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ABSTRACT
We propose the first practical attribute-based signature (ABS)
scheme with attribute privacy without pairings in the ran-
dom oracle model. Our strategy is in the Fiat-Shamir paradigm;
we first provide a generic construction of a boolean proof
system of Σ-protocol type. Our boolean proof system is a
generalization of the well-known OR-proof system; that is,
it can treat any boolean formula instead of a single OR-
gate. Then, by combining our boolean proof system with
a credential bundle scheme of the Fiat-Shamir signature,
we obtain a generic attribute-based identification (ABID)
scheme of proof of knowledge. Finally, we apply the Fiat-
Shamir transform to our ABID scheme to obtain a generic
ABS scheme which possesses attribute privacy and can be
proved to be secure in the random oracle model. Our ABS
scheme can be constructed without pairings.

Categories and Subject Descriptors
F.1 [Computation by Abstract Devices]: Modes of Com-
putation—Interactive and Reactive Computation

General Terms
Theory; Security
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1. INTRODUCTION
Since the invention of digital signature scheme by Diffie

and Hellman in 1976, there has been significant evolutions
in the area and many functional variants have been pro-
posed. A distinguished variant is attribute-based signature
(ABS), which has been developed since 2008 [11, 13]. In
ABS scheme, a message is associated with an access pol-
icy that limits signers by their attributes which the signers
possess. The access policy is described with a boolean for-
mula over those attributes. A signer with a set of authorized
attributes can make a legitimate signature on the message
only when his attributes satisfy the access policy. Then, a
verifier can check whether the pair of the message and the
signature is valid or not concerning the access policy. If the
access policy limits accepting attributes to a single identity,
ABS coincides with identity-based signature (IBS). In that
sense, ABS is a natural extension of IBS.

One remarkable property of ABS is attribute privacy for
signers. In the case that a verifier knows nothing about
prover’s attributes except that the prover’s attributes sat-
isfy the associated access policy of the signed message, the
ABS scheme is called to have attribute privacy. Some ABS
scheme ([11]) did not care attribute privacy but it is now
desirable for ABS to possess.

On the other hand, The Fiat-Shamir transform [9] is now
an established technique in interactive proof theory and cryp-
tography. It transforms a public-coin interactive proof of
knowledge system into a non-interactive proof of knowl-
edge one. If the interactive proof system is an identification
scheme, then the non-interactive one can be used as a digital
signature scheme.

One of the most basic interactive proof systems is a proof
of knowledge system by the Σ-protocol [7, 8]; it allows a
prover, in a 3-move, to convince a verifier that the prover
knows an answer (that is, a witness) of a hard problem in-
stance. An extended notion, the OR-proof system [8], is a
well-known Σ-protocol that allows a prover to convince a
verifier that the prover knows one (or both) of witnesses of
two hard problem instances, not revealing which witness he
knows. The OR-proof system has been developed to achieve,
for example, man-in-the-middle security.

In this paper, we will provide an attribute-based signature
scheme via the Fiat-Shamir paradigm. First, we develop a
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boolean proof system of Σ-protocol type, which is a gener-
alization of the OR-proof system [8]. In our boolean proof
system, a boolean formula f , in which boolean variables
corresponds to attributes, is used. A prover has a set of
witnesses each of which corresponds to an attribute. Then
a prover can convince a verifier that the prover knows a set
of witnesses that satisfy f .
Then we will proceed further into the Fiat-Shamir paradigm.

By combining our boolean proof system with a credential
bundle scheme of the Fiat-Shamir signature, we obtain a
generic attribute-based identification (ABID) scheme of proof
of knowledge. And finally, we apply the Fiat-Shamir trans-
form to our ABID scheme to obtain a generic ABS scheme
with attribute privacy, which can be proved to be secure in
the random oracle model. According to the above strategy,
we find a remarkable property that our ABS scheme can be
constructed without pairing maps ([6]) (pairings, for short)
with the expense that its security proof is in the random
oracle model. As a result, our ABS scheme can be imple-
mented with more efficiency than previous ABS schemes. To
the best of authors’ knowledge, previous ABS schemes with
attribute privacy have been constructed with pairings.

1.1 Our Construction Idea
To construct the above boolean proof system, we will look

into the technique employed in the OR-proof system [8] and
expand it so as to treat any boolean formula (without nega-
tions), as follows.
First express a boolean formula (an access formula) as a

binary tree (an access tree); that is, with its inner nodes
being AND gates and OR gates and its leaf nodes being
terms that map to attributes. A verification equation of
Σ is assigned to each leaf node. Suppose that a challenge
string Cha of Σ is given. Assign Cha to the root node.
If the root node is an AND gate, assign the same string
Cha to two children. Else if the root node is an OR gate,
divide Cha into two random strings ChaL and ChaR which
satisfy Cha = ChaL ⊕ ChaR, and assign ChaL and ChaR

to the left and right children, respectively. Here ⊕ means
a bitwise exclusive-OR operation. Then continue to apply
this rule at each height, step by step, until we reach to each
leaf node. Then, basically, the OR-proof technique assures
we can either honestly execute Σ-protocol Σ or execute Σ
in a simulated way. Only when a set of attributes satisfies
the access tree the above procedure succeeds in satisfying
verification equations for all leaf nodes. We call the above
procedure a boolean proof. The boolean proof is a natural,
but non-trivial extension of the OR-proof.

1.2 Our Contributions
As our first contribution, we provide a boolean proof sys-

tem of a Σ-protocol, Σf . Given a boolean formula f without
negation and a Σ-protocol Σ, we generically construct Σf so
that Σf is a Σ-protocol to prove knowledge of a witness set
that satisfies f . A remark is that to construct such a proof
system in a 3-move with attribute privacy was difficult.
As our second contribution, we provide ABID schemes

and ABS schemes without pairings. More precisely, As a Σ-
protocol Σ can be constructed without pairings (for exam-
ple, the case of Schnorr scheme [15, 5]), our generic, theoret-
ical construction can produce a concrete, practical boolean
proof system Σf and hence, an ABID scheme and an ABS
scheme, without pairings. We must note that, in our con-

struction of ABID and ABS, their security can be proved
in the random oracle model. We also note that our ABS
attains attribute privacy.

1.3 Related Work
The OR-proof system had been developed with the for-

malization of Σ-protocol in the present form [7, 8]. Our
boolean proof system of Σ-protocol type can be seen as a
natural extension of the OR-proof system.

