Hkey(1k) and computes τ∗ ←
Hκ(h∗). S chooses r and s from Zq at random, and puts X1 =

V, X2 = X−r
1 gs. S chooses u1 and u2 from Zq at random, and

computes Y1 = X−τ∗1 gu1 , Y2 = X−τ∗2 gu2 . S computes d∗1 =
(h∗)u1 , d∗2 = (h∗)u2 . S sets pk = (q, g, X1, X2, Y1, Y2, κ), ψ∗ =
(h∗, d∗1, d

∗
2) and invokesA on an input (pk, ψ∗).

Note that pk is correctly distributed. Note also that S
does not know x1, x2, y1, y2 at all, where x1, x2, y1, y2 denote
the discrete log of X1, X2, Y1, Y2 on a base g, respectively.
Here the following holds.

yi = −τ∗xi + ui, i = 1, 2. (1)

S replies toA’s queries as follows.
In the case that A queries its decapsulation oracle

DEC(sk, ·) for the answer for ψ = (h, d1, d2), S checks
whether ψ is equal to ψ∗ or not. If ψ = ψ∗, thenS puts K̂ =⊥.
Otherwise, S computes τ← Hκ(h) and verifies whether ψ =
(h, d1, d2) is consistent or not (call this case Consistency-
Check). That is, S verifies whether (g, Xτ

1Y1, Xτ
2Y2, h, d1, d2)

is a twin DH tuple as follows. Put Ŷ = hτ−τ∗ , Ẑ1 = d1/hu1

and Ẑ2 = d2/hu2 . If Ẑ1
r
Ẑ2 � Ŷ s, then it is not a twin DH tu-

ple and S puts K̂ =⊥. Otherwise, S decides that it is a twin

DH tuple. Then, if τ � τ∗, S computes K̂ = Ẑ1
1/(τ−τ∗)

(call

1148
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

this case Simdec). Otherwise (τ = τ∗), S aborts (call this
case Abort). S replies K̂ toA except for the case Abort.

In the case thatA returns K̂∗, S returns Z = K̂∗/Xa∗ .
S is able to simulate the real view of A perfectly until

the case Abort happens, except for a negligible case, as we
see below.

Firstly, the challenge ciphertext ψ∗ = (h∗, d∗1, d
∗
2) is con-

sistent and correctly distributed. This is because the distri-
bution of ψ∗ = (h∗, d∗1, d

∗
2) is equal to that of the real consis-

tent ciphertext ψ = (h, d1, d2). To see it, note that w + a∗ is
substituted for a;

h∗ = Wga∗ = gw+a∗ ,

d∗i = (gw+a∗)ui = (gui)w+a∗ = (Xτ∗
i Yi)

w+a∗ , i = 1, 2.

Secondly, S can simulate the decapsulation oracle
DEC(sk, ·) perfectly except for a negligible case. To see it,
note that the consistency check really works though it may
involve a negligible error case, which is explained by the
following two claims.

Claim 8.1. (g, Xτ
1Y1, Xτ

2Y2, h, d1, d2) is a twin DH tuple if

and only if (g, X1, X2, Ŷ, Ẑ1, Ẑ2) is a twin DH tuple for
Ŷ = hτ−τ∗ , Ẑ1 = d1/hu1 and Ẑ2 = d2/hu2 .

Proof of Claim 8.1. This claim is proven by direct calcula-
tions. See Appendix E.

Claim 8.2. If Ẑ1
r
Ẑ2 = Ŷ s holds for Ŷ = hτ−τ∗ , Ẑ1 = d1/hu1

and Ẑ2 = d2/hu2 , then (g, X1, X2, Ŷ, Ẑ1, Ẑ2) is a twin DH tu-
ple except for an error case that occurs at most 1/q proba-
bility. Conversely, if (g, X1, X2, Ŷ, Ẑ1, Ẑ2) is a twin DH tuple,
then Ẑ1

r
Ẑ2 = Ŷ s certainly holds.

Proof of Claim 8.2. We observe that each of Ŷ = hτ−τ∗ , Ẑ1 =

d1/hu1 and Ẑ2 = d2/hu2 is given independently of r. So we
can apply Lemma 1 in Sect. 2. (Q.E.D.)

Let us define the event Overlook as:

Overlook
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ẑ1

r
Ẑ2 = Ŷ s holds

and (g, X1, X2, Ŷ, Ẑ1, Ẑ2) is not

a twin DH tuple.

Then, by Claim 8.2, the probability that Overlook occurs is
at most 1/q for each consistency check. So for at most qdec

consistency checks, Consistency-Checki, i = 1, . . . , qdec, the
probability that at least one corresponding Overlooki occurs
is at most qdec/q. That is;

Pr

⎡⎢⎢⎢⎢⎢⎣
qdec∨
i=1

Overlooki

⎤⎥⎥⎥⎥⎥⎦ � qdec

q
. (2)

qdec is polynomial and q is exponential in k, so the right hand
side is negligible in k.

Suppose S has confirmed that a decapsulation query
ψ = (h, d1, d2) passed the consistency check. In that case,
(g, Xτ

1Y1, Xτ
2Y2, h, d1, d2) is a twin DH tuple (except for a

negligible case Overlook), so d1 = hτx1+y1 holds. If, in ad-
dition, S is in the case Simdec (that is, τ � τ∗), then the

answer K̂ = Ẑ1
1/(τ−τ∗)

of S to A is correct. This is because
K̂ = (d1/hu1)1/(τ−τ∗) is equal to hx1 by the following equali-
ties.

d1/h
u1 = hτx1+y1−u1 = h(τ−τ∗)x1+(τ∗x1+y1−u1) = h(τ−τ∗)x1 ,

where we use the equality (1).
As a whole, S simulates the real view of A perfectly

until the case Abort happens except for the negligible case
Overlook.

Now we evaluate the CDH advantage of S. When A
wins, (g, X1, h∗, K̂∗) is a DH tuple, so the following holds
(note that we have set X1 = V , so x1 = v);

K̂∗ = gx1(w+a∗) = gvwXa∗
1 .

