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Gaudry’s variant against Cab curves

Seigo ARITA†, Member

SUMMARY Gaudry has described a new algorithm
(Gaudry’s variant) for the discrete logarithm problem (DLP) in
hyperelliptic curves. For a hyperelliptic curve of a small genus
on a finite field GF(q), Gaudry’s variant solves for the DLP in
time O(q2+ε). This paper shows that Cab curves can be attacked
with a modified form of Gaudry’s variant and presents the tim-
ing results of such attack. However, Gaudry’s variant cannot
be effective in all of the Cab curve cryptosystems. This paper
also provides an example of a Cab curve that is unassailable by
Gaudry’s variant.
key words: discrete logarithm, hyperelliptic curve, superelliptic
curve, Cab curve

1. Introduction

Gaudry[7] has described a new algorithm (Gaudry’s
variant) for the discrete logarithm problem (DLP) in
hyperelliptic curves. Gaudry’s variant uses the method
for Pollard’s rho algorithm [12] with the function field
sieving algorithm of Adleman,DeMarrais, and Huang
[1]. Gaudry’s variant solves the DLP in a hyperellip-
tic curve of a genus g defined on a finite field Fq in
time O(q2+ε) when the genus g is sufficiently small in
comparison to the order q of the definition field.

Arita[3] and Galbraith et al.[6] described addition
algorithms on the Jacobian group of Cab and superel-
liptic curves respectively, and demonstrated algorithm
applications in discrete-log-based public key cryptosys-
tems. This paper shows that Cab and superelliptic
curves can be attacked by a modified Gaudry’s variant
and presents timing results from the attack.

With hyperelliptic or Cab curve cryptosystems, one
usually selects a curve of a sufficiently large genus so
that definition fields are less than one word in size to
hasten computations [3], [14]. Gaudry’s variant has ex-
cluded out this conventional hastening method. How-
ever, Gaudry’s variant cannot be effective in all of the
non-elliptic algebraic curve cryptosystems. This paper
also provides an example of a Cab curve that is unas-
sailable by Gaudry’s variant.

2. Gaudry’s variant

Take a hyperelliptic curve C : y2 = x2g+1 + a1x
2g +

· · · a2g+1 of genus g defined on a finite filed Fq. Sup-
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pose its genus g is sufficiently small in comparison to
the order q of the definition field. Let JC denote the
Jacobian group of the hyperelliptic curve C. To handle
with the DLP, we look for an integer λ that satisfies
D2 = λD1 for two elements D1 and D2 in JC .

In Pollard’s rho algorithm, we calculate random
linear sums Ri = αiD1 +βiD2 (i = 1, 2, · · ·) of D1 and
D2 step by step through a random walk, and wait for a
collision Ri = Rj . Once it occurs, from αiD1 +βiD2 =
αjD1 + βjD2, we get λ = (αi − αj)/(βj − βi).

In Gaudry’s variant[7], just as in the case of rho
algorithm, we calculate random linear sums Ri =
αiD1 + βiD2 (i = 1, 2, · · ·) of D1 and D2. However,
we gather smooth Ri value’s instead of waiting for a
collision. An element D in JC is called smooth when
D is a sum of Fq rational points on C. Let all of the
Fq rational points on C be {P1, P2, ..., Pw},where the
number w is approximately equal to q. Then, every
smooth Ri corresponds to a w-dimensional vector Mi =
(mi,1, · · · ,mi,w) through the relation Ri =

∑
k mi,kPk.

Using the polynomial expression Ri = [ui(x), vi(x)]
from Cantor’s algorithm [4], Ri is smooth if and only if
the polynomial ui(x) is factored into the linear product∏

k(x−ck) over Fq, and then we get Ri =
∑

k(ck, v(ck)).
Therefore, by calculating all of the Fq rational points
{P1, P2, · · · , Pw} in advance at a complexity of O(q),
the vector Mi is easily obtained.