At a high level, our ABS scheme is constructed by combin-
ing a credential bundle scheme [13] with our boolean proof
system. This construction is compared to the generic con-
struction of the ABS scheme by Maji et al. [13]. They
started with a credential bundle scheme. Then they em-
ployed a non-interactive witness indistinguishable proof of
knowledge (NIWIPoK) system to prove the knowledge of a
credential bundle which satisfies a given access formula. The
difference between our construction and their construction
becomes apparent when we look into for what system the
knowledge extractors (KEs) are needed. In our construction,
KE is needed for our interactive proof system. In contrast,
in their construction, KE is needed for a non-interactive
WIPoK system.

From a practical point of view, it is notable that almost all
attribute-based cryptographic primitives so far, originated
in [10], and including ABS, employ linear secret sharing
schemes (LSSS) ([3]) and pairings ([6]). Our approach for
ABS is different from that construction.

2. PRELIMINARIES
The security parameter is denoted by λ. When an algo-

rithm A with input a outputs z, we denote it as z ← A(a),
or, because of space limitation, A(a) → z. When A with
input a and B with input b interact with each other and
B outputs z, we denote it as z ← ⟨A(a), B(b)⟩. When A
has oracle-access to O, we denote it as AO. When A has
concurrent oracle-access to n oracles O1, . . . ,On, we denote
it as AOi|ni=1 . Here “concurrent” means that A accesses to
oracles in arbitrarily interleaved order of messages. We de-
note a concatenation of a string a with a string b as a ∥ b.
The expression a

?
= b returns a value 1 (True) when a = b

and 0 (False) otherwise. The expression a
?
∈ S returns a

value 1 (True) when a ∈ S and 0 (False) otherwise.

2.1 Access Formula [10]
Let U = {att1, . . . , attU} be an attribute universe. We

must distinguish two cases: the case that U is small (that
is, |U| = U is bounded by some polynomial in λ) and the
case that U is large (that is, U is not necessarily bounded).
We assume the small case unless we state the large case
explicitly.

Suppose that we are given an access policy as a boolean
formula f over variables {Xatt}att∈U (for example, f = Xatt1∧
((Xatt2 ∧Xatt3)∨Xatt4)). That is, each term Xatt is a predi-
cate which, on input S ∈ 2U , takes a boolean value according
to whether att ∈ S or not. Then the boolean output of f
at S is evaluated according to boolean connectives, that is,
AND gates (∧-gates) or OR gates (∨-gates). Hence f is a
function: f : 2U → {1, 0}. We call the boolean formula f an
access formula over U .
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In this paper, we do not consider NOT gates (¬), that is,
we only consider monotone boolean formulas1.

2.1.1 Access Tree
We consider in this paper a finite binary tree T , that is, a

tree that has finite number of nodes and each non-leaf node
has two branches. For a tree T , let Nd(T ), rt(T ), Lf(T ),
iNd(T ) and tNd(T ) denote the set of all nodes, the root
node, the set of all leaf nodes, the set of all inner nodes
(that is, all nodes excluding leaf nodes) and the set of all
tree-nodes (that is, all nodes excluding the root node) in
T , respectively. An access formula f can be represented
by a finite binary tree Tf . Each leaf node corresponds to
a term Xatt in f in one-to-one way. Each inner node rep-
resents an operator, ∧-gate or ∨-gate, in f . An attribute
map att(·) : Lf(T ) → U is defined, for lf ∈ Lf(T ), as
att(lf) := (the attribute att of the term Xatt).
If T is of height greater than 0, T has two subtrees whose

root nodes are two children of rt(T ). We denote the two sub-
trees by Lsub(T ) and Rsub(T ), which mean the left subtree
and the right subtree, respectively.

2.2 Proof of Knowledge System [4, 8]
LetR be a binary polynomial-time relationR = {(x,w)} ⊂
{1, 0}∗×{1, 0}∗. x is called a statement and w is called a wit-
ness for the statement x. We assume that, given a statement
x as input, any PPT algorithm can only output a witness
w satisfying (x,w) ∈ R with a negligible probability. If this
assumption holds, we say that R is a hard relation ([8]).
A proof of knowledge system (PoK for short) is a protocol

between interactive PPT algorithms P and V on initial input
(x,w) ∈ R for P and x for V.
Completeness. An honest prover P with a legitimate witness
w can make V accept with probability 1.
Knowledge Soundness. There is a PPT algorithm called a
knowledge extractor, which, given a statement x and employ-
ing P as a subroutine, can compute a witness w satisfying
(x,w) ∈ R with at most a negligible error probability.

2.3 Σ-protocol [7, 8]
LetR be a binary polynomial-time relationR = {(x,w)} ⊂
{1, 0}∗ × {1, 0}∗.
A Σ-protocol on a relation R is a 3-move protocol between

interactive PPT algorithms P and V on initial input (x,w) ∈
R for P and x for V. P sends the first message called a
commitment Cmt, then V sends a random bit string called
a challenge Cha, and P answers with a third message called
a response Res. Then V applies a local decision test on
(x,Cmt,Cha,Res) to return accept (1) or reject (0). Cha

is chosen at random from ChaSp(λ) := {1, 0}l(λ) with l(·)
being a super-log function.
This protocol is written by a PPT algorithm Σ as follows.

Cmt← Σ1(x,w): the process of selecting the first message
Cmt according to the protocol Σ on input (x,w) ∈ R. Sim-
ilarly we denote Cha← Σ2(λ), Res← Σ3(x,w,Cmt,Cha)
and b← Σvrfy(x,Cmt,Cha,Res).
Σ-protocol satisfies three constraints:

Completeness. An honest prover P with a legitimate witness
w can make V accept with probability 1.

1This limitation can be removed by adding negation at-
tributes to U for each attribute in the original U (but as
a result, the size |U| doubles).

Special Soundness. Any PPT algorithm P∗ without any
witness, a cheating prover, can only respond for one pos-
sible challenge Cha. In other words, there is a PPT al-
gorithm called a knowledge extractor, ΣKE, which, given a
statement x and using P∗ as a subroutine, can compute a
witness w satisfying (x,w) ∈ R with at most a negligible er-
ror probability, from two accepting conversations of the form
(Cmt,Cha,Res) and (Cmt,Cha′,Res′) with Cha ̸= Cha′.
Honest-Verifier Zero-Knowledge. Given a statement x and a
random challengeCha← Σ2(λ), we can produce in polynomial-
time, without knowing the witness w, an accepting conversa-
tion (Cmt,Cha,Res) whose distribution is the same as the
real accepting conversation. In other words, there is a PPT
algorithm called a simulator, Σsim, such that (Cmt,Res)←
Σsim(x,Cha).