Hence the return Z is equal to K̂∗/Xa∗
1 = gvw, which is

the correct answer for the input (g,V,W). That is, S wins.
Therefore, the probability that S wins is lower bounded by
the probability that A wins, Overlooki never occurs for
i = 1, . . . , qdec and Abort does not happen:

Pr[S wins]

� Pr

⎡⎢⎢⎢⎢⎢⎣A wins ∧
⎛⎜⎜⎜⎜⎜⎝

qdec∧
i=1

(¬Overlooki)

⎞⎟⎟⎟⎟⎟⎠ ∧ (¬Abort)

⎤⎥⎥⎥⎥⎥⎦

� Pr[A wins] − Pr

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝

qdec∨
i=1

Overlooki

⎞⎟⎟⎟⎟⎟⎠ ∨ Abort

⎤⎥⎥⎥⎥⎥⎦
= Pr[A wins]

−
⎛⎜⎜⎜⎜⎜⎝Pr

⎡⎢⎢⎢⎢⎢⎣
qdec∨
i=1

Overlooki

⎤⎥⎥⎥⎥⎥⎦ + Pr

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝

qdec∧
i=1

(¬Overlooki)

⎞⎟⎟⎟⎟⎟⎠ ∧ Abort

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ .

Using the inequality (2), we get:

Advcdh
S,Grp(k) �Advow-cca2

A,KEM3 (k) − qdec

q

− Pr

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝

qdec∧
i=1

(¬Overlooki)

⎞⎟⎟⎟⎟⎟⎠ ∧ Abort

⎤⎥⎥⎥⎥⎥⎦ .

So our task being left is to show that the last term probabil-
ity is negligible in k.

Claim 8.3. The probability that (
∧qdec

i=1 (¬Overlooki)) ∧
Abort occurs is negligible in k.

Proof of Claim 8.3. Using A as a subroutine, we con-
struct a PPT target collision finder CF on Hfam as fol-
lows. Given 1k as an input, CF initializes its inner state.
CF gets (q, g) from Grp(1k). CF chooses a∗ ∈ Zq at ran-
dom, computes h∗ = ga∗ and outputs h∗. CF receives a
random hash key κ and computes τ∗ ← Hκ(h∗). Then
CF makes a secret key and public key honestly by itself:
sk = (q, g, x1, x2, y1, y2, κ), pk = (q, g, X1, X2, Y1, Y2, κ). Fi-
nally, CF computes d∗1 = (Xτ∗

1 Y1)a∗ , d∗2 = (Xτ∗
2 Y2)a∗ and puts

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1149

ψ∗ = (h∗, d∗1, d
∗
2). CF invokesA on pk and ψ∗.

In the case that A queries its decapsulation oracle
DEC(sk, ·) for the answer for ψ = (h, d1, d2), CF checks
whether ψ is equal to ψ∗ or not. If ψ = ψ∗, then CF replies
K =⊥ to A. Otherwise (ψ � ψ∗), CF computes τ ← Hκ(h)
and verifies whether ψ = (h, d1, d2) is consistent. CF can do
it in the same way as Dec does because CF has the secret
key sk. If it is not consistent, CF replies K =⊥ toA. Other-
wise, if τ � τ∗, then CF replies K = hx1 toA. Else if τ = τ∗,
then CF returns h and stops (call this case Collision).

The view ofA in CF is the same as the real view until
the case Collision happens.

Observe here the following. If Overlook never occurs
in S, then only consistent queries (ψs) have the chance to
cause a collision (τ = τ∗) as is the case in CF . Hence we
have:

Pr

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝

qdec∧
i=1

(¬Overlooki)

⎞⎟⎟⎟⎟⎟⎠ ∧ Abort

⎤⎥⎥⎥⎥⎥⎦ � Pr[Collision]. (3)

On the other hand, notice that Collision implies the
following.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(g, Xτ∗

1 Y1, Xτ∗
2 Y2, h∗, d∗1, d

∗
2): a twin DH tuple

and ∃(g, Xτ
1Y1, Xτ

2Y2, h, d1, d2): a twin DH tuple

and τ = τ∗.

If in addition to the above conditions h were equal to h∗, then
(d1, d2) would be equal to (d∗1, d

∗
2), which would mean that

A queried the challenge ciphertext ψ∗ to its decapsulation
oracle. This is ruled out. Hence it must hold that:

h � h∗.

Namely, in the case Collision, CF succeeds in obtaining a
target collision. So we have:

Pr[Collision] = Advtcr
CF ,Hfam(k). (4)

Combining (3) and (4), we get

Pr

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝

qdec∧
i=1

(¬Overlooki)

⎞⎟⎟⎟⎟⎟⎠ ∧ Abort

⎤⎥⎥⎥⎥⎥⎦ � Advtcr
CF ,Hfam(k).

The right hand side is negligible in k by the assumption in
Theorem 6. (Q.E.D.)

8.3 Discussion

To reduce the length of ciphertext ψ = (h, d1, d2), we can re-
place the term d2 with its hash value v2 := Hκ(d2). Let us call
this KEM KEM3̃. The security statement and the obtained ID
scheme is described in Appendix F.

9. Efficiency Comparison

In this section, we evaluate the efficiency of the ID schemes

from our KEMs comparing with other ID schemes, es-
pecially, which are secure against concurrent man-in-the-
middle attacks in the standard model. Among ID schemes
secure against concurrent man-in-the-middle attacks, the
ID scheme from KEM2 shows the highest performance in
both computational amount and message length. Among ID
schemes whose security is based on the CDH assumption,
the ID scheme from KEM3̃ shows the highest performance in
both.

Comparable ID schemes are divided into four cate-
gories. The first category is Σ-protocols, the second cate-
gory is challenge-and-response ID schemes obtained from
EUF-CMA secure signature schemes, the third category is
the ones obtained from IND-CCA2 secure (non-hybrid) en-
cryption schemes and the fourth category is the ones ob-
tained from KEMs.