When g is sufficiently small in comparison to q,
about 1/g! of all of the elements in JC are smooth
([7]Prop.4). So, we obtain w′ ( >= w) smooth Ri values
after g! ·w′ steps. w′ vectors Mi = (mi,1, · · · ,mi,w) (i =
1, · · · , w′) must be linearly dependent. By solving the
w-dimensional linear equation, we obtain values for
γi (i = 1, · · · , w′) satisfying

w′∑

i=1

γiMi = 0.

These values for γi produce λ through the equation
Ri =

∑
k mi,kPk ;

λ = −
∑

i

γiαi/
∑

i

γiβi.

In Gaudry’s variant, the most complex step is solv-
ing the w-dimensional linear equation

∑
i γiMi = 0 (i =

1, 2, · · · , w′). The matrix (mi,k) has a size equal to
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about q × q and is sparse since there are only g non-
zero elements in each row. So the linear equation can be
solved in q2 steps. Hence, the complexity of Gaudry’s
variant is O(q2 logγ(q)) for some constant γ, so it is
O(q2+ε).

When C has a non-trivial automorphism φ,
Gaudry’s variant becomes more powerful. Let m de-
note the order of φ. In this case, all of the Fq rational
points are unnecessary. Only the representatives of or-
bits in Fq rational points for the action of φ are needed.
The number of the orbits is q/m, so the complexity of
Gaudry’s variant becomes O((q/m)2+ε).

However,
Theorem 1: [2] The order of the automorphism
group of a smooth algebraic curve of genus >= 2 is at
most 84(g − 1).

So, the effect of automorphisms can be ignored
by expanding the size of the definition field with
log2(84(g − 1)) more bits.

3. Cab and superelliptic curves

A Cab curve is a nonsingular affine curve with the equa-
tion

∑

0<=i<=b,0<=j<=a,ai+bj<=ab

αi,jx
iyj = 0,

where both αb,0 and α0,a are not equal to zero [10].
Arita[3] described an addition algorithm for the Jaco-
bian group of a Cab curve in terms of ideals of the coor-
dinate ring, aiming at cryptosystems using Cab curves.
For a Cab curve with 160 bits of a Jacobian group, tim-
ing results from the addition algorithm are listed in
Tables 1,2, and 3.

Table 1 Performance for the C35 curve in ms at 266 MHz,
using a Pentium II chip.

simple random
sum 3.39 3.65

double 3.76 4.21
scalar 862 958

Table 2 Performance for the C37 curve in ms at 266 MHz,
using a Pentium II chip.

simple random
sum 1.15 1.24

double 1.15 1.28
scalar 273 300

Table 3 Performance for the C2,13 curve in ms at 266 MHz,
using a Pentium II chip.

simple random
sum 0.70 0.73

double 0.65 0.68
scalar 158 167

In the tables, “simple” denotes a Cab curve with a
equation of the form Y a + αXb + β, and “random” de-
notes a randomly chosen Cab curve. “Sum”, “double”,
and “scalar” denote addition, doubling, and scalar mul-
tiplication of random elements, respectively.

A superelliptic curve is a nonsingular affine curve
of the equation

yn = aδx
δ + · · ·+ a0,

where n is prime to the characteristics of the definition
field, and n and δ are prime to each other [6]. Gal-
braith et al.[6] described an addition algorithm in the
Jacobian group of a superelliptic curve in terms of lat-
tice computations.

Given these definitions, Cab curves clearly include
superelliptic curves. Only Cab curves will be examined.

4. Application of Gaudry’s variant to
Cab curves

We modify Gaudry’s variant to apply it to Cab curves.
The problems we encounter are how to decide if a given
element in a Jacobian group is smooth or not, and, if
it is, how to represent it as a sum of Fq rational points.
Note that about 1/g! of all of the elements in JC are
smooth when g is sufficiently small just as in the case
of hyperelliptic curves (See the proof of [7]Prop.4).

For example, take a C37 curve. The genus is six.
An element R in the Jacobian group of C37 curve is
expressed as an ideal of the coordinate ring. The ideal
has the following form of Gröbner basis with respect to
the C37 order [3]:

R = {a0 + a1x + a2x
2 + a3y + a4x

3 + a5xy + x4,

b0 + b1x + b2x
2 + b3y + b4x

3 + b5xy + x2y,

c0 + c1x + c2x
2 + c3y + c4x

3 + c5xy + x2y}.
Here, ai, bi, and ci are elements in the definition field.
The common zeroes of these three equations are six
points on the C37 curve, that comprise R.