Σ-protocols are known to be proofs of knowledge system
([8]).

We will use in this paper a property that both a prover and
a verifier can compute, in polynomial-time, a new statement
x′ which has the response message Res as its corresponding
witness, on input (x,Cmt,Cha). We denote the algorithm
as ΣstmtforRes:

x′ ←ΣstmtforRes(x,Cmt,Cha)

s.t. (Cmt,Cha,Res) : an accepting conversation

∧ (x′,Res) ∈ R.

Known Σ-protocols such as the Schnorr protocol and the
Guillou-Quisquater protocol [15, 5] possess this property.

2.3.1 The OR-proof System[8]
Suppose that a Σ-protocol Σ on a relation R is given.

Consider the following relation.

ROR ={({x0, x1}, {wi}i∈S) ∈ {1, 0}∗ × {1, 0}∗;

(0 ∈ S ∨ 1 ∈ S) ∧ ∀i ∈ {0, 1} ∩ S, (xi, wi) ∈ R}.

Then we construct a new protocol, ΣOR, on a relation ROR

as follows. For an explanation, suppose (x0, w0) ∈ R holds.
P computesCmt0 ← Σ1(x0, w),Cha1 ← Σ2(λ), (Cmt1,Res1)
← Σsim(x1,Cha1) and sends (Cmt0,Cmt1) to V. Then V
sendsCha← Σ2(λ) to P. Then, P computesCha0 := Cha⊕
Cha1,Res0 ← Σ3(x0, w0,Cmt0,Cha0) answers to V with
(Cha0,Cha1) and (Res0,Res1). Here ⊕ denotes a bitwise
Exclusive-OR operation. Then both (Cmt0,Cha0,Res0)
and (Cmt1,Cha1,Res1) are accepting conversations and
have the same distribution as real accepting conversations.
This protocol ΣOR also can be proved to be a Σ-protocol,
and is called the OR-proof system.

2.3.2 The Fiat-Shamir Transform [1]
Employing a cryptographic hash function with collision

resistance, Hλ(·) : {1, 0}∗ → {1, 0}l(λ), a Σ-protocol Σ can
be transformed into a digital signature scheme as follows.
Given a message m ∈ {1, 0}∗, execute: a ← Σ1(x,w),
c ← Hλ(m ∥ a), z ← Σ3(x,w, a, c). Then σ := (a, z) is
a signature on m. We denote the above signing algorithm
as FSsign

Σ (x,w,m)→ (a, z) =: σ. The verification algorithm

is given as follows: FSvrfy
Σ (x,m, σ) : c← Hλ(m ∥ a), Return

b← Σvrfy(x, a, c, z).

The signature scheme FSΣ = (R,FSsign
Σ ,FSvrfy

Σ ) can be
proved, in the random oracle model, to be secure in the ex-
istential unforgeability game against chosen-message attacks

51



if and only if underlying Σ-protocol Σ is secure against pas-
sive attacks [1]. More precisely, let qH denote the maxi-
mum number of hash queries issued by the adversary on
FSΣ. Then, for any PPT algorithm F , there exists a PPT
algorithm B which satisfies the following inequality (neg(·)
means a negligible function).

Adveufcma
F,FSΣ

(λ) ≤ qHAdvpa
B,Σ(λ) + neg(λ).

2.4 Credential Bundle Scheme [13]
Credential bundle is an extended notion of digital signa-

ture. Suppose that we are given a digital signature scheme
(KG, Sign,Vrfy). To construct a credential bundle scheme,
first choose a string τ , a tag. τ can be chosen as a random
string or a publicly known string such as an e-mail address.
Then, for a set of messages m1, . . . ,mn ∈ {1, 0}∗, execute
Sign on each tagged message (τ ∥ mi), i = 1, . . . , n. Verify
is applied in a obvious way.

2.5 Attribute-Based Identification Scheme [2]
In this paper, we will describe verifier-policy attribute-

based identification schemes [2]. An attribute-based iden-
tification scheme, ABID, consists of four PPT algorithms:
(Setup, KG, P, V).
Setup(λ,U) → (PK,MSK). Setup takes as input the se-
curity parameter λ and an attribute universe U . It outputs
a public key PK and a master secret key MSK.
KG(PK,MSK, S) → SKS. A key-generation algorithm
KG takes as input the public key PK, the master secret
key MSK and an attribute set S ⊂ U . It outputs a secret
key SKS corresponding to S.
P(PK,SKS) and V(PK, f). P and V are interactive algo-
rithms called a prover and a verifier, respectively. P takes
as input the public key PK and the secret key SKS . Here
the secret key SKS is given to P by an authority that runs
KG(PK,MSK,S). V takes as input the public key PK and
an access formula f . P is provided V’s access formula f
by the first move. P and V interact with each other for at
most constant rounds. Then, V returns its decision 1 or 0.
When it is 1, we say that V accepts P for f . When it is 0,
we say that V rejects P for f . We demand correctness of
ABID that for any λ, and if f(S) = 1, then Pr[(PK,MSK)←
Setup(λ,U); SKS ← KG(PK,MSK, S); b ← ⟨P(PK,SKS),
V(PK, f)⟩ : b = 1] = 1.

2.5.1 Attacks on ABID and Security
An adversary A’s objective is impersonation. A tries to

make a verifier V accept with an access formula f∗. The
following experiment ExprmtcaA,ABID(λ,U) of an adversary
A defines the game of concurrent attack on ABID.

ExprmtcaA,ABID(λ,U) :
(PK,MSK)← Setup(λ,U)

(f∗, st)← AKG(PK,MSK,·),Pj(PK,SK·)|
qp
j=1(PK,U)

b← ⟨A(st),V(PK, f∗)⟩
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-
generation oracle KG. Giving an attribute set Si, A queries
KG(PK,MSK, ·) for the secret key SKSi . In addition, A
invokes provers Pj(PK,SK·), j = 1, . . . , q′p, . . . , qp, by giving

a pair (Sj , fj) of an attribute set and an access formula.
Acting as a verifier with an access formula fj , A interacts
with each Pj(PK, SKSj ) concurrently.