In the first category, to the best of our knowledge, the
Gennaro scheme [20] is the most efficient. Here we consider
one of the schemes in [20], that is, the Schnorr ID scheme
plus a multi-trapdoor commitment scheme in the RSA set-
ting. But it is no more efficient than the ID scheme obtained
from the Cramer-Shoup encryption [14] (Cramer-Shoup ID,
for short).

In the second category, all the known signature
schemes in the standard model, including the Short Sig-
nature [4] and the Waters Signature [40], are costly as ID
schemes than Cramer-Shoup ID.

In the third category, Cramer-Shoup ID is the most ef-
ficient.

In the fourth category, Cramer-Shoup KEM (CS3b in
[15]) (which we denote as CSKEM), which is IND-CCA2 se-
cure based on the DDH assumption, is the most efficient. We
remark that the KEM part of Kurosawa-Desmedt hybrid en-
cryption scheme [30] is not comparable because the KEM
is not one-way-CCA2 secure [23]. Among ID schemes
whose security is based on the CDH assumption, an ID
scheme from the one-way-CCA2 secure KEM of Hanaoka-
Kurosawa [24] (which we denote as HKKEM) is the most
comparable.

Table 2 shows a comparison of these ID schemes, plus
the Schnorr ID scheme and an ID scheme from El Gamal
KEM, with the ID schemes from our KEMs.

In Table 2, we compare computational amount by
counting the number of exponentiations in a prover P and
a verifier V. We also compare the maximum message length.

In Computational Amount column, notation (s, t) or
(s, t, u) means that the prover P or the verifier V includes
s single exponentiations, t double exponentiations and u
triple exponentiations of the form ga, gahb and gahbic, re-
spectively.

A simple estimation, which is denoted by index 1, is
done by evaluating the amount of a double and a triple ex-
ponentiation as two times and three times as large as the
amount of a single exponentiation, respectively. That is, the
total amount T1(P) for a prover P and T1(V) for a verifier V

1150
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

Table 2 Efficiency Comparison of the ID Schemes from Our KEMs with Previous ID Schemes and
KEMs.
OMDL, GDL, SDH, GCDH and SRSA mean assumptions of the One-More DL, the Gap-DL, the Strong
DH, the Gap-CDH and the Strong RSA, respectively.
OW-CCA* means the one-way-CCA* security and ca means concurrent (two-phase) attack.
(s, t) (or (s, t, u)) means s single exponentiations, t double exponentiations (and u triple exponentiations).
kg and vf mean a key generation and a verification of a one-time signature, respectively.
T1(P) := s + 2t and T1(V) := s + 2t + 3u (plus 0.1 or 0.05 for kg or vf, respectively) and
T2(P) := s + 1.75t and T2(V) := s + 1.75t + 1.875u (plus 0.1 or 0.05 for kg or vf, respectively).
T1 := T1(P) + T1(V) and T2 := T2(P) + T2(V).
G and h mean an element in Gq and a hash value in Zq, respectively.
vk and σ mean a verification key and a signature of a one-time signature, respectively.

ID Sch. Security Security Security Computational Amount Max.Msg.
or KEM Assump. as KEM as ID Sch. P T1(P) T2(P) V T1(V) T2(V) T1 T2 Length
SchID OMDL - ca (1,0) 1.00 1.00 (0,1,0) 2.00 1.75 3.00 2.75 G
GenID DL&SRSA - cMiM (3,1)+kg 5.10 4.85 (1

2 ,2,0)+vf 4.55 4.05 9.65 8.90 G + vk
EGKEM GDL&KEA OW-CCA1 ca (1,0) 1.00 1.00 (2,0,0) 2.00 2.00 3.00 3.00 G
CSKEM DDH IND-CCA2 cMiM (3,0) 3.00 3.00 (3,1,0) 5.00 4.75 8.00 7.75 3G
HKKEM CDH OW-CCA2 cMiM (3,0) 3.00 3.00 (2,0,2) 8.00 5.75 11.00 8.75 3G

Our tKEM GCDH(stag) OW-CCA2 cMiM (2,0) 2.00 2.00 (2,1,0) 4.00 3.75 6.00 5.75 2G
Our KEM1 GCDH OW-CCA2 cMiM (2,0)+vf 2.05 2.05 (2,1,0)+kg 4.10 3.85 6.15 5.90 2G + vk + σ
Our KEM2 GCDH OW-CCA2 cMiM (2,0) 2.00 2.00 (2,1,0) 4.00 3.75 6.00 5.75 2G
Our KEM3 CDH OW-CCA2 cMiM (3,0) 3.00 3.00 (2,2,0) 6.00 5.50 9.00 8.50 3G
Our KEM3̃ CDH OW-CCA2 cMiM (3,0) 3.00 3.00 (2,2,0) 6.00 5.50 9.00 8.50 2G + h

are evaluated as s + 2t and s + 2t + 3u times as large as a
signal exponentiation, respectively.

When some techniques for exponentiations are applica-
ble, better estimations can be achieved. Here we only con-
sider a basic technique for modular exponentiations by El
Gamal and Shamir [18], [42]. By that technique, a double
exponentiation is 1.75 times as large as a single exponentia-
tion and a triple exponentiation is 1.875 times as large as a
single exponentiation. As a result, T1(P) and T1(V) are eval-
uated as s + 1.75t and s + 1.75t + 1.875u times as large as a
single exponentiation, respectively.

We note that a one-time signature does not cost so
much. In Table 2, the Lamport signature [31] in mind, we
estimate that a key generation and a verification amount to
at most 0.10 times and 0.05 times as large as a single expo-
nentiation, respectively (see [9], for example).

T1 and T2 in Computational Amount column of Table 2
show total computational amount for each ID scheme. That
is, T1 = T1(P) + T1(V) and T2 = T2(P) + T2(V).

As shown in the column, the ID scheme from our KEM2
achieves T1 = 6.00, T2 = 5.75 with the maximum mes-
sage length 2G, which is the highest performance among
ID schemes secure against cMiM attacks.