When the definition field Fq is large enough, the
six points comprising R have distinct x-coordinates to
each other for almost any R in the Jacobian group. So,
almost any R can be expressed as common zeroes of
two polynomials:

R = {sixth degree polynomial of x,

y + (fifth degree polynomial of x)},
just as in the case of hyperelliptic curves. The expres-
sion is nothing but the Gröbner basis of (the ideal corre-
sponding to) R with respect to the lexicographic order.

Therefore, in Gaudry’s variant against Cab curves,
for almost any Ri, the decision regarding the Ri value’s
smoothness and representation as a sum of Fq ratio-
nal points follows the same pattern as for hyperelliptic
curves, after translating the Gröbner basis of Ri w.r.t.
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Cab order to another Gröbner basis w.r.t. lexicographic
order. It is well known that Gröbner bases can be ef-
fectively translated between distinct monomial orders.
Note that if exceptional values for Ri are found, we
can simply discard them. Thus, now we know that
Gaudry’s variant can also be applied to Cab curves.

finite field F84211

defining equation 1 + 24740x7 + 32427y3 = 0
genus 6
order of Jacobian 43 · 8068970623016239605318986617

order of automorphism 3 · 7
Table 4 93 bits of a C37 curve over 17 bits of a prime field

We implemented the modified Gaudry’s variant
with C language and the PARI-GP [11], and then tested
it against the C37 curve in Table 4. The curve has 93
bits of a Jacobian group over 17 bits of a prime field.
Let ζ3 and ζ7 denote the primitive third and the sev-
enth root of unity, respectively. Since the curve has
the automorphism φ(x, y) = (ζ7x, ζ3y) of order 21, the
number of the orbits of φ on the rational points should
be 84211/21 = 4010. · · · or more. We needed to collect
4011 or more smooth elements and then solve about
4011 dimensional sparse linear equations. For solving
these linear equations, we also used the Lanczos algo-
rithm [9].

Two elements D1 and D2 in the Jacobian group
were randomly generated:

D1 = {x4 + 77465x3 + 75875x2 + (37117y + 57992)x
+ (42876y + 21588),
5485x3 + (y + 79222)x2 + (4298y + 50456)x
+ (36882y + 81869),
41971x3 + 64608x2 + (26263y + 16207)x
+ (y2 + 42778y + 62216)},

D2 = {x4 + 64296x3 + 44620x2 + (29434y + 15779)x
+ (61013y + 42557),
51156x3 + (y + 32172)x2 + (62401y + 22153)x
+ (78055y + 13056),
79116x3 + 5028x2 + (69977y + 21979)x
+ (y2 + 75761y + 2009)}.

Then, running the modified Gaudry’s variant, we
obtained

λ = 4082271804134874346983670415

for D2 = λD1 in the time given in Table 5. The av-
erage and variance of the number of steps needed to
produce a smooth element were 848.265 and 680786,
respectively, reasonable results compared to Gaudry’s
theoretical estimate 1/6! = 1/720 of the probability for
an element to be smooth[7].

Collection of rational points (PARI-GP) 5 m 13 s

Collection of smooth elements (C) 2 h 33 m 6 s
Solving linear equation (C) 32 m 2 s

Total 3 h 11 m 21 s
Table 5 Timing results of modified Gaudry’s variant against
the C37 curve from Table 4 using a 266-MHz Pentium II chip.

5. Cab curves that are unassailable by Gaudry’s
variant

Let a and b be distinct prime numbers. Let C(p, α, β)(=
C(p, a, b, α, β)) denote a Cab curve over a prime field Fp

with the equation

αY a + βXb + 1 = 0.

In this section, we will construct a Cab curve C(p, α, β)
of a small genus, that is secure against Gaudry’s vari-
ant. Let h be the order of the Jacobian group of
C(p, α, β). Conditions for security are:

Condition 1 The order h has 160 or more bits of
prime factor l [12],

Condition 2 l does not divide pk − 1 for small values
of k [5],

Condition 3 l is not equal to p [13], and

Condition 4 p has (40+log2(84(g−1))) or more bits.