The access formula f∗ declared by A is called a target ac-
cess formula. Here we consider the adaptive target in the
sense that A is allowed to choose f∗ after seeing PK, issu-
ing key-extraction queries and interacting with of provers.
Two restrictions are imposed on A concerning f∗. In key-
extraction queries, each attribute set Si must satisfy f∗(Si) =
0. In interactions with each prover, f∗(Sj) = 0. The num-
ber of key-extraction queries and the number of invoked
provers are at most qk and qp in total, respectively, which
are bounded by a polynomial in λ.

The advantage of A over ABID in the game of concurrent
attack is defined as

Advca
A,ABID(λ)

def
= Pr[ExprmtcaA,ABID(λ,U) returns Win].

ABID is called secure against concurrent attacks if, for any
PPT A, Advca

A,ABID(λ) is negligible in λ.
The game of passive attack on ABID is defined by re-

placing concurrent provers Pj(PK,SK·)|qpj=1 with transcript
oracle Transc in ExprmtcaA,ABID(λ,U). In a transcript query,
giving a pair (Sj , f) of an attribute set and an access for-
mula, A queries Transc(P(PK,SK·),V(PK, ·)) for a whole
transcript of messages interacted between P(PK, SKSj ) and
V(PK, fj). The advantage Advpa

A,ABID(λ) and security are
defined in the same way as the concurrent case. Note that
concurrent security means passive security; for any PPT A,
there exists a PPT B that satisfies the following inequality.

Advpa
A,ABID(λ) ≤ Advca

B,ABID(λ). (1)

2.5.2 Attribute Privacy of ABID
Consider the following experiment Exprmtatt-prvA,ABID (λ,U).

(In the experiment, an adversaryA interacts withP(PK, SKSb)
as a verifier with f∗.)

Exprmtatt-prvA,ABID (λ,U) :
(PK,MSK)← Setup(λ,U), (S0, S1, f

∗)← A(PK)

s.t. (f∗(S0) = f∗(S1) = 1) ∨ (f∗(S0) = f∗(S1) = 0)

SKS0 ← KG(PK,MSK, S0), SKS1 ← KG(PK,MSK, S1)

b← {1, 0}, b̂← AP(PK,SKSb
)(PK,SKS0 ,SKS1)

If b = b̂ Return Win else Return Lose

We say that ABID has attribute privacy if, for any PPT A,
the following advantage is negligible in λ.

Advatt-prv
A,ABID (λ)

def
=

|Pr[Exprmtatt-prvA,ABID (λ,U) returns Win]− 1/2|.

2.6 Attribute-Based Signature Scheme [14]
An attribute-based signature scheme, ABS, consists of four

PPT algorithms: (Setup, KG, Sign, Vrfy).
Setup(λ,U) → (PK,MSK). Setup takes as input the se-
curity parameter λ and an attribute universe U . It outputs
a public key PK and a master secret key MSK.
KG(PK,MSK, S) → SKS. A key-generation algorithm
KG takes as input the public key PK, the master secret
key MSK and an attribute set S ⊂ U . It outputs a signing
key SKS corresponding to S.
Sign(PK,SKS , (m, f))→ σ.A signing algorithm Sign takes
as input a public key PK, a private secret key SKS corre-
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sponding to an attribute set S, a pair (m, f) of a message
∈ {1, 0}∗ and an access formula. It outputs a signature σ.
Vrfy(PK, (m, f), σ). A verification algorithm Vrfy takes as
input a public key PK, a pair (m, f) of a message and an
access formula, and a signature σ. It outputs a decision 1 or
0. When it is 1, we say that ((m, f), σ) is valid. When it is 0,
we say that ((m, f), σ) is invalid. We demand correctness of
ABS that for any λ, and if f(S) = 1, then Pr[(PK,MSK)←
Setup(λ,U); SKS ← KG(PK,MSK, S);σ ← Sign(PK, SKS ,
(m, f)); b← Vrfy(PK, (m, f), σ) : b = 1] = 1.

2.6.1 Chosen-Message Attack on ABS and Security
An adversary F ’s objective is to make an existential forgery.
F tries to make a forgery ((m∗, f∗), σ∗) of a message, a tar-
get access policy and a signature. The following experiment
Exprmteufcma

F,ABS (λ,U) of a forger F defines the existential un-
forgeability game by chosen-message attack on ABS.

Exprmteufcma
F,ABS (λ,U) :

(PK,MSK)← Setup(λ,U)

((m∗, f∗), σ∗)← FKG(PK,MSK,·),SIGN (PK,SK·,(·,·))

If Vrfy(PK, (m∗, f∗), σ∗) = 1 then Return Win

else Return Lose

In the experiment, F issues key-extraction queries to its
key-generation oracle KG and signing queries to its sign-
ing oracle SIGN . Giving an attribute set Si, A queries
KG(PK,MSK, ·) for the secret key SKSi . In addition, giving
an attribute set Sj and a pair (m, f) of a message and an ac-
cess formula, F queries SIGN (PK, SK·, (·, ·)) for a signature
σ that satisfies Vrfy(PK, (m, f), σ) = 1 when f(Sj) = 1.
The access formula f∗ declared by F is called a target ac-

cess formula. Here we consider the adaptive target in the
sense that F is allowed to choose f∗ after seeing PK, issuing
of key-extraction queries and signing queries. Two restric-
tions are imposed on F concerning f∗. In key-extraction
queries, each attribute set Si must satisfy f∗(Si) = 0. In
signing queries, (m∗, f∗) was never queried. The number of
key-extraction queries and the number of signing queries are
at most qk and qs in total, respectively, which are bounded
by a polynomial in λ.
The advantage of F over ABS in the existential unforge-

ability game by chosen-message attack is defined as

Adveufcma
F,ABS (λ)

def
= Pr[Exprmteufcma

F,ABS (λ,U) returns Win].

ABS is called secure in the existential unforgeability game
against chosen-message attacks if, for any PPT F , Adveufcma

F,ABS (λ)
is negligible in λ.

2.6.2 Attribute Privacy of ABS
Consider the following experiment Exprmtatt-prvA,ABS (λ,U).

Exprmtatt-prvA,ABS (λ,U) :
(PK,MSK)← Setup(λ,U), (S0, S1, f

∗)← A(PK)

s.t. (f∗(S0) = f∗(S1) = 1) ∨ ((f∗(S0) = f∗(S1) = 0)

SKS0 ← KG(PK,MSK, S0), SKS1 ← KG(PK,MSK, S1)

b← {1, 0}, b̂← ASIGN (PK,SKSb
,·,·)(PK, SKS0 , SKS1)

If b = b̂ Return Win else Return Lose

We say that ABS has attribute privacy if, for any PPT A,
the following advantage of A is negligible in λ.