Also, the ID scheme from our KEM3̃ shows the high-
est performance in both computational amount (T1 =

9.00, T2 = 8.50) and message length (2G + h) among ID
schemes secure against cMiM attacks based on the CDH as-
sumption. Our KEM3̃ reduces T1 by 2.00 exponentiations and
T2 by 0.25 exponentiations from those of HKKEM.

10. Conclusions

We proposed a generic conversion from a KEM to an ID
scheme. Then, starting with El Gamal KEM, we develop a
series of five one-way-CCA2 secure KEMs applying tech-

niques such as the selective tag with the algebraic trick
[3], [27], the CHK transformation [12], the target collision-
resistant hash functions, the Twin Diffie-Hellman technique
[13] and a modification for shortening message length. The
ID schemes from our KEMs show the highest performance
in both computational amount and message length com-
pared with previous ID schemes secure against cMiM at-
tacks.

Acknowledgements

We appreciate sincere suggestions offered by Prof. Kiltz
[29] and we would like to thank Prof. Kurosawa for inspir-
ing words, both at ProvSec 2010. We also thank anonymous
reviewers of AfricaCrypt 2011 for careful reading and valu-
able comments.

References

[1] H. Anada and S. Arita, “Identification schemes of proofs of ability
secure against concurrent man-in-the-middle attacks,” Proc. ProvSec
2010, Malacca, Malaysia, Oct. 2010, Lect. Notes Comput. Sci.,
vol.6402, pp.18–34, Springer-Verlag, Heidelberg, Germany.

[2] H. Anada and S. Arita, “Identification schemes from key encapsu-
lation mechanisms,” Proc. AFRICACRYPT 2011, Dakar, Senegal,
July 2011, Lect. Notes Comput. Sci., vol.6737, pp.59–76, Springer-
Verlag, Heidelberg, Germany.

[3] D. Boneh and X. Boyen, “Efficient selective-ID secure identity-
based encryption without random oracles,” Proc. EUROCRYPT
2004, Interlaken, Switzerland, May 2004, Lect. Notes Comput. Sci.,
vol.3027, pp.223–238, Springer-Verlag, Heidelberg, Germany.

[4] D. Boneh and X. Boyen, “Short signatures without random oracles,”
Proc. EUROCRYPT 2004, Interlaken, Switzerland, May 2004, Lect.
Notes Comput. Sci., vol.3027, pp.56–73, Springer-Verlag, Heidel-
berg, Germany.

[5] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali, “Identifi-
cation protocols secure against reset attacks,” Proc. EUROCRYPT
2001, Innsbruck, Austria, May 2001, Lect. Notes Comput. Sci.,

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1151

vol.2045, pp.495–511, Springer-Verlag, Heidelberg, Germany.
[6] M. Bellare and O. Goldreich, “On defining proofs of knowledge,”

Proc. CRYPTO’92, Santa Barbara, CA, USA, Aug. 1992, Lect.
Notes Comput. Sci., vol.740, pp.390–420, Springer-Verlag, Heidel-
berg, Germany.

[7] M. Bellare and A. Palacio, “GQ and Schnorr identification schemes:
Proofs of security against impersonation under active and concurrent
attacks,” Proc. CRYPTO 2002, Santa Barbara, CA, USA, Aug. 2002,
Lect. Notes Comput. Sci., vol.2442, pp.162–177, Springer-Verlag,
Heidelberg, Germany.

[8] M. Bellare and A. Palacio, “The knowledge-of-exponent assump-
tions and 3-round zero-knowledge protocols,” Proc. CRYPTO 2004,
Santa Barbara, CA, USA, Aug. 2004, Lect. Notes Comput. Sci.,
vol.3152, pp.273–289, Springer-Verlag, Heidelberg, Germany.

[9] M. Bellare and S. Shoup, “Two-tier signatures, strongly unforge-
able signatures, and Fiat-Shamir without random oracles,” Proc.
PKC 2007, Beijing, China, April 2007, Lect. Notes Comput. Sci.,
vol.4450, pp.201–216, Springer-Verlag, Heidelberg, Germany.

[10] R. Canetti and R.R. Dakdouk, “Extractable perfectly one-way func-
tions,” Proc. ICALP 2008, Reykjavik, Iceland, July 2008, Lect.
Notes Comput. Sci., vol.5126, pp.449–460, Springer-Verlag, Hei-
delberg, Germany.

[11] R. Cramer, I. Damgård, and J.B. Nielsen, “Multiparty computa-
tion from threshold homomorphic encryption,” Proc. EUROCRYPT
2001, Innsbruck, Austria, May 2001, Lect. Notes Comput. Sci.,
vol.2045, pp.280–300, Springer-Verlag, Heidelberg, Germany.

[12] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertext security
from identity-based encryption,” Proc. EUROCRYPT 2004, Inter-
laken, Switzerland, May 2004, Lect. Notes Comput. Sci., vol.3027,
pp.207–222, Springer-Verlag, Heidelberg, Germany.

[13] D. Cash, E. Kiltz, and V. Shoup, “The twin Diffie-Hellman problem
and applications,” Proc. EUROCRYPT 2008, Istanbul, Turkey, April
2008, Lect. Notes Comput. Sci., vol.4965, pp.127–145, Springer-
Verlag, Heidelberg, Germany. Full version available at Cryptology
ePrint Archive, 2008/067, http://eprint.iacr.org/

[14] R. Cramer and V. Shoup, “A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack,” Proc.
CRYPTO’98, Santa Barbara, CA, USA, Aug. 1998, Lect. Notes
Comput. Sci., vol.1462, pp.13–25, Springer-Verlag, Heidelberg,
Germany.

[15] R. Cramer and V. Shoup, “Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext
attack,” SIAM J. Comput., vol.33, no.1, pp.167–226, Aug. 2003.

[16] R.R. Dakdouk, Theory and Application of Extractable Functions,
Doctor of Philosophy Dissertation, Yale University, New Haven, CT,
USA, 2009.