The fourth condition secures a curve against Gaudry’s
variant (Theorem 1). Because we are handling a curve
with a small genus, we do not need to consider Adle-
man,DeMarrais,and Huang’s algorithm [1] or its exten-
sion to superelliptic curves [6].

Koblitz[8] used Jacobi sums to calculate the order
of Jacobian groups of hyperelliptic curves. Jacobi sums
can also be used for a curve C(p, α, β). For simplicity,
p ≡ 1 (mod lcm(a, b)) has been assumed.

Fix the generator w of the multiplicative group F ∗p .
For a rational number s such that (p−1)s is an integer,
character χs of F ∗p is defined by

χs(w) = e2πis.

Extend χs to the whole Fp by setting χs(0) = 0 when
s is not an integer and setting χs(0) = 1 when it is.

For integers l = 1, 2, . . . , a−1 and m = 1, 2, . . . , b−
1,

jp(l, m) =
∑

1+v1+v2=0

χl/a(v1)χm/b(v2) (1)

is called a Jacobi sum. Here, v1 and v2 run over Fp

under the condition 1 + v1 + v2 = 0.
Weil[16] has demonstrated that the L-polynomial

Lp(U) of C(p, α, β) can be expressed by Jacobi sums:



4
IEICE TRANS. FUNDAMENTALS, VOL. TO APPEAR, NO. 9 SEPTEMBER 2000

Lp(U) =
∏

l=1,2,...,a−1
m=1,2,...,b−1

(1 + χl/a(α)χm/b(β)jp(l, m)U),

where χs denotes the complex conjugate of χs.
Generally, the order of a Jacobian group of a curve

is equal to the value of the L-polynomial L(U) of the
curve at U = 1 [15], so the order h of the Jacobian
group of C(p, α, β) is given by

h = Lp(1) (2)

=
∏

l=1,2,...,a−1
m=1,2,...,b−1

(1 + χl/a(α)χm/b(β)jp(l, m))

= NormQ(ζ)|Q(1 + χ1/a(α)χ1/b(β)jp(1, 1))

Thus, to know the order h of the Jacobian group,
it is sufficient to know the values of the Jacobi sums
jp(l, m). However, direct computation of those values
using the formula (1) are infeasible from the computa-
tional point of view. We use the Stickelberger element
to know the values of the Jacobi sums jp(l, m).

Let [λ] denote the largest integer under the rational
number λ, and < λ > denote λ− [λ]. Take a cyclotomic
field Q(ζ) with a primitive ab-th root ζ of unity. Let
σt denote the Galois map ζ 7→ ζt of Q(ζ). An element
ω(a, b) in the group ring Z[Gal(Q(ζ)|Q)] defined by

ω(a, b) =
∑

t

[<
t

a
> + <

t

b
>]σ−1

−t , (3)

where t runs over reduced residue classes mod ab, is
called a Stickelberger element. As an ideal of Q(ζ), it
is known that

(jp(l, m)) = Pω(a,b), (4)

where P denotes a prime ideal of Q(ζ) lying over p [17].
Suppose that the prime ideal P is principal:

P = (γ).

Then, we have

(jp(l, m)) = (γω(a,b)). (5)

From this, we know that jp(l, m) and γω(a,b) differ by
the product of some unit of Q(ζ). Moreover, jp(l, m)
and γω(a,b) has the same absolute value p1/2 in any em-
bedding into the complex number field [17]. So, jp(l, m)
and γω(a,b) differ only by the power of −ζ. Now we see
that Equation (5) can be used to determine jp(l, m) up
to the power of −ζ by knowing the prime p and the
principal prime ideal P = (γ) in advance.

We arrive at the following algorithms:
Algorithm 1 (Search for a secure C(p, α, β)):
Input: a, b
Output: p, α, β, and the order h of the Jacobian group

1. g ← (a− 1)(b− 1)/2

2. m ← Max(d160/ge, d40 + log2(84(g − 1))e)
dne denotes the least integer over n.