Advatt-prv
A,ABS (λ)

def
=

|Pr[Exprmtatt-prvA,ABS (λ,U) returns Win]− 1/2|.

2.7 Pseudorandom Function Family [12]
A pseudorandom function family, {PRFκ}κ∈PRFkeysp(λ), is

a function family in which each function PRFκ : {1, 0}∗ →
{1, 0}∗ is an efficiently-computable function that looks ran-
dom to any polynomial-time distinguisher, where κ is called
a key and PRFkeysp(λ) is called a key space. (See more
detail in [12].)

3. DEFINITION OF OUR BOOLEAN PROOF
SYSTEM OF Σ-PROTOCOL TYPE

In this section, we propose a notion of boolean proof system
in the form of a Σ-protocol, Σf , where f is a given access
formula. Our Σf is a generalization of the OR-proof sys-
tem ΣOR [8]; that is, it treats any boolean formula instead
of a single OR-gate. In addition, as is the case for usual
Σ-protocol Σ, our boolean proof system Σf is a proof of
knowledge system; that is, it possesses a knowledge extrac-
tor that extracts a witness set which satisfies the boolean
formula f .

LetR be a binary polynomial-time relationR = {(x,w)} ⊂
{1, 0}∗ × {1, 0}∗. Let f be an access formula over U . Then
we create a new relation Rf :

Rf
def
= {(X := {xatt}att∈Att(f),W := {watt}att∈S) ∈ ({1, 0}∗)2;

f(S) = 1 ∧ ∀att ∈ Att(f) ∩ S, (xatt, watt) ∈ R}.

Note that Rf is a generalization of the relation ROR.
Then a boolean proof system Σf on the relation Rf is

defined as a 3-move protocol between interactive PPT al-
gorithms P and V on initial input (X := {xatt},W :=
{watt}) ∈ Rf for P, and X for V. P sends the first message
called a commitment Cmt, then V sends a random bit string
called a challenge Cha, and P answers with a third message
called a response Res. Then V applies a local decision test
on (X,Cmt,Cha,Res) to return accept (1) or reject (0).

Here Cha is chosen at random from ChaSp(λ) := {1, 0}l(λ)
with l(·) being a super-log function.

This protocol is written by a PPT algorithmΣf as follows.
Cmt← Σ1

f (X,W ): the process of selecting the first message
Cmt according to the protocol Σf on input (X,W ) ∈ Rf .
Similarly we denoteCha← Σ2

f (λ), Res← Σ3
f (X,W,Cmt,Cha)

and b← Σvrfy
f (X,Cmt,Cha,Res).

To be a Σ-protocol, Σf must satisfy three constraints:
Completeness An honest prover P with a legitimate witness
set W can make V accept with probability 1.
Special Soundness. Any PPT algorithm P∗ without any wit-
ness set (called a cheating prover) can only respond for one
possible challenge Cha. In other words, there is a PPT al-
gorithm called a knowledge extractor, ΣKE

f , which, given a
statement X and using P ∗ as a subroutine, can compute a
witness set W satisfying (X,W ) ∈ Rf with at most a neg-
ligible error probability, from two accepting conversations
of the form (Cmt,Cha,Res) and (Cmt,Cha′,Res′) with
Cha ̸= Cha′.
Honest-Verifier Zero-Knowledge. Given a statement set X
and a random challenge Cha ← Σ2

f (λ), we can produce in
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polynomial-time, without knowing the witness set W , an
accepting conversation (Cmt,Cha,Res) whose distribution
is the same as the real accepting conversation. In other
words, there is a PPT algorithm called a simulator, Σsim,
such that (Cmt,Res)← Σsim(X,Cha).
The boolean proof system Σf constructed in the above

way can be proved to be a proof of knowledge system. The
reason is the same as the reason of usual Σ-protocol ([8]).

4. CONSTRUCTION OF OUR BOOLEAN
PROOF SYSTEM

In this section, we construct our boolean proof system Σf

from a given Σ-protocol Σ and an access formula f . Because
of space limitation, all proofs for Proposition, Lemma and
Theorem are hereafter omitted.
Fig. 1 shows our protocol Σf . Basically Σf is a 3-move

protocol between interactive PPT algorithms P and V on
initial input (X := {xatt}att∈Att(f),W := {watt}att∈S) ∈ Rf

for P and X for V.
Evaluation of Satisfiability. The prover P begins with
evaluation concerning whether and how S satisfies f . We
label each node of T with a value v = 1 (True) or 0 (False);
For each leaf node lf, we label lf with vlf = 1 if att(lf) ∈ S
and vlf = 0 otherwise. For each inner node nd, we label
nd according to AND/OR evaluation result of two labels
of its two children. The computation is executed for every
node from the root node to each leaf node, recursively, in
the following way.

Σeval
f (T , S) :
TL := Lsub(T ), TR := Rsub(T )
If rt(T ) is an ∧ -node,

then Return vrt(T ) := (Σeval
f (TL, S) ∧Σeval

f (TR, S))
else if rt(T ) is an ∨ -node,

then Return vrt(T ) := ((Σeval
f (TL, S) ∨Σeval

f (TR, S))
else if rt(T ) is a leaf node,

then Return vrt(T ) := (att(rt(T ))
?
∈ S)

Commitment. Prover’s computation of a commitment value
for each leaf node is described in Fig. 2. Basically, the al-
gorithm Σ1

f runs for every node from the root node to each

leaf node, recursively. As a result, Σ1
f generates for each leaf

node lf a value Cmtlf; If vlf = 1, then Cmtlf is computed
honestly according to Σ1. Else if vlf = 1, then Cmtlf is com-
puted in the simulated way according to Σsim. Other values,
(Chand)nd∈tNd(Tf ) and (Reslf)lf∈Lf(Tf )), are needed for the

simulation. Note that a distinguished symbol ‘∗′ is used for
those other values to indicate the honest computation.
Challenge. Verifier picks up a challenge value by using Σ2.