[17] I. Damgård, “Towards practical public key systems secure against
chosen ciphertext attacks,” Proc. CRYPTO’91, Santa Barbara, CA,
USA, Aug. 1991, Lect. Notes Comput. Sci., vol.576, pp.445–456,
Springer-Verlag, Heidelberg, Germany.

[18] T. El Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” Proc. CRYPTO’84, Santa Barbara,
California, USA, Aug. 1984, Lect. Notes Comput. Sci., vol.196,
pp.10–18, Springer-Verlag, Heidelberg, Germany.

[19] E. Fujisaki, “New constructions of efficient simulation-sound com-
mitments using encryption,” Proc. 2011 Symposium on Cryptogra-
phy and Information Security, SCIS 2011, Kokura, Japan, Jan. 2011,
1A2-3, The Institute of Electronics, Information and Communica-
tion Engineers, Tokyo, Japan.

[20] R. Gennaro, “Multi-trapdoor commitments and their applications to
non-malleable protocols,” Proc. CRYPTO 2004, Santa Barbara, CA,
USA, Aug. 2004, Lect. Notes Comput. Sci., vol.3152, pp.220–236,
Springer-Verlag, Heidelberg, Germany.

[21] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof systems,” SIAM J. Comput., vol.18, no.1,
pp.186–208, Feb. 1989.

[22] L. Guillou and J.J. Quisquater, “A paradoxical identity-based sig-

nature scheme resulting from zero-knowledge,” Proc. CRYPTO’88,
Santa Barbara, CA, USA, Aug. 1988, Lect. Notes Comput. Sci.,
vol.403, pp.216–231, Springer-Verlag, Heidelberg, Germany.

[23] J. Herranz, D. Hofheinz, and E. Kiltz, “The Kurosawa-Desmedt key
encapsulation is not chosen-ciphertext secure,” Cryptology ePrint
Archive, 2006/207, http://eprint.iacr.org/

[24] G. Hanaoka and K. Kurosawa, “Efficient chosen ciphertext secure
public key encryption under the computational Diffie-Hellman as-
sumption,” Proc. ASIACRYPT 2008, Melbourne, Australia, Dec.
2008, Lect. Notes Comput. Sci., vol.5350, pp.308–325, Springer-
Verlag, Heidelberg, Germany. Full version available at Cryptology
ePrint Archive, 2008/211, http://eprint.iacr.org/

[25] J. Katz, Efficient Cryptographic Protocols Preventing “Man-in-the-
Middle” Attacks, Doctor of Philosophy Dissertation, Columbia Uni-
versity, New York, NY, USA, 2002.

[26] J. Katz, “Efficient and non-malleable proofs of plaintext knowledge
and applications,” Proc. EUROCRYPT 2003, Warsaw, Poland, May
2003, Lect. Notes Comput. Sci., vol.2656, pp.211–228, Springer-
Verlag, Heidelberg, Germany.

[27] E. Kiltz, “Chosen-ciphertext security from tag-based encryption,”
Proc. TCC 2006, New York, NY, USA, March 2006, Lect. Notes
Comput. Sci., vol.3876, pp.581–600, Springer-Verlag, Heidelberg,
Germany.

[28] E. Kiltz, “Chosen-ciphertext security from hashed gap Diffie-
Hellman,” Proc. PKC 2007, New York, NY, USA, March 2006,
Lect. Notes Comput. Sci., vol.3876, pp.581–600, Springer-Verlag,
Heidelberg, Germany.

[29] E. Kiltz, Personal communication at ProvSec 2010, Malacca, 2010.
[30] K. Kurosawa and Y. Desmedt, “A new paradigm of hybrid encryp-

tion scheme,” Proc. CRYPTO 2004, Santa Barbara, CA, USA, Aug.
2004, Lect. Notes Comput. Sci., vol.3152, pp.426–442, Springer-
Verlag, Heidelberg, Germany.

[31] L. Lamport, “Constructing digital signatures from a one-way func-
tion,” Technical Report SRI-CSL-98, SRI International Computer
Science Laboratory, Oct. 1979.

[32] U. Maurer and S. Wolf, “Lower bounds on generic algorithms in
groups,” Proc. EUROCRYPT’98, Espoo, Finland, May-June 1998,
Lect. Notes Comput. Sci., vol.1403, pp.72–84, Springer-Verlag,
Heidelberg, Germany.

[33] M. Naor and M. Yung, “Universal one-way hash functions and their
cryptographic applications,” Proc. 21st Symposium on Theory of
Computing, Seattle, Washington, USA, May 1989, pp.33–43, As-
sociation for Computing Machinery, New York, USA.

[34] T. Okamoto and D. Pointcheval, “The gap-problems: A new class
of problems for the security of cryptographic schemes,” Proc. PKC
2001, Cheju Island, Korea, Feb. 2001, Lect. Notes Comput. Sci.,
vol.1992, pp.104–118, Springer-Verlag, Heidelberg, Germany.

[35] D. Pointcheval, “Chosen-ciphertext security for any one-way cryp-
tosystem,” Proc. PKC 2000, Melbourne, Victoria, Australia, Jan.
2000, Lect. Notes Comput. Sci., vol.1751, pp.129–146, Springer-
Verlag, Heidelberg, Germany.

[36] J. Rompel, “One-way functions are necessary and sufficient for se-
cure signatures,” Proc. 22nd Annual Symposium on Theory of Com-
puting, Baltimore, MD, USA, May 1990, pp.387–384, Association
for Computing Machinery, New York, USA.

[37] C.P. Schnorr, “Efficient identification and signatures for smart
cards,” Proc. CRYPTO’89, Santa Barbara, CA, USA, Aug. 1989,
Lect. Notes Comput. Sci., vol.435, pp.239–252, Springer-Verlag,
Heidelberg, Germany.

[38] D.R. Stinson and J. Wu, “An efficient and secure two-flow zero-
knowledge identification protocol,” J. Mathematical Cryptology,
vol.1, no.3, pp.201–220, Aug. 2007.