3. Search the candidate j for the value of a Jacobi
sum for some prime p of m or more bits by using
Algorithm 2:

(p, j) ← Algorithm2(m).

4. For every k = 0, 1, . . . , ab− 1,

hk ← NormQ(ζ)|Q(1 + (−ζ)kj).

5. Check that there is a value hk that satisfies
Conditions 1,2, and 3 for security in the set
{h0, h1, . . . , hab−1}. If there is not, go to step 3.
If it does, h ← hk.

6. Let ζa and ζb denote the primitive a-th and b-th
root of unity modulo p, respectively. For every hk

obtained at step 5, do as follows. For every l =
0, 1, · · · , a− 1 and m = 0, 1, · · · , b− 1, check if the
order of the Jacobian group of C(p, ζl

a, ζm
b ) is equal

to h or not; for example, check if h times the ran-
dom element is equal to the unit element, or not.
If the order is equal, output p, α = ζa

l, β = ζb
m,

and h. If there is no such l and m, go to step 3.

As per step 2, p has 40 + log2(84(g − 1)) or more
bits, so the curve obtained by Algorithm 1 is secure
against Gaudry’s variant. At step 6, we check only the
necessary condition for the group order to be h. So
strictly the order may be different from h. But, the
test at step 6 ensures that the order has the same large
prime factor l as the one of h. This is sufficient for our
purpose.

Algorithm 2, contained in Algorithm 1, makes use
of Equation (3) and (5) for the Stickelberger element to
find the candidate value of the Jacobi sum.
Algorithm 2 (Finding the candidate of the Jacobi sum):
Input: m
Output: p and j

1. ω ← ∑
t[<

t
a > + < t

b >]σ−1
−t

2. Randomly generate
γ0 =

∑(a−1)(b−1)−1
l=0 clζ

l (−20 <= cl <= 20).

3. For every i = 1, 2, . . .,

γ ← γ0 + i
p ← NormQ(ζ)|Q(γ)
If p < 2m, then try the next i.
If p >> 2m, then go to step 2.

‘>>’ means ‘sufficiently larger than.’
If p is not prime, then try the next i.

4. j ← γω

Output p and j.
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Note that p obtained by Algorithm 2 satisfies the
condition p ≡ 1(mod lcm(a, b)), because the prime ideal
(γ) has the residue degree one over the prime p.

Experimentally, we observed that numbers of re-
peating steps 2 and 3 depends heavily on the range of
cl at step 2. We take the range −20 <= cl <= 20, so that
Algorithm 2 stops after repeating steps 2 and 3 for sev-
eral times, for the input m of the size used in the real
world.

Example

Algorithm 1 was run for a = 3 and b = 5.

1. g ← (3− 1)(5− 1)/2 = 4

2. m ← max(160/4, d40 + log2(84 · 3)e) = 48

3. Run Algorithm 2 for m = 48.

a. ω ← ∑
t[<

t
3 > + < t

5 >]σ−1
−t = σ1 + σ7 +

σ11 + σ13

b. γ0 ← 20 − 3ζ − 12ζ2 + 20ζ3 − 11ζ4 − 4ζ5 +
3ζ6 − 16ζ7 was randomly generated.
For γ ← γ0 + 60 = 80 − 3ζ − 12ζ2 + 20ζ3 −
11ζ4 − 4ζ5 + 3ζ6 − 16ζ7,
p ← Norm(γ) = 581929936583251 is a prime
of 50 bits. Now, the candidate value j of the
Jacobi sum for p is

j ← γγ(7)γ(11)γ(13)

= 18682331 + 1900434ζ + 3903200ζ2

+ 735220ζ3 + 2683534ζ4 − 6028054ζ5

− 1372490ζ6 + 3103044ζ7

4. For every k = 0, 1, . . . , 29, compute hk ←
Norm(1 + (−ζ)kj):

h0 ← 1146786729413035548075542797106
71283827257404103736047882496

· · ·
h6 ← 1146786991386963085872739586632

65811323988422727826915122881
· · ·

h29 ← 1146787464216129098443264922470
07547650638094985955354652416

5. h6 satisfies Condition 1,2 and 3. In fact,

h ← h6 = 2511 · l
Here,

l = 456705293264421778523592
02972228519045793876036569858671

is a prime of 185 bits, distinct from p. Condition
2 is satisfied for k <= 1000.