Σ2
f (λ) : Cha← Σ2(λ),Return(Cha)

Response. Prover’s computation of a response value for
each leaf node is described in Fig. 3. Basically, the algo-
rithm Σ3

f runs for every node from the root node to each

leaf node, recursively. As a result, Σ3
f generates values,

(Chand)nd∈tNd(Tf ) and (Reslf)lf∈Lf(Tf )). Note that all chal-

lenge values (Chand)nd∈tNd(Tf ) are completed according to
the “division rule” described in Section 1.1.

Verification. Verifier’s computation is executed for each
leaf node as follows.

Σvrfy
f (X, T ,Cha,

(Cmtlf)lf∈Lf(T ), (Chand)nd∈tNd(T ), (Reslf)lf∈Lf(T )) :

Return(VrfyCha(T ,Cha, (Chand)nd∈tNd(T ))

∧VrfyRes(X, T , (Cmt,Cha,Res)lf∈Lf(T )))

VrfyCha(T ,Cha, (Chand)nd∈tNd(T )) :

TL := Lsub(T ), TR := Rsub(T )
If rt(T ) is an ∧ -node,

then Return (Cha
?
= Chart(TL) ∧Cha

?
= Chart(TR)

∧VrfyCha(TL,Chart(TL), (Chand)nd∈tNd(TL))

∧VrfyCha(TR,Chart(TR), (Chand)nd∈tNd(TR)))

else if rt(T ) is an ∨ -node,

then Return (Cha
?
= Chart(TL) ⊕Chart(TR)

∧VrfyCha(TL,Chart(TL), (Chand)nd∈tNd(TL))

∧VrfyCha(TR,Chart(TR), (Chand)nd∈tNd(TR)))

else if rt(T ) is a leaf node,

then Return (Cha
?
∈ ChaSp(λ))

VrfyRes(X, T , (Cmt,Cha,Res)lf∈Lf(T )) :

For lf ∈ Lf(T )

If Σvrfy(xatt(lf),Cmtlf,Chalf,Reslf) = 0, then Return (0)

Return (1)

Now we have to check that Σf is certainly a boolean proof
system of Σ-protocol type.

Proposition 1 (Completeness). Completeness holds
for our Σf . More precisely, Suppose that vrt(Tf ) = 1. Then,

for every node in Nd(Tf ), either vnd = 1 or Chand ̸= ∗ holds
after executing Σ1

f .

Proposition 2 (Special Soundness). Special sound-
ness holds for our Σf .

Lemma 1 (Witness-Set Extraction). The set W ∗ out-
put by ΣKE

f satisfies (X,W ∗) ∈ Rf .

Proposition 3 (Honest Verifier Zero-Knowledge).
Honest verifier zero-knowledge property holds for our Σf .

Theorem 1. Σf is certainly a boolean proof system of
Σ-protocol type on the relation Rf .

5. APPLICATION TO
ATTRIBUTE-BASED IDENTIFICATION

In this section, by combining our boolean proof systemΣf

with a credential bundle scheme of the Fiat-Shamir signa-
ture FSΣ, we obtain an attribute-based identification scheme
ABID of proof of knowledge, which has collusion resistance
against collecting private secret keys. Our ABID scheme
ABID has a feature that it can be constructed without pair-
ings.
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P(X := {xatt}att∈Att(f),W := {watt}att∈S) : V(X, f):
Initialize inner state Initialize inner state
Σeval

f (Tf , S)→ (vnd)nd∈Nd(Tf )

If vrt(Tf ) ̸= 1, then abort
else Chart(Tf ) := ∗
Σ1

f (X,W, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf ))
→ ((Cmtlf)lf∈Lf(Tf ), (Cmtlf)lf∈Lf(Tf )

(Chand)nd∈tNd(Tf ), −→
(Reslf)lf∈Lf(Tf ))

Chart(Tf ) := Cha Cha Cha← Σ2
f (λ)

Σ3
f (X,W, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf ), ←−
(Cmtlf)lf∈Lf(Tf ),

(Chand)nd∈tNd(Tf ), Σvrfy
f (X, Tf ,Cha,

(Reslf)lf∈Lf(Tf )) (Cmtlf)lf∈Lf(Tf ),
→ ((Chand)nd∈tNd(Tf ), (Chand)nd∈tNd(Tf ), (Chand)nd∈tNd(Tf ),

(Reslf)lf∈Lf(Tf )) (Reslf)lf∈Lf(Tf ) (Reslf)lf∈Lf(Tf ))→ b
−→ Return b

Figure 1: Our boolean proof system Σf on a relation Rf = {(X,W )}.

Σ1
f (X,W, T , (vnd)nd∈Nd(T ),Cha) :
TL := Lsub(T ), TR := Rsub(T )
If rt(T ) is ∧-node, then Chart(TL) := Cha,Chart(TR) := Cha
Return(Chart(TL),Σ

1
f (X,W, TL, (vnd)nd∈Nd(TL),Chart(TL)),

Chart(TR),Σ
1
f (X,W, TR, (vnd)nd∈Nd(TR),Chart(TR)))

else if rt(T ) is ∨-node, then
If vrt(TL) = 1 ∧ vrt(TR) = 1, then Chart(TL) := ∗, Chart(TR) := ∗
else if vrt(TL) = 1 ∧ vrt(TR) = 0, then Chart(TL) := ∗, Chart(TR) ← Σ2(λ)
else if vrt(TL) = 0 ∧ vrt(TR) = 1, then Chart(TL) ← Σ2(λ),Chart(TR) := ∗
else if vrt(TL) = 0 ∧ vrt(TR) = 0, then Chart(TL) ← Σ2(λ),Chart(TR) := Cha⊕Chart(TL)

Return(Chart(TL),Σ
1
f (X,W, TL, (vnd)nd∈Nd(TL),Chart(TL)),

Chart(TR),Σ
1
f (X,W, TR, (vnd)nd∈Nd(TR),Chart(TR)))

else if rt(T ) is a leaf-node, then
If vrt(T ) = 1, then Cmtrt(T ) ← Σ1(xatt(rt(T )), watt(rt(T ))),Resrt(T ) := ∗
else if vrt(T ) = 0, then (Cmtrt(T ),Resrt(T ))← Σsim(xatt(rt(T )),Cha)
Return(Cmtrt(T ),Resrt(T ))

Figure 2: The subroutine Σ1
f of our Σf .

5.1 Our ABID Scheme
Our ABID = (Setup,KG,P,V) is described as follows.

Setup(λ,U) :
(xM, wM)← InstanceR(λ),PK := (xM,U),MSK := wM

Return(PK,MSK)

Setup computes a public key PK and a master secret key
MSK by running InstanceR(λ), which chooses an element
(xM, wM) that corresponds to the security parameter λ, at
random from a fixed hard relation R = {(x,w)}.