[39] J. Wu and D.R. Stinson, “An efficient identification protocol and the
knowledge-of-exponent assumption,” Cryptology ePrint Archive,
2007/479, http://eprint.iacr.org/

[40] B. Waters, “Efficient identity-based encryption without random or-
acles,” Proc. EUROCRYPT 2005, Aarhus, Denmark, May 2005,

1152
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

Lect. Notes Comput. Sci., vol.3494, pp.114–127, Springer-Verlag,
Heidelberg, Germany.

[41] S. Yilek, “Resettable public-key encryption: How to encrypt on
a virtual machine,” Proc. the Cryptographers’ Track at the RSA
Conference 2010, San Francisco, CA, USA, March 2010, Lect.
Notes Comput. Sci., vol.5985, pp.41–56, Springer-Verlag, Heidel-
berg, Germany.

[42] S.M. Yen, C.S. Laih, and A.K. Lenstra, “Multi-exponentiation,” IEE
Proc. Computers and Digital Techniques, vol.141, no.6, pp.325–326,
Nov. 1994.

Appendix A: Proof of Theorem 2

Let A = (A1,A2) be as in Theorem 2. Using A as a sub-
routine, we construct a Gap-DL problem solver S. The con-
struction is illustrated in Fig. A· 1.

S is given q, g, X = gx as a DL problem instance, where
x is random and unknown to S. S initializes its inner state,
sets pk = (q, g, X) and invokesA1 on an input pk.

In the first phase, in the case that A1 queries its de-
capsulation oracle DEC(sk, ·) for the answer for ψ = h, S
queries its CDH oracle CDH for the answer for a CDH
problem instance (g, h, X) and gets Z as a reply. Then S
replies K̂ = Z to A. In the case that A1 returns the inner
state st, S ends the first phase and proceeds to the second
phase.

In the second phase, S chooses a∗ from Zq at random
and computes ψ∗ = h∗ = ga∗ . ThenS invokesA2 on an input
(st, ψ∗). In the case that A2 returns K̂∗, S invokes the KEA
extractor H′ on (g, h∗, st). Here H′ is the KEA extractor
associated with the algorithmH below.

H(g, h∗, st) :

K̂∗ ← A2(st, h∗), Z := K̂∗, return(g, h∗, X, Z).

Note that the auxiliary input st is independent of h∗.
IfH′ returns x∗, then S returns x∗.
It is obvious that S simulates A’s decapsulation oracle

DEC(sk, ·) perfectly with the aid of CDH oracle CDH .
Now we evaluate the Gap-DL advantage of S. Let Ext

denote the event that gx∗ = X holds (that is, H′ succeeds in
extracting the exponent of gx∗ = X). If Ext occurs, then the

Given (q, g, X) as an input;
Initial Setting
– Initialize its inner state
– pk := (q, g, X), invoke A1 on pk
The First Phase : AnsweringA1’s Queries
– In the case thatA1 queriesDEC(sk, ·) for the answer for ψ = h;

• Z ← CDH(g, h, X), reply K̂ := Z toA1

– In the case thatA1 returns the inner state st;
• Proceed to the Second Phase

The Second Phase : Extracting the Answer fromA2’s Return
• a∗ ← Zq, ψ

∗ := h∗ := ga∗

• Invoke A2 on (st, ψ∗)
– In the case thatA2 returns K̂∗;

• Invoke H′ on (g, h∗, st) : x∗ ← H′(g, h∗, st)
• Return x∗

Fig. A· 1 A Gap-DL Problem Solver S for the Proof of Theorem 2.

solver S wins. So we have:

Pr[S wins] �Pr[Ext].

Then we do the following deformation;

Pr[S wins]

� Pr[A wins ∧ Ext] + Pr[¬(A wins) ∧ Ext]

� Pr[A wins ∧ Ext]

= Pr[A wins] − Pr[A wins ∧ ¬Ext].

HereA wins if and only if K̂∗ = Z = Xa∗ holds. Therefore;

Pr[S wins] � Pr[A wins] − Pr[Xa∗ = Z ∧ gx∗ � X].

That means what we want.

Advgap-dl
S,Grp(k) � Advow-cca1

A,EGKEM(k) − Advkea
H ,H′,Grp(k).

(Q.E.D.)

Appendix B: One-Time Signatures

A one-time signature OTS is a triple of PPT algorithms
(SGK, Sign, Vrfy). SGK is a signing key generator which
returns a pair (vk, sgk) of a verification key and a match-
ing signing key on an input 1k. Sign and Vrfy are a sign-
ing algorithm and a verification algorithm, respectively. We
require OTS to be existentially unforgeable against chosen
message attack by any PPT forger F (the EUF-CMA prop-
erty). The following experiment represents the strong ver-
sion.

Exprmteuf-cma
F ,OTS (1k)

(vk, sgk)← SGK(1k),m← F (vk), σ← Signsgk(m),

(m′, σ′)← F (vk, (m, σ))

If Vrfyvk(m
′, σ′) = 1 ∧ (m′, σ′) � (m, σ)

then return Win else return Lose.

We define the EUF-CMA advantage of F over OTS in the
strong sense as follows.

Adveuf-cma
F ,OTS (k)

def
= Pr[Exprmteuf-cma

F ,OTS (1k) returns Win].

We say that OTS has the one-time security in the strong sense
if, for any PPT algorithm F , Adveuf-cma

F ,OTS (k) is negligible in k.
We also say that OTS is a strong one-time signature, or, OTS
has the EUF-CMA property in the strong sense.

One-time signatures can be constructed based on the
existence of a one-way function (for example, [31]).

Appendix C: Proof of Theorem 4

Let A be as in Theorem 4. Using A as a subroutine, we
construct a Gap-CDH problem solver S. The construction
is illustrated in Fig. A· 2.