6. For α = 579364850535396
and β = 289406374935593, it is verified that the
order of the Jacobian group of C(p, α, β) is equal
to h.

Thus, a C35 curve is obtained with

579364850535396y3 + 289406374935593x5 + 1 = 0

over the prime field GF(581929936583251) with the Ja-
cobian group of the order

2511 · 456705293264421778523592
02972228519045793876036569858671,

which is secure against Gaudry’s variant.

6. Conclusion

We demonstrated that Cab and superelliptic curves can
be attacked by a modified Gaudry’s variant, and re-
ported timing results for the attack.

However, Gaudry’s variant cannot be effective in
all of the non-elliptic algebraic curve cryptosystems.
We provided an example of a C35 curve that is unas-
sailable by Gaudry’s variant.

References

[1] L.M.Adleman,J.DeMarrais, and M.D.Huang, “A Subexpo-
nential Algorithm for Discrete Logarithms over the Ratio-
nal Subgroup of the Jacobians of Large Genus Hyperellip-
tic Curves over Finite Fields,” ANTS-I, LNCS 877, pp.28-
40,Springer, 1994.

[2] E.Arbarello, M.Cornalba, P.A.Griffiths, and J.Harris, “Ge-
ometry of Algebraic Curves Volume I,” Springer-Verlag,
1984.

[3] S. Arita, “Algorithms for computations in Jacobian group of
Cab curve and their application to discrete-log-based pub-
lic key cryptosystems,” Conference on The Mathematics of
Public Key Cryptography, Toronto, 1999.

[4] D.G.Cantor, “Computing in the Jacobian of a hyperellip-
tic curve,” Mathematics of Computation, 48(177), pp.95-
101,1987.

[5] G.Frey and H.-G.Rück, “A remark concerning m-divisibility
and the discrete logarithm in the divisor class group of
curves,” Math. Comp.,62(206),pp.865-874,1994.

[6] S.D.Galbraith, S.Paulus, and N.P.Smart “Arithmetic on
Superelliptic Curves,” preprint,1999.

[7] P.Gaudry, “A variant of the Adleman-DeMarris-Huang al-
gorithm and its application to small genera,” Conference
on The Mathematics of Public Key Cryptography, Toronto,
1999.

[8] N.Koblitz, “A very easy way to generate curves over
prime fields for hyperelliptic cryptosystems,” Rump-session
Crypto’97, 1997.

[9] B.A.LaMacchia and A.M.Odlyzko, “Solving large sparse
linear systems over finite fields,” Crypto ’90, LNCS 537,
pp.109-133,Springer, 1990.

[10] S. Miura, “Linear Codes on Affine Algebraic Curves,”
Transactions of IEICE, Vol. J81-A, No 10, pp.1398-
1421,1998.

[11] PARI-GP, ftp://megrez.math.u-bordeaux.fr/pub/pari



6
IEICE TRANS. FUNDAMENTALS, VOL. TO APPEAR, NO. 9 SEPTEMBER 2000

[12] J.M.Pollard, “Monte Carlo methods for index computation
mod p,” Math. Comp.,32(143),pp.918-924,1978.

[13] H.-G.Rück, “On the discrete logarithm in the divisor class
group of curves,” Math. Comp.,68(226),pp.805-806,1999.

[14] Y.Sakai and K.Sakurai, “Design of hyperelliptic cryptosys-
tems in small characteristic and a software implementation
over F2n ,” Asiacrypt ’98, Advances in Cryptology, LNCS
1514, pp.80-94,Springer, 1998.

[15] H.Stichtenoth, “Algebraic Function Fields and Codes”,
Springer-Verlag, 1993.

[16] A.Weil “Numbers of solutions of equations in finite fields,”
Bull.Amer.Math.Soc.,55,pp.497-508,1949.

[17] A.Weil “Jacobi Sums as “Grössencharaktere”,”
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