KG(PK,MSK, S) :

κ← PRFkeysp(λ), τ ← {1, 0}λ

For att ∈ S : matt := (τ ∥ att)

σatt := (aatt, watt)← FSsign
Σ (xM, wM,matt)

SKS := (κ, τ, (σatt)att∈S),Return SKS .

KG first chooses a random string, a tag τ , at random. Then
KG applies the credential bundle technique [13] for each

message matt := (τ ∥ att), att ∈ S. Here we employ the

Fiat-Shamir signing algorithm FSsign
Σ that is obtained from

the same Σ-protocol Σ.

Supp(PK,SKS , f) :

For att ∈ Att(f)

If att /∈ S, then catt ← PRFκ(0 ∥ att)

(aatt, zatt)← Σsim(xM, catt;PRFκ(1 ∥ att))
Return (aatt)att∈Att(f)

P uses supplementary algorithm, Supplement, to generate
values aatt for all att ∈ Att(f).

StmtGen(PK, τ, (aatt)att∈Att(f)) :

For att ∈ Att(f) :

matt := (τ ∥ att), catt ← Hλ(matt ∥ aatt)

xatt ← ΣstmtforRes(xM, aatt, catt)

Return {xatt}att∈Att(f)
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Σ3
f (X,W, T , (vnd)nd∈Nd(T ),Cha, (Cmtlf)lf∈Lf(T ), (Chand)nd∈tNd(T ), (Reslf)lf∈Lf(T )) :
TL := Lsub(T ), TR := Rsub(T )
If rt(T ) is ∧-node, then Chart(TL) := Cha,Chart(TR) := Cha
Return(Chart(TL),Σ

3
f (X,W, TL, (vnd)nd∈Nd(TL), (Cmtlf)lf∈Lf(TL),Chart(TL), (Chand)nd∈tNd(TL), (Reslf)lf∈Lf(TL)),

Chart(TR),Σ
3
f (X,W, TR, (vnd)nd∈Nd(TR), (Cmtlf)lf∈Lf(TR),Chart(TR), (Chand)nd∈tNd(TR), (Reslf)lf∈Lf(TR)))

else if rt(T ) is ∨-node, then
If vrt(TL) = 1 ∧ vrt(TR) = 1, then Chart(TL) ← Σ2(λ), Chart(TR) := Cha⊕Chart(TL)

else if vrt(TL) = 1 ∧ vrt(TR) = 0, then Chart(TL) := Cha⊕Chart(TR),Chart(TR) := Chart(TR)

else if vrt(TL) = 0 ∧ vrt(TR) = 1, then Chart(TL) := Chart(TL), Chart(TR) := Cha⊕Chart(TL)

else if vrt(TL) = 0 ∧ vrt(TR) = 0, then Chart(TL) := Chart(TL), Chart(TR) := Chart(TR)

Return(Chart(TL),Σ
3
f (X,W, TL, (vnd)nd∈Nd(TL), (Cmtlf)lf∈Lf(TL),Chart(TL), (Chand)nd∈tNd(TL), (Reslf)lf∈Lf(TL)),

Chart(TR),Σ
3
f (X,W, TR, (vnd)nd∈Nd(TR), (Cmtlf)lf∈Lf(TR),Chart(TR), (Chand)nd∈tNd(TR), (Reslf)lf∈Lf(TR)))

else if rt(T ) is a leaf-node, then
If vrt(T ) = 1, then Resrt(T ) ← Σ3(xatt(rt(T )), watt(rt(T )),Cmtrt(T ),Cha)
else if vrt(T ) = 0, then do nothing
Return(Resrt(T ))

Figure 3: The subroutine Σ3
f of our Σf .

P and V utilizes a statement-generator algorithm, StmtGen.
This generates for each att ∈ Att(f) a statement xatt that
makes the output watt of KG be a corresponding witness.
Note that we employ here the algorithm ΣstmtforRes which
is associated with Σ, and whose existence is assured by as-
sumption (see Section 2.3).
Finally, a whole ABID scheme is obtained by adding the

following procedures (1) and (2) to our Σ-protocol Σf .
(1) In P(PK, SKS), add the following procedures to give a
statement set and a witness set (X,W ) to Σ1

f .

Supp(PK, SKS , f)→ (aatt)att∈Att(f)

StmtGen(PK, τ, (aatt)att∈Att(f))

→ {xatt}att∈Att(f) =: X,W := {watt}att∈S .

At the first move, P sends to the verifier V not only commit-
ments (Cmtlf)lf∈Lf(Tf ) but also elements τ and (aatt)att∈Att(f).

(2) In V(PK, f), add the following procedure to give a state-

ment set X to Σvrfy
f .

StmtGen(PK, τ, (aatt)att∈Att(f))→ {xatt}att∈Att(f) =: X.

Theorem 2. Suppose that a given Σ-protocol Σ possesses
a polynomial-time algorithm ΣstmtforRes. Then our ABID is
also a Σ-protocol on the relation Rf := {(X,W )}.

5.2 Security of Our ABID

Theorem 3. If the employed signature scheme FSΣ is se-
cure in the existential unforgeability game against chosen-
message attacks, then our ABID is secure against concurrent
attacks. More precisely, for any PPT algorithm A, there
exists a PPT algorithm F which satisfies the following in-
equality (neg(·) means a negligible function).

Advca
A,ABID(λ) ≤ (Adveufcma

F,FSΣ
(λ))1/2 + neg(λ).

5.3 Discussion

5.3.1 Attribute-Based Proof of Knowledge
Our ABID is a proof of knowledge system. That is, for

a fixed access policy f , a PPT knowledge extractor can be
constructed, which extracts a secret key SKS∗ for some at-
tribute set S∗ with f(S∗) = 1.

5.3.2 Attribute Privacy of our ABID.
For the case of an honest verifier, that is, if an adversary
A chooses a challenge Cha at random from ChaSp(λ) in
the attribute privacy game in Section 2.5.2 , attribute pri-
vacy follows from the honest verifier zero-knowledge prop-
erty. However, in general, attribute privacy is not obvious.
It seems an open problem to the best of authors’ knowledge.

5.3.3 Security Reduction.
We mean a number theoretic problem here as the discrete-

logarithm problem or the RSA-inverse problem ([5]).
There exists the following security reduction to a number

theoretic problem.