S is given q, g,V = gv,W = gw as a CDH problem

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1153

Given (q, g,V,W) as an input;
Initial Setting
– Initialize inner state
– (vk∗, sgk∗)← SGK(1k)
– u← Zq, X := V, Y := X−vk∗gu, pk := (q, g, X, Y)
– a∗ ← Zq, h∗ := Wga∗ , d∗ := (h∗)u, σ∗ ← Signsgk∗ ((h∗, d∗))
– ψ∗ := (vk∗, (h∗, d∗), σ∗), invokeA on pk and ψ∗
AnsweringA’s Queries and Extracting the Answer from Return
– In the case that A queries DEC(sk, ·) for the answer for ψ =
(vk, (h, d), σ);

• If Vrfyvk((h, d), σ) � 1 orDDH(g, XvkY, h, d) � 1 then K̂ :=⊥
• else

If vk � vk∗ then K̂ := (d/hu)1/(vk−vk∗) (: the case Simdec)
else abort (: the case Abort)

• Reply K̂ toA
– In the case thatA returns K̂∗;

• Return Z := K̂∗/Xa∗

Fig. A· 2 A Gap-CDH Problem Solver S for the Proof of Theorem 4.

instance, where v and w are random and unknown to S.
S initializes its inner state. Invoking SGK on an input

1k, S gets (vk∗, sgk∗). S chooses u from Zq at random and
puts X = V and Y = X−vk∗gu and sets pk = (q, g, X, Y).

Note that pk is correctly distributed. Note also that S
knows neither x nor y, where x and y denote the discrete log
of X and Y on a base g, respectively. Here the following
holds;

y = −vk∗x + u.

S chooses a∗ from Zq at random and S puts h∗ =
Wga∗ and d∗ = (h∗)u. S gets a signature σ∗ from
Signsgk∗ ((h

∗, d∗)). Then S puts ψ∗ = (vk∗, (h∗, d∗), σ∗). S
invokesA on an input pk.

S replies A in answer to A’s decapsulation queries as
follows. In the case that A queries its decapsulation or-
acle DEC(sk, ·) for the answer for ψ = (vk, (h, d), σ), S
verifies whether ((h, d), σ) is valid under vk and whether
(g, XvkY, h, d) is a DH-tuple. S checks the latter by querying
its DDH oracleDDH for the answer. If at least one of them
is not satisfied, then S puts K̂ =⊥.

Otherwise, if vk � vk∗ then S puts K̂ = (d/hu)1/(vk−vk∗)
(call this case Simdec). If vk = vk∗, S aborts (call this case
Abort). S replies K̂ toA except for the case Abort.

In the case that A returns K̂∗ as the answer for ψ∗, S
returns Z = K̂∗/Xa∗ .

S is able to simulate the real view of A perfectly until
the case Abort happens, as we see below.

Firstly, the challenge ciphertext ψ∗ = (vk∗, (h∗, d∗), σ∗)
is consistent and correctly distributed. This is because the
distribution of (h∗, d∗) is equal to that of the real consistent
one (h, d). To see it, note that w + a∗ is substituted for a;

h∗ = Wga∗ = gw+a∗ ,

d∗ = (gw+a∗)u = (gu)w+a∗ = (Xvk
∗
Y)w+a∗ .

Secondly, in the case Simdec, S can simulate the de-
capsulation oracle DEC(sk, ·) perfectly. This is because K̂
is equal to hx by the following equalities;

d/hu = h(vk)x+y−u = h(vk−vk∗)x+(vk∗x+y−u) = h(vk−vk∗)x.

As a whole, S simulates the real view of A perfectly
until the case Abort happens.

Now we evaluate the Gap-CDH advantage of S. When
A wins, (g, X, h∗, K̂∗) is a DH-tuple, so the following holds
(note that we have set X = V , so x = v);

K̂∗ = (gx)w+a∗ = gvwXa∗ .

So S wins because its return Z is gvw. Therefore the prob-
ability that S wins is lower bounded by the probability that
A wins and the case Abort does not happen;

Pr[S wins] � Pr[A wins ∧ ¬Abort]

� Pr[A wins] − Pr[Abort].

That is;

Advgap-cdh
S,Grp (k) � Advow-cca2

A,KEM1 (k) − Pr[Abort].

So our task being left is to show that Pr[Abort] is neg-
ligible in k.

Claim C.1. The probability that the case Abort occurs is
negligible in k.

Proof of Claim C.1. UsingA as a subroutine, we construct
a signature forger F on OTS as follows. Given vk∗ as an
input, F initializes its inner state. F chooses x and y from
Zq at random and computes X = gx and Y = gy. F chooses
a∗ from Zq at random and computes h∗ = ga∗ and d∗ =
(Xvk

∗
Y)a∗ . Then F queries its signing oracle SIGNsgk∗ for

a signature on a message (h∗, d∗) and gets a signature σ∗.
Putting ψ∗ = (vk∗, (h∗, d∗), σ∗), F invokes A on an input
(pk, ψ∗).

In the case that A queries its decapsulation oracle
DEC(sk, ·) for the answer for ψ = (vk, (h, d), σ), F verifies
whether the signature is valid and whether (g, XvkY, h, d) is
a DH-tuple. For the latter, F does the same as an honest de-
capsulation algorithm does because F has the secret key sk.
If the signature is not valid or the tuple is not a DH-tuple, F
sets K̂ =⊥. Otherwise, if vk � vk∗, then F replies K̂ = hx

to A. If vk = vk∗, then F returns ((h, d), σ) and stops (call
this case Forge).

Note that the view of A in F is the same as the real
view until the case Forge happens. Especially, the view of
A in F is the same as the view of A in S until the case
Abort or the case Forge happens. So we have:

Pr[Abort] = Pr[Forge].

Notice that the case Forge implies that the following equal-
ities hold;

vk = vk∗, ((h, d), σ) � ((h∗, d∗), σ∗).

This is because that, if ((h, d), σ) were equal to ((h∗, d∗), σ∗),
thenA would have queried the challenge ciphertext ψ∗ to its
decapsulation oracle. This is ruled out.

Hence in the case Forge, F succeeds in making an ex-
istential forgery in the strong sense. That is;

1154
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.7 JULY 2012

Pr[Forge] = Adveuf-cma
F ,OTS (k).

Combining the two equalities, we get

Pr[Abort] = Adveuf-cma
F ,OTS (k).

The right hand side is negligible in k by the assumption in
Theorem 4. (Q.E.D.)

Appendix D: Target Collision Resistant Hash Func-
tions

Target collision resistant (TCR) hash functions [33], [36]
are treated as a family. Let us denote a function family
as Hfam(1k) = {Hκ}κ∈Hkey(1k). Here Hkey(1k) is a hash key
space, κ ∈ Hkey(1k) is a hash key and Hκ is a function from
{0, 1}∗ to {0, 1}k. We may assume that Hκ is from {0, 1}∗ to
Zq, where q is a prime of length k.

Given a PPT algorithm CF , a collision finder, we con-
sider the following experiment.

Exprmttcr
CF ,Hfam(1k)

m← CF (1k), κ← Hkey(1k),m′ ← CF (κ)

If Hκ(m) = Hκ(m
′) and m � m′ then return Win

else return Lose.

We define the TCR advantage of CF over Hfam as follows.

Advtcr
CF ,Hfam(k)

def
= Pr[Exprmttcr

CF ,Hfam(1k) returns Win].

We say that Hfam is a TCR function family, or, Hfam has the
TCR property if, for any PPT algorithm CF , Advtcr

CF ,Hfam(k)
is negligible in k.

In theory, TCR hash function families can be con-
structed based on the existence of a one-way function [33],
[36].

Appendix E: Proof of Claim 8.1

Assume that (g, Xτ
1Y1, Xτ

2Y2, h, d1, d2) is a twin DH tuple and
put

Xτ
i Yi =: gαi , h =: gβ, di =: gαiβ, i = 1, 2.

Then hτ−τ∗ = gβ(τ−τ∗). Note that we have set

Yi := X−τ
∗

i gui , i = 1, 2.

So Xτ
i Yi = Xτ

i X−τ∗i gui = Xτ−τ∗
i gui and we have

gαi−ui = Xτ−τ∗
i , i = 1, 2.

Hence

di/h
ui = gαiβ/gβui = g(αi−ui)β = Xβ(τ−τ∗)

i , i = 1, 2.

This means (g, X1, X2, Ŷ, Ẑ1, Ẑ2) is a twin DH tuple for Ŷ =
hτ−τ∗ , Ẑ1 = d1/hu1 and Ẑ2 = d2/hu2 .

The converse is also verified by setting the goal to be

di = gαiβ, i = 1, 2 and starting with the assumption that
Ẑi = di/hui = Xβ(τ−τ∗)

i , i = 1, 2. (Q.E.D.)

Appendix F: KEM3̃ and the Obtained ID Scheme

In KEM3̃, the ciphertext turns into ψ = (h, d1, v2), v2 :=
Hκ(d2). So the consistency check for the index 2 becomes:

whether Hκ(h
τx2+y2) = v2 or not.

The Trapdoor Test in the security proof is deformed as fol-
lows.

Ẑ1
r
Ẑ2 = Ŷ s ⇐⇒ (d1/h

u1)r(d2/h
u2) = (hτ−τ

∗
)s

⇐⇒ d−r
1 hru1+u2+s(τ−τ∗) = d2

=⇒ Hκ(d
−r
1 hru1+u2+s(τ−τ∗)) = v2.

The last equality may cause a collision, so the security state-
ment for KEM3̃ needs the collision resistance assumption of
a hash function family Hfam employed (the name of game
“cr” in Advcr

CF ′,Hfam(k) below means collision resistance).

Corollary of Theorem 6. The key encapsulation mecha-
nism KEM3̃ is one-way-CCA2 secure based on the CDH as-
sumption, the target collision resistance and the collision
resistance of a hash function family employed. More pre-
cisely, for any PPT one-way-CCA2 adversary A on KEM3̃
that queries its decapsulation oracle at most qdec times,
there exist a PPT CDH problem solver S on Grp, a PPT
collision-finder CF and CF ′ on Hfam which satisfy the fol-
lowing tight reduction.

Advow-cca2
A,KEM3̃ (k) �

qdec

q
+ Advcdh

S,Grp(k) + Advtcr
CF ,Hfam(k)

+ Advcr
CF ′,Hfam(k).

The ID scheme obtained from KEM3̃ is shown in
Fig. A· 3. By the above tuning, the maximum message
length reduces to two elements 2G of Grp plus one hash
value h by Hκ.

Key Generation
– K: given 1k as an input;

• (q, g)← Grp(1k), κ← Hkey(1k)
• x1, x2, y1, y2 ← Zq, X1 := gx1 , X2 := gx2 , Y1 := gy1 , Y2 := gy2

• pk := (q, g, X1, X2, Y1,Y2, κ), sk := (q, g, x1, x2, y1, y2, κ)
• Return (pk, sk)

Interaction
– V: given pk as an input;

• a← Zq, h := ga, τ← Hκ(h)
• d1 := (Xτ

1Y1)a, v2 := Hκ((Xτ
2Y2)a),K := Xa

1 , ψ = (h, d1, v2)
• Send ψ to P

– P: given sk as an input and receiving ψ = (h, d1, v2) as an input mes-
sage;

• τ← Hκ(h)
• If hτx1+y1 � d1 or Hκ(hτx2+y2) � v2 then K̂ :=⊥ else K̂ := hx1

• Send K̂ to V
– V: receiving K̂ as an input message;

• If K̂ = K then return 1 else return 0

Fig. A· 3 An ID Scheme Obtained from KEM3̃.

ANADA and ARITA: IDENTIFICATION SCHEMES FROM KEY ENCAPSULATION MECHANISMS
1155

Hiroaki Anada received his B.E. and M.E.
in mathematics from Waseda University. He is
interested in interactive proofs and has recently
received Ph.D. from Institute of Information Se-
curity, Yokohama, Japan.

Seiko Arita received his B.E. and M.E. from
Kyoto University, and Ph.D. from Chuo Uni-
versity. He has been interested in prime num-
bers, algebraic curves and cryptographic proto-
cols. He is with Institute of Information Secu-
rity, Yokohama, Japan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