Advca
A,ABID(λ) ≤ q

1/2
H (Advnum.prob.

S,Grp (λ))1/4 + neg(λ). (2)

Here we denote qH as the maximum number of hash queries
issued by the adversary on FSΣ in the random oracle model.

6. FURTHER APPLICATION TO ATTAIN
ATTRIBUTE-BASED SIGNATURE

In this section, by applying the Fiat-Shamir transform [1]
to our ABID, we obtain an attribute-based signature scheme
ABS. Our ABS is secure in the random oracle model, pos-
sesses attribute privacy, and has a feature that it can be
constructed without pairings.

6.1 Our ABS Scheme
The Fiat-Shamir transform ([9, 1]), briefly described in

Section 2.3.2, can be directly applied to our ABID because
our ABID is a Σ-protocol. Fig. 4 shows our construction of
ABS scheme, ABS =(Setup, KG, Sign, Vrfy).

6.2 Security of Our ABS
We can apply the discussions in [1]. Then the security of

the obtained attribute-based signature scheme is equivalent
to the security of our ABID against passive attacks.

Theorem 4. Our attribute-based signature scheme ABS

obtained by applying the Fiat-Shamir transform to our ABID
is secure in the existential unforgeability game against chosen-
message attacks, in the random oracle model, based on the
passive security of ABID. More precisely, let qH denote the
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Setup(λ,U): KG(PK,MSK, S):
(xM, wM)← InstanceR(λ) κ← PRFkeysp(λ), τ ← {1, 0}λ
PK := (xM,U),MSK := wM For att ∈ S
Return(PK,MSK) matt := (τ ∥ att)

σatt := (aatt, watt)← FSsign
Σ (xM, wM,matt)

SKS := (κ, τ, (σatt)att∈S)
Return SKS

Sign(PK, SKS , (m, f)): Vrfy(PK, (m, f), σ := (τ, (aatt)att∈Att(f),
Initialize inner state (Cmtlf)lf∈Lf(Tf ),

Σeval
f (Tf , S)→ (vnd)nd∈Nd(Tf ) (Chand)nd∈tNd(Tf ),

If vrt(Tf ) ̸= 1, then abort (Reslf)lf∈Lf(Tf )))) :
Initialize inner state

else Chart(Tf ) := ∗ Cha← H(m ∥ (Cmtlf)lf∈Lf(Tf))
Supp(PK,SKS , f)→ (aatt)att∈Att(f) StmtGen(PK, τ, (aatt)att∈Att(f))
StmtGen(PK, τ, (aatt)att∈Att(f)) → {xatt}att∈Att(f) =: X

→ {xatt}att∈Att(f) =: X

W := {watt}att∈S Σvrfy
f (X, Tf ,
(Cmtlf)lf∈Lf(Tf ),

Σ1
f (X,W, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf )) Cha, (Chand)nd∈tNd(Tf ),

→ ((Cmtlf)lf∈Lf(Tf ), (Reslf)lf∈Lf(Tf ))
(Chand)nd∈tNd(Tf ), → b, Return b
(Reslf)lf∈Lf(Tf ))

Cha← H(m ∥ (Cmtlf)lf∈Lf(Tf))
Chart(Tf ) := Cha

Σ3
f (X,W, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf ),
(Cmtlf)lf∈Lf(Tf ),
(Chand)nd∈tNd(Tf ),
(Reslf)lf∈Lf(Tf ))

→ ((Chand)nd∈tNd(Tf ),
(Reslf)lf∈Lf(Tf ))

Return σ := (τ, (aatt)att∈Att(f),
(Cmtlf)lf∈Lf(Tf ),
(Chand)nd∈tNd(Tf ),
(Reslf)lf∈Lf(Tf )))

Figure 4: Our ABS scheme.
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maximum number of hash queries issued by the adversary on
ABS. Then, for any PPT algorithm F , there exists a PPT
algorithm B which satisfies the following inequality (neg(·)
means a negligible function).

Adveufcma
F,ABS (λ) ≤ qHAdvpa

B,ABID(λ) + neg(λ). (3)

6.3 Discussion

6.3.1 Attribute Privacy of our ABS.
As opposed to the case of our ABID, our ABS has attribute

privacy defined in Section 2.5.2. Actually, more strongly,
attribute privacy holds forA with unbounded computational
ability because, for a fixed access policy f , the distribution
of messages and signatures (m,σ) does not depend on secret
keys SKS where f(S) = 1.

6.3.2 Security Reduction.
Let qH denote the maximum number of hash queries is-

sued by the adversaries on ABS and FSΣ. Combining the
inequalities (3), (1) and (2), we obtain the following secu-
rity reduction on advantages.

Adveufcma
F,ABS (λ) ≤ q

3/2
H (Advnum.prob.

S,Grp (λ))1/4 + neg(λ).

7. EFFICIENCY COMPARISON
The most efficient, previously known ABS scheme is the

one by Okamoto and Takashima (OT11) [14]. We com-
pare efficiency of our ABS scheme with their scheme in the
length of a signature as well as underlying assumption, in
the discrete-logarithm setting.
A prime of bit length λ (the security parameter) is denoted

by p and we fix a cyclic group Gp of order p. We assume that
an element of Gp is represented by 2λ bits. Let l := |Lf(Tf )|
denote the number of leaf nodes in an access tree. DLIN and
CR hash mean the Decisional Linear assumption for pairing
group [14] and the collision resistance of an employed hash
function, respectively.
Then the lengths of a signature of the scheme OT11 and

our ABS are as in the Table 1. OT11 scheme has advantages
in the security-proof model and access formula, whereas our
ABS realizes shorter length of signature.

Table 1: Efficiency Comparison.

Scheme OT11[14] Our ABS
Len. of Sig. (bit) (2λ)(9l + 11) (2λ)l + (λ)(4l − 1)
Sec.-Proof Model Standard Random Oracle
Assumption DLIN ∧ CR hash DLog
Access Formula non-monotone monotone
Adaptive Target Yes Yes
Attribute Privacy Yes Yes

8. CONCLUSIONS
Our strategy is in the Fiat-Shamir paradigm; we first con-

structed a boolean proof system Σf from a given Σ-protocol
Σ. Then, combining it with a credential bundle scheme from
FSΣ, we constructed ABID of proof of knowledge. Finally,
by applying the Fiat-Shamir transform to our ABID, we ob-
tained our ABS. Our ABS can be constructed without pairings.
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